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ABSTRACT: Carbon nanotube-reinforced cement composites have gained significant attention due to their enhanced
mechanical properties, particularly in compressive and flexural strength. Despite extensive research, the influence of
various parameters on these properties remains inadequately understood, primarily due to the complex interactions
within the composites. This study addresses this gap by employing machine learning techniques to conduct a sensitivity
analysis on the compressive and flexural strength of carbon nanotube-reinforced cement composites. It systematically
evaluates nine data-preprocessing techniques and benchmarks eleven machine-learning algorithms to reveal trade-
offs between predictive accuracy and computational complexity, which has not previously been explored in carbon
nanotube-reinforced cement composite research. In this regard, four main factors are considered in the sensitivity
analysis, which are the machine learning model type, the data pre-processing technique, and the effect of the concrete
constituent materials on the compressive and flexural strength both globally through feature importance assessment
and locally through partial dependence analysis. Accordingly, this research optimizes ninety-nine models representing
combinations of eleven machine learning algorithms and nine data preprocessing techniques to accurately predict the
mechanical properties of carbon nanotube-reinforced cement composites. Moreover, the study aims to unravel the
relationships between different parameters and their impact on the composite’s strength by utilizing feature importance
and partial dependence analyses. This research is crucial as it provides a comprehensive understanding of the factors
influencing the performance of carbon nanotube-reinforced cement composites, which is vital for their efficient
design and application in construction. The use of machine learning in this context not only enhances predictive
accuracy but also offers insights that are often challenging to obtain through traditional experimental methods. The
findings contribute to the field by highlighting the potential of advanced data-driven approaches in optimizing and
understanding advanced composite materials, paving the way for more durable and resilient construction materials.
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1 Introduction
Carbon nanotube-reinforced cement composites have gained growing attention in construction materi-

als due to their strong mechanical behavior [1–4]. Carbon nanotubes (CNTs), with their high tensile strength,
electrical conductivity, and heat resistance, have been found to improve the compressive and flexural strength
of cement-based materials [5–7]. Many studies have examined how these nanotubes contribute to better
strength and internal structure [8–10]. Makar et al. [11] shared early observations and possible applications
of cement composites containing carbon nanotubes. Liew et al. [12] provided an overview of the mechanical

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/SDHM
https://www.techscience.com/
http://dx.doi.org/10.32604/sdhm.2025.064882
https://www.techscience.com/doi/10.32604/sdhm.2025.064882
mailto:ahabib@sharjah.ac.ae


790 Struct Durab Health Monit. 2025;19(4)

performance of these materials and suggested possible uses in construction. Ramezani et al. (2022) reviewed
the progress and pointed out ongoing challenges in their practical use.

Work has also been done to study how these composites behave under pressure and how their internal
structure changes with the addition of nanotubes [13–16]. Manzur et al. [17] studied the use of carbon
nanotube-reinforced cement as a repair material, suggesting its usefulness in extending the life of concrete
structures. Konsta-Gdoutos et al. [18] emphasized the need for even dispersion of the nanotubes, since
clumping reduces their ability to reinforce the material. Parveen et al. [19] introduced a method to improve
nanotube distribution, which helped both internal structure and strength. The effect of nanotube size has
also been studied in depth. Manzur et al. [20] showed that different nanotube sizes change compressive
strength significantly. Luo et al. [21] studied how these composites are made and how they respond to
cracking. Manzur and Yazdani [22] explored the impact of various parameters, including the concentration
of nanotubes and how they are dispersed, and found that these factors had a noticeable effect on the results.
Fakhim et al. [23] worked on how to prepare the material and improve its internal structure using multiwalled
carbon nanotubes. Guan et al. [24] looked into how these composites perform under early-age freezing
conditions, focusing on both structure and strength. Huang et al. [25] studied how curing time affects the
compressive and flexural strength of these materials.

Previously, while many experimental studies have been done on the behavior of structures and materials,
various numerical investigations have also been conducted [26–29]. In this regards, recent numerical work on
CNT composites has looked at how machine learning can support the study of carbon nanotube-reinforced
cement composites. Bagherzadeh and Shafighfard [30] and Li et al. [31] used ensemble-based machine
learning models to assess material characteristics. Talayero et al. [32] carried out both computer-based
predictions and lab testing to study the strength of these composites. Adel et al. [33] used machine learning
models that are easier to interpret and applied them to predict mechanical behavior. Kalogeris et al. [34]
applied optimization methods to improve how these materials perform in structural settings. Although
many of these studies offer detailed findings on different aspects of carbon nanotube-reinforced cement
composites, there is still a lack of work that looks at how several variables together influence strength,
especially with the support of large datasets. Most existing studies focus on only a few inputs or study a
limited range of conditions. There is also not enough use of data analysis tools that can test several factors at
once and explain how much each one matters.

