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ABSTRACT: In industrial manufacturing, efficient surface defect detection is crucial for ensuring product quality and
production safety. Traditional inspection methods are often slow, subjective, and prone to errors, while classical machine
vision techniques struggle with complex backgrounds and small defects. To address these challenges, this study proposes
an improved YOLOv11 model for detecting defects on hot-rolled steel strips using the NEU-DET dataset. Three key
improvements are introduced in the proposed model. First, a lightweight Guided Attention Feature Module (GAFM)
is incorporated to enhance multi-scale feature fusion, allowing the model to better capture and integrate semantic
and spatial information across different layers, which improves its ability to detect defects of varying sizes. Second, an
Aggregated Attention (AA) mechanism is employed to strengthen the representation of critical defect features while
effectively suppressing irrelevant background information, particularly enhancing the detection of small, low-contrast,
or complex defects. Third, Ghost Dynamic Convolution (GDC) is applied to reduce computational cost by generating
low-cost ghost features and dynamically reweighting convolutional kernels, enabling faster inference without sacrificing
feature quality or detection accuracy. Extensive experiments demonstrate that the proposed model achieves a mean
Average Precision (mAP) of 87.2%, compared to 81.5% for the baseline, while lowering computational cost from 6.3 Giga
Floating-point Operations Per Second (GFLOPs) to 5.1 GFLOPs. These results indicate that the improved YOLOv11
is both accurate and computationally efficient, making it suitable for real-time industrial surface defect detection and
contributing to the development of practical, high-performance inspection systems.
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1 Introduction
In industrial manufacturing, surface defect detection is crucial for ensuring product quality and improv-

ing efficiency. In hot-rolled steel production lines, surface defects such as cracks, inclusions, and rolled-in
scales not only degrade the mechanical properties of steel products but also cause serious downstream
processing issues, including equipment wear and product rejection [1]. Rapid and accurate defect detection
is therefore essential for ensuring high-throughput production and meeting increasingly stringent quality
standards [2].

From an operational perspective, steel manufacturers demand detection systems that can operate in
real time to match high-speed production lines, maintain high accuracy to avoid costly false detections,
and remain lightweight enough for deployment on resource-constrained industrial hardware [3]. These
requirements highlight the necessity of developing efficient and robust algorithms for industrial defect
detection [4].
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Traditional manual inspection is slow and inconsistent, while machine vision–based automated meth-
ods greatly enhance detection speed and accuracy [5]. With the advancement of deep learning, object
detection algorithms have shown strong performance in defect detection across steel, electronics, and
automotive industries [6]. This study focuses on the NEU-DET dataset [2], which contains 1800 grayscale
images of six common hot-rolled steel surface defects: Rolled-in Scale, Patches, Crazing, Pitted Surface,
Inclusion, and Scratches. Optimizing deep learning algorithms for NEU-DET can significantly improve
detection performance and advance intelligent industrial inspection.

Surface defect detection has evolved from traditional image processing to machine learning, and more
recently, to deep learning. Early methods like edge detection and texture analysis worked in simple scenarios
but lacked robustness for complex defects. Machine learning techniques such as Support Vector Machine
(SVM) and Random Forest improved performance but relied heavily on handcrafted features [7]. Deep
learning, especially Convolutional Neural Networks (CNNs), has transformed object detection, with models
like Faster R-CNN [8], YOLO [9], and RetinaNet [10] widely used in industrial inspection. YOLO stands
out for its end-to-end structure, high speed, and accuracy, making it ideal for real-time tasks. Two-stage
methods (e.g., Faster R-CNN) offer higher accuracy but slower speed, while one-stage methods like YOLO
are faster and more efficient [11,12]. YOLOv11, released in 2024, improves detection and efficiency through
architectural and training upgrades [13]. In addition, several recent studies have demonstrated the potential
of YOLOv11-based models in tasks such as surface defect detection [14], industrial visual inspection [15], and
small-object detection [16].

However, challenges remain in detecting small defects and handling complex backgrounds in the NEU-
DET dataset, highlighting the need for further optimization.

To address the aforementioned issues, this paper proposes three optimization strategies based on the
YOLOv11 model and validates their effectiveness through experiments:

• Guided Attention Feature Module (GAFM) is integrated to replace the traditional structure, enhancing
multi-scale feature fusion through attention-guided mechanisms. It improves robustness in complex
backgrounds by enabling more effective semantic and spatial information exchange across scales.

• Aggregated Attention Mechanism combines global and local attention to highlight key defect regions
and suppress background noise, enhancing feature representation, especially for small and low-
contrast defects.

• Ghost Dynamic Convolution uses lightweight dynamic kernels to reduce computation while maintain-
ing rich feature extraction, boosting inference efficiency without sacrificing accuracy.

2 Methodology and Improvements

2.1 Overview of the YOLOv11 Architecture
As a new-generation improvement in the YOLO series, YOLOv11 introduces multiple optimizations

in its architecture to enhance detection accuracy, robustness, and inference efficiency. As shown in Fig. 1,
the overall framework retains the three-part structure of the YOLO series: the backbone, the neck, and the
detection head. However, several innovative design strategies have been incorporated into each module to
improve feature representation and computational efficiency.

YOLOv11 is an recently released model family released by Ultralytics, with its architecture introduced
in a recent arXiv preprint [13] and implemented in their official open-source codebase [17]. Despite its recent
release, YOLOv11 has already been widely adopted in both academia and industry, serving as a practical
baseline for numerous computer vision tasks. In our experiments, we use the lightweight YOLOv11n variant
following the Ultralytics default training configuration.
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Figure 1: Structure of YOLOv11

2.2 Detailed Improvement Strategies
As shown in Fig. 2, to enhance the detection accuracy, multi-scale adaptability, and computational effi-

ciency of YOLOv11 in industrial surface defect detection, this study introduces three targeted improvements:
GAFM, Aggregated Attention, and Ghost Dynamic Convolution. These modules are designed to optimize
feature fusion across different scales, enhance the model’s focus on critical defect regions, and reduce
redundant computations while maintaining high-quality feature representation. The following sections
provide detailed descriptions of each enhancement

Figure 2: Improved YOLOv11 structure
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2.2.1 Guided Attention Feature
The Guided Attention Feature Module (GAFM) is introduced to enhance the multi-scale feature fusion

of YOLOv11 by enabling bidirectional guidance between low-level and high-level representations under a
unified channel attention mechanism. Given a low-level feature map Fl ∈ RCl×H×W and a high-level feature
map Fh ∈ RCh×H×W , the two are concatenated along the channel dimension to form a joint representation
Fc = Concat(Fl , Fh) .

A squeeze-and-excitation (SE) [18] operation is then applied to Fc . Specifically, global average pooling
followed by two fully connected layers with non-linear activations produces a channel-wise weight vector,
which is partitioned according to the channel dimensions of Fl and Fh to recalibrate each branch as F̃l =
Fl ⊙ sl and F̃h = Fh ⊙ sh. To strengthen the complementary relationship across scales, a cross-residual fusion
strategy is adopted, in which the recalibrated shallow feature is combined with the original high-level feature,
while the recalibrated high-level feature is combined with the original low-level feature. The final fused
representation is then obtained by concatenating the two residual outputs, expressed as Ff u = Concat(F̃l +
Fh, F̃h + Fl).

This design preserves fine-grained spatial information from shallow layers while simultaneously
reinforcing the semantic consistency of deeper layers, thereby enhancing the model’s ability to focus on
defect-sensitive regions with limited computational overhead. Within the overall architecture, GAFM is
integrated at critical fusion points, namely between the backbone C3_k2 block and the upsampling path, as
well as within the neck after C3_k2 and following the Ghost Dynamic Convolution (GDConv) operation, as
illustrated in Fig. 3.

Figure 3: GAFM structure

2.2.2 Aggregated Attention
To strengthen the feature representation of YOLOv11 in complex and multi-scale defect detection

scenarios, this study integrates the Aggregated Attention (AA) module [19]. As illustrated in Fig. 4, the AA
structure follows a “preprocessing–attention aggregation–restoration” design. The input feature map X ∈
R

B×C×H×W is first processed to align dimensions, then forwarded to the Aggregated Attention Layer, and
finally restored to produce the output Y ∈ RB×C×H×W.
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Figure 4: Aggregated attention structure

The Aggregated Attention Layer is composed of three complementary branches.