This study addresses that issue by testing four main factors: the machine learning model used, the data
preprocessing method, and the effect of constituent materials on both compressive and flexural strength. This
is because, in structural design, compressive strength determines axial load capacity, while flexural strength
dictates bending and crack resistance. Hence, both these properties are fundamental for durability and safety
in concrete elements. The investigated features are studied on two levels, globally through feature importance
which quantifies each input’s contribution to predictive performance, and locally through partial dependence
analysis which allows depicting the marginal effect of one feature on the model output. To carry this out, a
total of ninety-nine model combinations are tested. These include eleven machine learning algorithms and
nine different data preprocessing techniques. Each model is fine-tuned, and results are compared. The goal
is to find out which inputs matter most and how they influence the predicted strength. This work offers a
detailed look at how various factors affect the strength of carbon nanotube-reinforced cement composites.
Accordingly, the contributions of this study include a systematic comparison of nine data-preprocessing
methods and a comprehensive evaluation of eleven machine-learning algorithms, which is an area that has
not previously been explored in carbon nanotube-reinforced cement composite research.
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2 Materials and Method

2.1 Investigated Parameters and Developed Database
The dataset utilized in this study includes experimental results that were obtained from Huang et al. [2].

This dataset was subjected to quality screening where outliers were identified via the interquartile range
method (representing less than 2% of observations) and removed. In general, the dataset includes 114 distinct
mixtures each tested for compression and flexure. It encompasses wide and diverse mixtures spanning
cement types 1–2, water/cement ratios of 0.20–0.50, CNT contents of 0–0.80 wt%, tube diameters from
4–60 nm, lengths of 1–250 μm, and curing times of 3–28 days, providing a broad basis for robust model train-
ing and sensitivity analysis. Table 1 details the descriptive statistics for the selected data. Furthermore, Fig. 1
depicts the correlation analysis between the input variables and the outputs of the dataset. Besides, the
strengths’ distributions were examined as shown in Fig. 2.

Table 1: Descriptive statistics for the dataset utilized in this study

Parameter Number of
observations

Average Standard
deviation

Minimum First
quartile

Median Third
quartile

Maximum

Inputs

Type of cement 114 1.1 0.3 1 1 1 1 2
Water to cement ratio 114 0.4 0.1 0.2 0.35 0.4 0.4 0.5

Content of CNTs
(wt% of cement)

114 0.21 0.22 0 0.08 0.11 0.25 0.8

External diameter
(nm)

114 20.0 12.9 4 15 15 25 60

Length (um) 114 21.6 44.6 1 1.25 20 20 250.25
Functionalization

method
114 1.3 0.6 1 1 1 1 5

Curing time (Days) 114 20.6 10.7 3 7 28 28 28
Curing temperature

(○C)
114 23.2 2.6 20 20 25 25 30

Dispersion method 114 2.4 1.1 1 2 2 2 5

Outputs

Compressive strength
(MPa)

114 73.1 29.7 27.3 52.5 64.6 85.7 154.4

Flexural strength
(MPa)

114 10.3 2.6 4 8.325 10.5 11.975 16.9

Figure 1: Features-features and features-outputs pair-wise statistical correlation



792 Struct Durab Health Monit. 2025;19(4)

Figure 2: Distribution of the strengths in the collected database

2.2 Regression Models
Machine learning models are indispensable in the data analysis and predictive modeling of construction

materials [35–39]. Each method comes with its own characteristics, robustness, and practical applications.
Accordingly, eleven algorithms were selected in this study to represent three complementary paradigms:
(1) linear models, which offer interpretable baselines and address multicollinearity; (2) tree-based methods,
capable of capturing complex nonlinear interactions with minimal preprocessing; and (3) ensemble boosters,
which achieve high accuracy by sequentially correcting errors through gradient or adaptive boosting.

Multiple linear regression (MLR) is a fundamental way for correlating a single dependent variable
with multiple independent variables [40]. This model is particularly significant in interdisciplinary studies
where the variables are interdependent. Tranmer and Elliot [41] highlight its applicability, mathematically
represented as given in Eq. (1).

Y = βX + ε (1)

where Y = [y1 , . . . , yn]T is the output; X =
⎡⎢⎢⎢⎢⎢⎣

x1,1 . . . x1,k
⋮ ⋱ ⋮

xn ,k . . . xn ,k

⎤⎥⎥⎥⎥⎥⎦
is the input matrix for n observations

and k inputs; β = [β1 , . . . , βk]T represents the coefficients to be estimated; ε = [ε1 , . . . , εk]T represents the
random errors.

The ordinary least squares estimator is expressed as follows:

β = (XT X)−1 XT Y (2)

Having established the baseline with multiple linear regression, the next step is to incorporate penal-
ization to address multicollinearity and overfitting via Ridge, Lasso, and ElasticNet. In general, the Ridge
regression modifies MLR by adding a regularization term to the loss function, aimed at controlling model
complexity. McDonald [42] notes that this approach effectively addresses multicollinearity and improves
predictive accuracy by shrinking the regression coefficients. The ridge estimator is given by:

β̂∗ = (XT X + αIp)
−1

XT Y (3)

where β̂∗ is the ridge estimator; α > 0 is the complexity parameter that controls the amount of shrinkage and
ensures that E [(β̂∗ − β)T(β̂∗ − β)] < E [(β̂ − β)T(β̂ − β)]; Ip is the identity matrix.
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Ridge regression optimizes a penalized residual sum of squares using the �2 regularization norm:

min
β
= ∥βX − y∥2

2 + α ∥β∥2
2 (4)

Lasso regression extends ridge regression by allowing some coefficients to be reduced to zero, facilitating
variable selection. This is particularly useful in high-dimensional datasets to avoid overfitting and enhance
interpretability. The optimization criterion is:

min
β
= 1

2nsam pl es
∥βX − y∥2

2 + α ∥β∥1 (5)

ElasticNet regression, described by Zou and Hastie [43], combines the penalties of both ridge and
lasso regressions into a single framework, balancing variable selection and multicollinearity correction. It is
particularly effective in datasets with high predictor correlations or more predictors than observations. The
objective function is:

min
β
= 1

2nsam pl es
∥βX − y∥2

2 + αρ ∥β∥1 +
α(1 − ρ)

2
∥β∥2

2 (6)

where ρ is a parameter that is utilized to control the convex combination of �1 and �2.
Bayesian ridge regression applies a probabilistic approach by imposing a prior distribution on the

coefficients, which is beneficial under uncertainty [44,45]. The Bayesian framework allows for coefficient
estimation in uncertain conditions:

P(β, Σε ∣Y , X) ∝ P(Y ∣ X , β, Σε)P(β, Σε) (7)

Bedoui and Lazar [46] enhanced this model with an empirical Bayesian approach and a ridge penalty:

min(∥βX − Y∥2
2 + α∥β∥2

2) (8)

Indeed, a common method nowadays to capture nonlinear relationships and interactions without
explicit feature engineering is to employ tree-based algorithms. Decision trees (DTs) offer a non-parametric
method for segmenting data based on specific decision criteria, emulating human decision logic [47]. When
assessing stiffness modifiers, DTs highlight the relative importance of various factors hierarchically. The DT
model splits the dataset recursively, assigning a basic mathematical model to each segment and organizing
them into a tree structure [48]. The dataset Qm for node m with Nm samples are split into:

Q l e f t
m (θ) = {(x , y)∣ xi ≤ tm} (9)

Qr i ght
m (θ) = Qm/Q l e f t

m (θ) (10)

The quality of each split is assessed using a loss function H():

G (Qm , θ) = N l e f t
m

Nm
H (Q l e f t

m (θ)) + N r i ght
m

Nm
H (Qr i ght

m (θ)) (11)

The optimal split parameters θ∗ are chosen to minimize the loss function:

θ∗ = argminθ G (Qm , θ) (12)
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Random forest (RF) models improve upon decision trees by aggregating multiple trees and synthesizing
their outcomes [49]. RF mitigates overfitting by using numerous tree predictors, each based on randomly
selected variables. The ensemble of trees enhances prediction reliability and precision:

m̂(x) = 1
M ∑j

m̂ j(x) (13)

where M denotes the ensemble’s total tree count; m̂ j represents the prediction from an individual tree within
the ensemble.

Extremely randomized trees (ERT), or Extra Trees, introduce more randomness in node splits than RF
models [50]. This method randomly selects cut points, capturing unpredictable patterns and reducing model
variance, though it may slightly increase bias.

Adaptive boosting (AB) combines several simple learners to create a more accurate composite
model [51]. AB iteratively adjusts new trees to focus on misclassified data points, enhancing accuracy on
complex datasets. The initial estimator f (x) ais trained on the dataset, and subsequent models adjust weights
based on prior errors. The composite model H (x) is defined as:

H (x) = v
N
∑
k=1
(ln 1

αk
) g (x) (14)

where v represents the learning rate; αk denotes the significance attributed to each weak learner, determined
as per Eq. (15); g (x) signifies the median output across all αk fk (x).

αk =
ei

1 − ei
(15)

Gradient boosting (GB) builds trees sequentially, with each tree correcting the errors of its predeces-
sor using gradient descent. GB is valuable for handling complex data structures and nonlinear variable
interactions. The GB model’s forecasted output is:

ŷi = FM (xi) =
M
∑
m=1

hm (xi) (16)

where M represents the aggregate number of estimators; hm is a singular weak learner. The architecture of
the GB model leverages a greedy algorithm, as given in Eq. (17).