• Multi-head attention branch. The input is reshaped to R
B×N×C with N = H ×W, and the attention is

computed as:

Attention(Q, K, V) = Softmax(QK⊺√
dk
)V (1)

where Q, K, V are linear projections of the input. This branch models long-range dependencies and captures
global contextual cues.

• Atrous convolution branch. To enhance local detail representation, atrous (dilated) convolution
is applied:

y[i] =
K
∑
k=1

x[i + r ⋅ k] ⋅w[k] (2)

where r is the dilation rate. This allows an enlarged receptive field without increasing parameters.

• Spatial reduction branch. The Key/Value matrices are downsampled by a factor s, reducing computa-
tional complexity from O(N2) to O(N ⋅ N

s ):

K̃, Ṽ ∈ RB×/tfracNs×C. (3)

This improves efficiency for high-resolution features while preserving discriminative information.
Finally, the outputs of the three branches are fused and reshaped back to R

B×C×H×W, forming the
enhanced representation:

Y = Fusion(Yattn, Yatrous , Ysr). (4)
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By combining global attention, local receptive fields, and efficient spatial reduction, the AA module
provides stronger adaptability to industrial surface defect detection, where defects vary in scale, morphology,
and background complexity.

2.2.3 Ghost Dynamic Convolution
In this study, all standard convolution layers in the YOLOv11 backbone are replaced with the Ghost

Dynamic Convolution (GDC) module to achieve a more efficient yet expressive feature extraction process.
As shown in Fig. 5, GDC integrates the lightweight design of GhostNet [20] with the adaptive capability of
dynamic convolution.

Figure 5: Ghost dynamic convolution structure

The Ghost module first reduces redundancy in convolutional feature maps by generating a small set of
intrinsic feature maps through standard convolution, and then employs inexpensive linear transformations
to produce additional “ghost” features. For an input tensor X ∈ Rc×h×w, a conventional convolution operation
is expressed as

Y = X ∗ f + b, (5)

where f ∈ Rc×k×k×n represents the convolutional filters. In contrast, the Ghost module derives intrinsic
features Y′, followed by cheap transformations Φ to generate supplementary ghost features:

yi,j = Φi,j (y′i), i = 1, . . . , m, j = 1, . . . , s (6)

This results in the complete feature set

Y = [y11 , y12, . . . , yms], (7)

with significantly fewer parameters and floating point operations (FLOPs), providing a theoretical compres-
sion ratio and speed-up of approximately s–fold [20].

On top of this efficient mechanism, dynamic convolution adaptively reweights multiple convolution
kernels according to the input, allowing the model to capture richer, context-dependent representations. By
embedding dynamic kernel selection into the ghost feature generation process, GDC achieves a favorable
trade-off between efficiency and adaptability.
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3 Dataset and Experimental Setup

3.1 Overview of the NEU-DET Dataset
The NEU-DET (Northeastern University Surface Defect Database) is a publicly available dataset

released by Northeastern University, widely adopted in research on surface defect detection in industrial
scenarios. It consists of 1800 grayscale images with a resolution of 200 × 200 pixels, covering six typical types
of defects: crazing, inclusion, patches, pitted_surface, rolled-in_scale, and scratches, with 300 images per
class. All samples were captured using industrial cameras and manually annotated. An example of the dataset
is shown in Fig. 6.

Figure 6: Example images from the NEU-DET dataset (defect regions highlighted)

To enhance the robustness and generalization capability of the model, data augmentation was applied
to the original data set. The augmentation techniques included adding Gaussian noise, random rotations,
brightness adjustments, and horizontal flipping. These basic transformations expanded the dataset size to
three times its original scale, resulting in a total of 5400 images. The augmentation process ensured a balanced
distribution of defect types and preserved the semantic integrity of the original images, providing a richer
and more stable training foundation for the model.

3.2 Experimental Environment and Hardware Configuration
The experimental setup was based on a Windows 10 operating system, equipped with 64 GB of RAM,

an NVIDIA RTX 4090D GPU, and an Intel Core i7-14700K CPU. All model training and evaluations were
conducted using Python 3.9, PyTorch 2.3.1, and CUDA 12.1. The NEU-DET dataset was used throughout
the experiments to train and optimize the proposed defect detection models. The primary hyperparameter
settings used during training are summarized in Table 1.

Table 1: Training hyperparameters

Parameter Value
Learning rate 0.01
Momentum 0.937

Weight decay 0.0005
Optimizer SGD

(Continued)
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Table 1 (continued)

Parameter Value
Batch size 16

Epochs 300

3.3 Evaluation Metrics
To comprehensively evaluate the performance of the proposed detection models and assess their

suitability for real-world industrial defect detection, the following metrics were adopted: Precision (P),
Recall (R), mean Average Precision (mAP), number of Parameters (Params), and computational complexity
(GFLOPs).

• Precision quantifies the proportion of true positive predictions among all defect predictions, as in Eq. (8).
A high precision indicates strong ability to distinguish defects from background, reducing false alarms.

• Recall measures the proportion of actual defect instances that are correctly identified, as expressed
in Eq. (9). High recall reflects the model’s effectiveness in detecting as many defects as possible, reducing
the risk of missed detections.

• mAP is a widely used metric in object detection that summarizes the model’s performance across all
defect categories. It is calculated as the average area under the Precision-Recall (P-R) curve for each class,
as in Eqs. (10) and (11).

• To assess model complexity and deployment feasibility, we also report the number of parameters
(Params) and floating-point operations (FLOPs). These metrics provide insight into the model’s compu-
tational requirements, which are critical for optimizing inference speed and ensuring compatibility with
resource-constrained industrial applications.

Precision = TP
TP + FP

(8)

Recall = TP
TP + FN

(9)

AP = ∫
1

0
P(R)dR (10)

mAP = 1
C

C
∑
i=1

APi (11)

where:

• TP (True Positives): Correctly predicted defective samples.
• FP (False Positives): Normal samples incorrectly predicted as defects.
• FN (False Negatives): Defects not detected by the model.
• C: Number of defect classes in the dataset.
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4 Experimental Results and Analysis

4.1 Comparison before and after Improvement
To evaluate the effectiveness of the proposed enhancements, a series of experiments was conducted

on the NEU-DET dataset to compare the performance of the original YOLOv11 model and the improved
version. The results are summarized in Table 2.

Table 2: Comparison of YOLOv11 before and after improvement

Model mAP@0.5 Params GFLOPs
Original YOLOv11n 0.815 2.58 M 6.3

Improved YOLOv11n 0.872 2.46 M 5.1
Improvement ↑0.057 ↓0.12 ↓1.2

In terms of detection accuracy, the improved YOLOv11 model achieved a mAP@0.5 of 87.2%, compared
to 81.5% for the baseline. Precision improved from 77.8% to 84.7%, and recall increased from 73.1%
to 83.0%. These results demonstrate that the integration of GAFM, Aggregated Attention, and Ghost
Dynamic Convolution significantly enhances the model’s ability to detect small and multi-scale defects under
complex backgrounds.

In terms of model complexity, the number of parameters was reduced from 2.58 to 2.46 M, and the
computational cost (GFLOPs) decreased from 6.3 to 5.1. This indicates that the proposed modifications not
only improve detection accuracy but also increase inference efficiency, making the model more suitable for
real-time industrial applications.

4.2 Ablation Study
To evaluate the individual contributions of each proposed module, we conducted ablation experiments

based on the YOLOv11n baseline by progressively integrating GAFM, Aggregated Attention (AA), and Ghost
Dynamic Convolution (GDC). The results are summarized in Table 3.

Table 3: Ablation results of proposed improvements

Method mAP@0.5 Precision Recall Params GFLOPs
Baseline 0.815 0.731 0.778 2.58 M 6.3
+GAFM 0.852 0.834 0.813 2.68 M 6.6
+AA 0.846 0.817 0.826 2.76 M 6.9
+GDC 0.816 0.743 0.769 1.78 M 3.7

+GAFM + AA 0.870 0.844 0.812 3.04 M 7.4
+GAFM + AA + GDC 0.872 0.830 0.847 2.46 M 5.1

Introducing GAFM alone significantly boosts the mAP@0.5 from 81.5% to 85.2%, demonstrating
improved multi-scale feature fusion with only a minor increase in computational cost. The AA module
further enhances the model’s attention to key defect regions, especially improving recall.