Fm (x) = Fm−1 (x) +
argmin

h ∈ H
n
∑
i=1

L [yi , Fm−1 (xi) + h(xi)] (17)

where h(x) symbolizes the foundational estimator; L (⋅) denotes the loss function, with its negative gradient
presented in Eq. (18).

gm = −
∂L [y, Fm−1 (x)]

∂Fm−1 (x)
(18)

Extreme gradient boosting (XGB) is an advanced, scalable approach that enhances decision trees with
thorough regularization, reducing overfitting. XGB is adept at managing diverse data types and distributions,
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making it effective for predicting stiffness modifiers and understanding variable interactions. The objective
function is:

Ob j =
n
∑
i=1

L [ ŷi , yi)] +
n
∑
i=1

ω( ft) (19)

where L (⋅) signifies the model’s loss function, focusing on model bias reduction; ω represents a regulariza-
tion parameter intended to curb the model’s complexity.

2.3 Data Preprocessing Models
Indeed, there are many ways to preprocess data that can help make regression models more accurate

and easier to understand [52,53]. This section explains various common methods. Each method works well
in different situations based on the type of data and the model being used.

Standardization adjusts the data so that it has a mean of zero and a standard deviation of one. This
is helpful when features are measured in different units or have different ranges. Bringing everything to a
similar scale can improve how well some algorithms work, especially ones like logistic regression and support
vector machines that assume data is normally distributed.

Normalization changes the scale of the data so that each feature falls between 0 and 1 [54]. It is especially
helpful for models that are sensitive to the size of the input values, such as neural networks and k-nearest
neighbors. This keeps any single feature from having too much influence just because of its larger range.

Discretization turns continuous values into categories by splitting the range into intervals. This can be
helpful when converting numbers into groups, especially when trying to model patterns that are easier to
capture with categories rather than continuous values.

Polynomial feature creation involves adding new features by raising existing variables to powers or
multiplying them together. This helps when the relationship between the inputs and the output is not linear.
Adding squared or interaction terms allows the model to pick up on more complex patterns. But it also
increases the number of features, which can lead to overfitting. Regularization is often used to manage this.

Principal component analysis (PCA) reduces the number of features while keeping most of the useful
information [55,56]. It does this by creating new variables that are combinations of the originals and that
explain as much of the variation in the data as possible [57,58]. PCA can make models simpler and reduce
the chance of overfitting by cutting down on the number of features.

Kernel PCA is a variation of PCA that works better with nonlinear data [59]. It first transforms the data
using a kernel function and then applies PCA. This approach can reveal useful patterns in data where simple
PCA falls short.

Backward elimination starts with all features in the model and removes the least useful ones step by
step [60]. This keeps the model from becoming too complex while still aiming for good prediction results. It
works well when there are many variables and some of them are strongly related to each other.

Forward selection does the opposite. It begins with no features and adds the most useful ones one by
one. The process stops when adding more features no longer improves the model. This is a good choice when
there are many possible inputs and testing every combination would take too much time.

2.4 Model Development Approach
As noted earlier, a broad set of machine learning models and data processing methods was applied

to find the most effective way to estimate the properties of concrete reinforced with carbon nanotubes.
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The study followed a clear and structured approach to develop and adjust predictive models based on the
given data. The process began by loading the dataset and splitting it into training and testing portions,
with 70% of the data used for training and 30% reserved for testing. Several data preparation techniques
were used, including standardization, normalization, discretization, and generating polynomial features,
as previously outlined. This setup helped check whether the models could produce reliable predictions
on new data, which is essential given the uncertainty often present in numerical modeling [61–63]. A
range of regression models was used, including multiple linear regression, ridge regression, and lasso
regression, all within a supervised learning setup. Model parameters were tuned using grid search, which
tested different configurations to identify the best-performing ones. The models were judged using several
evaluation measures: the correlation coefficient (R), normalized root mean square error (NRMSE), and
normalized mean absolute error (NMAE). These measures helped identify which models gave the most
accurate predictions under various preprocessing settings. Results were reviewed for both training and
testing sets, and the predicted values were compared with actual ones through visual plots. The full process
was outlined in the pseudo-code shown in Fig. 3.

Figure 3: Pseudocode for the developed machine learning models
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2.5 Sensitivity Analyses Using Machine Learning
Feature importance and partial dependence are useful tools for understanding how each input affects

the model’s predictions. Feature importance measures how much a feature adds to the model’s ability to make
good predictions. For example, in models based on decision trees, this can be calculated by checking how
much a feature helps reduce impurity, like Gini or entropy, across all the trees. This kind of analysis makes it
easier to see which features the model depends on the most. It helps to narrow down the variables that really
matter in the prediction process. Partial dependence plots show how changing the value of one feature affects
the prediction, while keeping everything else the same. The model’s predictions are averaged across all values
of the other features. These plots reveal whether a feature has a simple or more complex relationship with
the predicted output. They are especially helpful when trying to understand how a model reacts to different
values of a feature. Looking at these plots gives a clearer picture of what drives the model’s decisions, and can
help make better choices based on its predictions.

3 Concrete Properties Estimation Using Machine Learning

3.1 Compressive Strength
This study used machine learning models to improve how well the compressive strength of carbon

nanotube-reinforced cement composites could be predicted. Fig. 4 illustrates the performance assessment
of the developed models, which include 99 combinations of 11 machine learning algorithms and 9 data
preprocessing techniques. The metrics used for evaluation were the R coefficient, NRMSE, NMAE, and
A10 score.

The GB model combined with polynomial features was considered the best-performing model, achiev-
ing an R value of 95%, an NRMSE of 9%, an NMAE of 5%, and an A10 score of 77%. In contrast, the Ridge
model with polynomial features yielded the worst results, with an R value of 85%, an NRMSE of 15%, an
NMAE of 12%, and an A10 score of 23%. Among the models without data preprocessing, the RF model
performed the best, underscoring the significant role of appropriate data preprocessing in enhancing model
accuracy. Fig. 5 benchmarks these machine learning models against the Original +MLR case, representing
the simplest form of prediction. The use of advanced machine learning models significantly improved
estimation performance. For training cases, the optimal model (GB with polynomial features) improved
the R value by 9%, reduced the NRMSE by 75%, lowered the NMAE by 100%, and increased the A10 score
by 93% compared to the Original + MLR case. For testing cases, the improvements were also substantial,
with a 1% increase in R value, a 6% decrease in NRMSE, a 24% reduction in NMAE, and a 69% increase
in the A10 score. These findings justify the use of advanced machine learning models for predicting the
compressive strength of CNT-reinforced concrete. The scatter and residual plots in Fig. 6 further illustrate
the superiority of the optimal model. The plots compare the predicted vs. actual values and the residuals
for both the Original + MLR case and the optimal Gradient Boosting with polynomial features case. The
optimal model demonstrates less scatter and a closer alignment with the equality line in the predicted vs.
actual plot, as well as more centralized residuals around the zero line, indicating better prediction accuracy
and consistency. Table 2 provides the optimal hyperparameters for the developed models, derived through
a 10-fold grid search cross-validation process. This comprehensive optimization ensured that the models
achieved their best possible performance given the data and the chosen algorithms.



798 Struct Durab Health Monit. 2025;19(4)

Figure 4: Performance assessment of the investigated models developed for predicting the compressive strength of
concrete with CNTs

Figure 5: (Continued)
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Figure 5: Benchmarking the developed models for predicting the compressive strength of CNT-reinforced concrete
against the Original +MLR case

Figure 6: Scatter and residual plots of the best case for estimating the compressive strength of concrete with CNTs
against the Original +MLR case
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Table 2: Optimal hyperparameters of the developed models for compressive strength of concrete

Preprocessing
Technique

Machine
Learning

Model

Best Hyperparameters Preprocessing
Technique

Machine
Learning

Model

Best Hyperparameters

MLR {‘fit_intercept’: True} MLR {‘fit_intercept’: True}
Ridge {‘alpha’: 0.1} Ridge {‘alpha’: 0.1}
Lasso {‘alpha’: 0.01, ‘selection’: ‘cyclic’} Lasso {‘alpha’: 0.01, ‘selection’: ‘cyclic’}

ElasticNet {‘alpha’: 0.01, ‘l1_ratio’: 1.0} ElasticNet {‘alpha’: 0.01, ‘l1_ratio’: 1.0}
Bayesian

Ridge
{‘alpha_1’: 0.0001, ‘alpha_2’:

1e−06, ‘lambda_1’: 1e−06,
‘lambda_2’: 0.0001}

Bayesian
Ridge

{‘alpha_1’: 0.0001, ‘alpha_2’:
1e−06, ‘lambda_1’: 1e−06,

‘lambda_2’: 0.0001}
DT {‘max_depth’: None,

‘min_samples_split’: 5,
‘random_state’: 0}

DT {‘max_depth’: None,
‘min_samples_split’: 2,

‘random_state’: 0}
RF {‘max_depth’: None,

‘min_samples_split’: 2,
‘n_estimators’: 500,
‘random_state’: 0}

RF {‘max_depth’: None,
‘min_samples_split’: 2,

‘n_estimators’: 100,
‘random_state’: 0}

Original ERT {‘max_depth’: 10,
‘min_samples_split’: 10,

‘n_estimators’: 500,
‘random_state’: 0}

PCA ERT {‘max_depth’: None,
‘min_samples_split’: 10,

‘n_estimators’: 100,
‘random_state’: 0}

AB {‘base_estimator’:
DecisionTreeRegressor(),
‘learning_rate’: 0.1, ‘loss’:

‘exponential’, ‘n_estimators’: 1000,
‘random_state’: 0}

AB {‘base_estimator’:
DecisionTreeRegressor(),

‘learning_rate’: 0.1, ‘loss’: ‘linear’,
‘n_estimators’: 100,
‘random_state’: 0}

GB {‘learning_rate’: 0.1, ‘loss’:
‘squared_error’, ‘max_depth’: 100,

‘n_estimators’: 1000,
‘random_state’: 0, ‘subsample’:

0.7}

GB {‘learning_rate’: 0.05, ‘loss’:
‘squared_error’, ‘max_depth’: 1,

‘n_estimators’: 1000,
‘random_state’: 0, ‘subsample’:

0.7}
XGB {‘booster’: ‘gbtree’, ‘gamma’: 2,

‘learning_rate’: 0.1, ‘max_depth’:
9, ‘n_estimators’: 500, ‘objective’:

‘reg:squarederror’, ‘random_state’:
0, ‘subsample’: 0.5}

XGB {‘booster’: ‘gbtree’, ‘gamma’: 0.1,
‘learning_rate’: 0.05, ‘max_depth’:
3, ‘n_estimators’: 300, ‘objective’:

‘reg:squarederror’, ‘random_state’:
0, ‘subsample’: 1.0}

MLR {‘fit_intercept’: True} MLR {‘fit_intercept’: False}
Ridge {‘alpha’: 10} Ridge {‘alpha’: 1000}
Lasso {‘alpha’: 1, ‘selection’: ‘random’} Lasso {‘alpha’: 1, ‘selection’: ‘random’}

ElasticNet {‘alpha’: 1, ‘l1_ratio’: 1.0} ElasticNet {‘alpha’: 1, ‘l1_ratio’: 1.0}
Bayesian

Ridge
{‘alpha_1’: 1e−06, ‘alpha_2’:
0.0001, ‘lambda_1’: 0.0001,

‘lambda_2’: 1e−06}

Bayesian
Ridge

{‘alpha_1’: 1e−06, ‘alpha_2’:
0.0001, ‘lambda_1’: 0.0001,

‘lambda_2’: 0.0001}
DT {‘max_depth’: None,

‘min_samples_split’: 5,
‘random_state’: 0}

DT {‘max_depth’: None,
‘min_samples_split’: 10,

‘random_state’: 0}
RF {‘max_depth’: None,

‘min_samples_split’: 2,
‘n_estimators’: 500,
‘random_state’: 0}

RF {‘max_depth’: 10,
‘min_samples_split’: 5,

‘n_estimators’: 1000,
‘random_state’: 0}

Standardized ERT {‘max_depth’: 10,
‘min_samples_split’: 10,

‘n_estimators’: 500,
‘random_state’: 0}

Kernel PCA ERT {‘max_depth’: None,
‘min_samples_split’: 10,

‘n_estimators’: 100,
‘random_state’: 0}

AB {‘base_estimator’:
DecisionTreeRegressor(),

‘learning_rate’: 0.1, ‘loss’: ‘square’,
‘n_estimators’: 1000,
‘random_state’: 0}

AB {‘base_estimator’:
DecisionTreeRegressor(),

‘learning_rate’: 0.1, ‘loss’: ‘square’,
‘n_estimators’: 100,
‘random_state’: 0}

(Continued)
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Table 2 (continued)

Preprocessing
Technique

Machine
Learning

Model

Best Hyperparameters Preprocessing
Technique

Machine
Learning

Model

Best Hyperparameters

GB {‘learning_rate’: 0.1, ‘loss’:
‘squared_error’, ‘max_depth’: 100,

‘n_estimators’: 500,
‘random_state’: 0, ‘subsample’:

0.7}

GB {‘learning_rate’: 0.01, ‘loss’:
‘squared_error’, ‘max_depth’: 10,

‘n_estimators’: 500,
‘random_state’: 0, ‘subsample’:

0.7}
XGB {‘booster’: ‘gbtree’, ‘gamma’: 2,

‘learning_rate’: 0.1, ‘max_depth’:
9, ‘n_estimators’: 500, ‘objective’:

‘reg:squarederror’, ‘random_state’:
0, ‘subsample’: 0.5}

XGB {‘booster’: ‘gbtree’, ‘gamma’: 0,
‘learning_rate’: 0.01, ‘max_depth’:
9, ‘n_estimators’: 300, ‘objective’:

‘reg:squarederror’, ‘random_state’:
0, ‘subsample’: 0.5}

MLR {‘fit_intercept’: True} MLR {‘fit_intercept’: True}
Ridge {‘alpha’: 1} Ridge {‘alpha’: 0.1}
Lasso {‘alpha’: 0.1, ‘selection’: ‘cyclic’} Lasso {‘alpha’: 0.01, ‘selection’: ‘cyclic’}

ElasticNet {‘alpha’: 0.1, ‘l1_ratio’: 1.0} ElasticNet {‘alpha’: 0.01, ‘l1_ratio’: 1.0}
Bayesian