Compared with GAFM and AA, GDC provides a relatively smaller accuracy improvement when used
in isolation (from 81.5% to 81.6%). However, its primary advantage lies in substantially reducing model
complexity, cutting parameters from 2.58 to 1.78 M and FLOPs from 6.3 to 3.7 G, thus achieving nearly
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41% model compression and 41% computational savings. This indicates that GDC can serve as an efficient
replacement for standard convolutions, maintaining accuracy while improving efficiency.

When combined with GAFM and AA, the complementary nature of the modules becomes evident.
GAFM enriches multi-scale feature representations, AA enhances spatial attention, while GDC ensures the
compactness of the backbone. For instance, combining GAFM and AA achieves 87.0% mAP@0.5, while
integrating all three modules further boosts mAP@0.5 to 87.2%, with 83.0% precision and 84.7% recall, all
while reducing parameters to 2.46 M and GFLOPs to 5.1. This confirms that the proposed improvements
strike a favorable balance between accuracy and efficiency, with GDC playing a key role in enabling
lightweight deployment without compromising detection performance.

4.3 Comparative Experiments
To further validate the effectiveness of the proposed improvements, the enhanced YOLOv11n model

was compared with several mainstream YOLO variants, as well as the two-stage Faster R-CNN detector. The
evaluation was conducted on the NEU-DET dataset, and the results are shown in Table 4.

Table 4: Comparison with YOLO series on NEU-DET dataset

Model mAP@0.5 Precision Recall Params GFLOPs
Faster R-CNN 0.759 0.745 0.712 41.75 M 135

YOLOv3 0.781 0.677 0.791 103.6 M 283
YOLOv5n 0.776 0.739 0.727 2.51 M 7.2
YOLOv6n 0.799 0.755 0.743 4.24 M 11.9
YOLOv8n 0.803 0.752 0.750 3.01 M 8.2
YOLOv11n 0.815 0.731 0.778 2.58 M 6.3

Ours 0.872 0.830 0.847 2.46 M 5.1

In terms of accuracy, the improved YOLOv11n achieved the highest performance, reaching a mAP@0.5
of 87.2%, which is 6.9 percentage points higher than YOLOv8n and 5.7 percentage points higher than the
original YOLOv11n. Precision and Recall also showed noticeable improvements, demonstrating enhanced
feature extraction and small-defect detection capabilities.

Compared with the two-stage Faster R-CNN, which achieved 75.9% mAP@0.5 with 41.75 M parameters
and 135 GFLOPs, our model not only outperformed it in accuracy (+11.3 percentage points) but also required
significantly fewer computational resources. This highlights the advantage of our lightweight design in
balancing accuracy and efficiency.

Regarding computational efficiency, the improved model maintains a lightweight structure with only
2.46 M parameters and 5.1 GFLOPs, significantly outperforming the large-scale YOLOv3 model in terms of
inference cost while delivering better accuracy.

In comparison, Li et al. [21] proposed a YOLOv5m-based method with MRAM and MAEH modules,
achieving 82.7% mAP on NEU-DET but requiring over 20 M parameters, which indicates a higher
computational burden despite good accuracy.

To provide a more comprehensive evaluation, Precision-Recall (PR) curves were also analyzed. Figs. 7
and 8 show the PR curves of the baseline YOLOv11n and the improved YOLOv11n on the NEU-DET dataset,
respectively. The improved model demonstrates larger areas under the curves across most defect categories,
indicating more stable detection performance and better robustness against small and low-contrast defects.
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Figure 7: YOLOv11n P-R curve

Figure 8: Improved YOLOv11n P-R curve

Overall, the proposed enhancements strike a good balance between detection accuracy and model
efficiency, making the method well-suited for real-time industrial defect detection applications.

4.4 Visualized Detection Results
To more comprehensively illustrate the effectiveness of the proposed method, Fig. 9 provides a visual

comparison between the baseline YOLOv11n and the improved YOLOv11n on representative samples
from the NEU-DET dataset. The comparison covers six common defect types: Crack (Cr), Inclusion (In),
Patches (Pa), Pitted Surface (Ps), Rolled-in Scale (Rs), and Scratches (Sc). In each group, the upper row
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shows the detection results of the improved YOLOv11n model, while the lower row shows the baseline
YOLOv11n results.

Figure 9: Visual comparison between the improved YOLOv11n (upper row) and the baseline YOLOv11n (lower row)
on NEU-DET

In the first group (Cr), the baseline YOLOv11n fails to detect a crack defect, while the improved model
successfully localizes it with a higher confidence score. In the fifth group (Rs), the baseline model misses one
rolled-in scale defect, whereas the improved model correctly detects it. Additionally, in the third group (Pa),
the baseline model incorrectly classifies a patch defect as rolled-in scale, while the improved model avoids
this misclassification and produces the correct label.

Overall, these qualitative results demonstrate that the improved YOLOv11n effectively reduces missed
detections and false classifications compared with the baseline model, especially for small or low-contrast
defects, thereby enhancing the robustness of industrial defect detection.

4.5 Generalization Experiments
To further validate the generalization capability of the proposed method, we also conducted experi-

ments on the GC10-DET dataset [22]. GC10-DET is a real-world industrial surface defect dataset containing
3570 grayscale images with ten categories of defects, such as punch, weld line, and crescent gap. Compared
with NEU-DET, it covers a broader variety of defect patterns and is therefore well suited for evaluating model
robustness in practical scenarios. The experimental results are summarized in Table 5.

Table 5: Comparison with mainstream detectors on GC10-DET

Model mAP@0.5 Precision Recall Params GFLOPs
Faster R-CNN 0.649 0.566 0.611 41.75 M 135

YOLOv3 0.632 0.600 0.615 103.6 M 283
YOLOv5n 0.683 0.705 0.610 1.77 M 4.2
YOLOv6n 0.662 0.680 0.625 4.24 M 11.9
YOLOv8n 0.690 0.692 0.638 3.01 M 8.1
YOLOv11n 0.712 0.720 0.650 2.58 M 6.3

Ours 0.737 0.745 0.665 2.46 M 5.3
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The improved YOLOv11n (Ours) achieved the best overall performance with a mAP@0.5 of 73.7%,
Precision of 74.5%, and Recall of 66.5%, surpassing the baseline YOLOv11n (71.2% mAP) by +2.5 percentage
points while maintaining a lightweight architecture of only 2.46 M parameters and 5.3 GFLOPs. Compared
with YOLOv8n (69.0% mAP) and YOLOv5n (68.3% mAP), the proposed model consistently demonstrated
higher accuracy, confirming the benefits of the introduced optimization modules.

In terms of efficiency, our method not only significantly reduces computational overhead compared
to large-scale detectors such as YOLOv3 (283 GFLOPs) and Faster R-CNN (135 GFLOPs) but also achieves
superior detection accuracy. This balance between performance and efficiency is especially valuable in real-
time industrial inspection scenarios, where computational resources are often limited.

Overall, the results on GC10-DET provide further evidence that the proposed improvements generalize
effectively beyond a single dataset. By consistently outperforming both one-stage and two-stage detectors,
the enhanced YOLOv11n proves to be a robust and practical solution for industrial surface defect detection.

5 Conclusion and Future Work

5.1 Summary of Findings
This paper addresses the task of surface defect detection in industrial hot-rolled steel strips by

proposing three enhancements to the YOLOv11n model: integrating GAFM for improved multi-scale feature
fusion, incorporating Aggregated Attention to strengthen critical feature representation, and employing
Ghost Dynamic Convolution to reduce computational cost. Experimental results on the NEU-DET dataset
demonstrate that the improved model achieves superior performance in terms of mAP@0.5, precision, and
recall, compared to both the original YOLOv11n and other mainstream lightweight YOLO models. Moreover,
the proposed approach maintains a lower parameter count and computational load, achieving a good balance
between detection accuracy and inference efficiency. These characteristics make it suitable for real-time
defect detection in resource-constrained industrial environments.

5.2 Limitations and Future Directions
Despite the promising results achieved in this study, several limitations remain. First, all experiments

were conducted solely on the NEU-DET dataset, lacking validation across multiple domains and real-world
industrial scenarios. Second, the current model still faces challenges in detecting extremely small defects and
handling noisy backgrounds. Future research will focus on the following directions: (1) incorporating more
diverse and realistic industrial datasets to improve generalization and robustness; (2) exploring more efficient
attention mechanisms and model pruning techniques to further enhance inference speed and deployment
efficiency; and (3) integrating semi-supervised or unsupervised learning strategies to reduce the reliance on
manually annotated training data.
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