Ridge
{‘alpha_1’: 1e−06, ‘alpha_2’:
0.0001, ‘lambda_1’: 0.0001,

‘lambda_2’: 1e−06}

Bayesian
Ridge

{‘alpha_1’: 0.0001, ‘alpha_2’:
1e−06, ‘lambda_1’: 1e−06,

‘lambda_2’: 0.0001}
DT {‘max_depth’: None,

‘min_samples_split’: 5,
‘random_state’: 0}

DT {‘max_depth’: None,
‘min_samples_split’: 5,

‘random_state’: 0}
RF {‘max_depth’: None,

‘min_samples_split’: 2,
‘n_estimators’: 500,
‘random_state’: 0}

RF {‘max_depth’: None,
‘min_samples_split’: 2,

‘n_estimators’: 1000,
‘random_state’: 0}

Normalized ERT {‘max_depth’: 10,
‘min_samples_split’: 10,

‘n_estimators’: 500,
‘random_state’: 0}

Back
Elimination

ERT {‘max_depth’: None,
‘min_samples_split’: 5,

‘n_estimators’: 1000,
‘random_state’: 0}

AB {‘base_estimator’:
DecisionTreeRegressor(),

‘learning_rate’: 0.1, ‘loss’: ‘square’,
‘n_estimators’: 1000,
‘random_state’: 0}

AB {‘base_estimator’:
DecisionTreeRegressor(),
‘learning_rate’: 0.05, ‘loss’:
‘square’, ‘n_estimators’: 100,

‘random_state’: 0}
GB {‘learning_rate’: 0.1, ‘loss’:

‘squared_error’, ‘max_depth’: 10,
‘n_estimators’: 100,

‘random_state’: 0, ‘subsample’:
0.5}

GB {‘learning_rate’: 0.01, ‘loss’:
‘squared_error’, ‘max_depth’: 100,

‘n_estimators’: 500,
‘random_state’: 0, ‘subsample’:

0.5}
XGB {‘booster’: ‘gbtree’, ‘gamma’: 2,

‘learning_rate’: 0.1, ‘max_depth’:
9, ‘n_estimators’: 500, ‘objective’:

‘reg:squarederror’, ‘random_state’:
0, ‘subsample’: 0.5}

XGB {‘booster’: ‘gbtree’, ‘gamma’: 0,
‘learning_rate’: 0.05, ‘max_depth’:
3, ‘n_estimators’: 100, ‘objective’:

‘reg:squarederror’, ‘random_state’:
0, ‘subsample’: 0.7}

MLR {‘fit_intercept’: True} MLR {‘fit_intercept’: True}
Ridge {‘alpha’: 10} Ridge {‘alpha’: 0.1}
Lasso {‘alpha’: 1, ‘selection’: ‘cyclic’} Lasso {‘alpha’: 0.01, ‘selection’: ‘cyclic’}

ElasticNet {‘alpha’: 1, ‘l1_ratio’: 1.0} ElasticNet {‘alpha’: 0.01, ‘l1_ratio’: 1.0}
Bayesian

Ridge
{‘alpha_1’: 1e−06, ‘alpha_2’:
0.0001, ‘lambda_1’: 0.0001,

‘lambda_2’: 1e−06}

Bayesian
Ridge

{‘alpha_1’: 0.0001, ‘alpha_2’:
1e−06, ‘lambda_1’: 1e−06,

‘lambda_2’: 0.0001}
DT {‘max_depth’: None,

‘min_samples_split’: 10,
‘random_state’: 0}

DT {‘max_depth’: None,
‘min_samples_split’: 5,

‘random_state’: 0}

(Continued)
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Table 2 (continued)

Preprocessing
Technique

Machine
Learning

Model

Best Hyperparameters Preprocessing
Technique

Machine
Learning

Model

Best Hyperparameters

RF {‘max_depth’: 10,
‘min_samples_split’: 2,

‘n_estimators’: 1000,
‘random_state’: 0}

RF {‘max_depth’: None,
‘min_samples_split’: 2,

‘n_estimators’: 500,
‘random_state’: 0}

Discretized ERT {‘max_depth’: 10,
‘min_samples_split’: 5,

‘n_estimators’: 100,
‘random_state’: 0}

Forward
Selection

ERT {‘max_depth’: 10,
‘min_samples_split’: 10,

‘n_estimators’: 500,
‘random_state’: 0}

AB {‘base_estimator’:
DecisionTreeRegressor(),
‘learning_rate’: 0.1, ‘loss’:

‘exponential’, ‘n_estimators’: 1000,
‘random_state’: 0}

AB {‘base_estimator’:
DecisionTreeRegressor(),
‘learning_rate’: 0.1, ‘loss’:

‘exponential’, ‘n_estimators’: 1000,
‘random_state’: 0}

GB {‘learning_rate’: 0.01, ‘loss’:
‘squared_error’, ‘max_depth’: 10,

‘n_estimators’: 500,
‘random_state’: 0, ‘subsample’:

0.5}

GB {‘learning_rate’: 0.1, ‘loss’:
‘squared_error’, ‘max_depth’: 100,

‘n_estimators’: 1000,
‘random_state’: 0, ‘subsample’:

0.7}
XGB {‘booster’: ‘gbtree’, ‘gamma’: 0,

‘learning_rate’: 0.05, ‘max_depth’:
3, ‘n_estimators’: 100, ‘objective’:

‘reg:squarederror’, ‘random_state’:
0, ‘subsample’: 0.7}

XGB {‘booster’: ‘gbtree’, ‘gamma’: 2,
‘learning_rate’: 0.1, ‘max_depth’:
9, ‘n_estimators’: 500, ‘objective’:

‘reg:squarederror’, ‘random_state’:
0, ‘subsample’: 0.5}

MLR {‘fit_intercept’: True}
Ridge {‘alpha’: 1000}
Lasso {‘alpha’: 1, ‘selection’: ‘random’}

ElasticNet {‘alpha’: 10, ‘l1_ratio’: 0.0}
Bayesian

Ridge
{‘alpha_1’: 1e−06, ‘alpha_2’:
0.0001, ‘lambda_1’: 0.0001,

‘lambda_2’: 1e−06}
DT {‘max_depth’: None,

‘min_samples_split’: 2,
‘random_state’: 0}

RF {‘max_depth’: 10,
‘min_samples_split’: 2,

‘n_estimators’: 1000,
‘random_state’: 0}

ERT {‘max_depth’: None,
‘min_samples_split’: 2,

‘n_estimators’: 500,
‘random_state’: 0}

AB {‘base_estimator’:
DecisionTreeRegressor(),
‘learning_rate’: 0.01, ‘loss’:

‘square’, ‘n_estimators’: 100,
‘random_state’: 0}

GB* {‘learning_rate’: 0.05, ‘loss’:
‘squared_error’, ‘max_depth’: 100,

‘n_estimators’: 1000,
‘random_state’: 0, ‘subsample’:

0.5}

Polynomial
Features*

XGB {‘booster’: ‘gbtree’, ‘gamma’: 0,
‘learning_rate’: 0.01, ‘max_depth’:
9, ‘n_estimators’: 1000, ‘objective’:
‘reg:squarederror’, ‘random_state’:

0, ‘subsample’: 0.5}

Notes:
* Best model.
** Other parameters that were not mentioned in this table hold default values in the scikit-learn library.
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3.2 Flexural Strength
Similar methods were applied in predicting the flexural strength of cement composites containing

carbon nanotubes. Fig. 7 displays the performance assessment of the 99 model combinations. The ERT model
with PCA preprocessing was the best-performing combination, achieving an R value of 89%, an NRMSE of
10%, an NMAE of 6%, and an A10 score of 69%. Conversely, the MLR model combined with kernel PCA
preprocessing performed the worst, with an R value of 74%, an NRMSE of 80%, an NMAE of 78%, and an
A10 score of 0%. The best model without data preprocessing was once again the Random Forest model.

Figure 7: Performance of the models developed for estimating the flexural strength of concrete with CNTs

Fig. 8 benchmarks these models against the Original + MLR case. The advanced machine learning
models significantly enhanced the prediction accuracy for flexural strength as well. The optimal ERT with
the PCA model showed improvements in the R value by 29%, NRMSE by 100%, NMAE by 100%, and
A10 score by 80% for training cases. For testing cases, the improvements were 18% in R value, 30% in
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NRMSE, 34% in NMAE, and 60% in A10 score compared to the Original +MLR case. These improvements
highlight the efficacy of advanced machine learning techniques in accurately predicting the flexural strength
of CNT-reinforced concrete.

Figure 8: Benchmarking the models for estimating the flexural strength of CNT-reinforced concrete against the
Original +MLR case

Fig. 9 presents the scatter and residual plots for the best model compared to the Original + MLR
case. The optimal ERT with the PCA model shows less scatter and a closer fit to the equality line in the
predicted vs. actual plot, as well as more centralized residuals around the zero line, indicating superior
prediction accuracy and reliability. Table 3 details the optimal hyperparameters for the models predicting
flexural strength, obtained through an extensive 10-fold grid search cross-validation process.
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Figure 9: Scatter and residual plots of the best case for estimating the flexural strength of concrete with CNTs against
the Original +MLR case

Table 3: Optimal hyperparameters of the developed models for flexural strength of concrete

Preprocessing
Technique

Machine
Learning

Model

Best Hyperparameters Preprocessing
Technique

Machine
Learning

Model

Best Hyperparameters

MLR {‘fit_intercept’: True} MLR {‘fit_intercept’: True}
Ridge {‘alpha’: 1} Ridge {‘alpha’: 1}
Lasso {‘alpha’: 0.1, ‘selection’: ‘cyclic’} Lasso {‘alpha’: 0.1, ‘selection’: ‘cyclic’}

ElasticNet {‘alpha’: 0.1, ‘l1_ratio’: 1.0} ElasticNet {‘alpha’: 0.1, ‘l1_ratio’: 1.0}
Bayesian

Ridge
{‘alpha_1’: 0.0001, ‘alpha_2’:

1e−06, ‘lambda_1’: 1e−06,
‘lambda_2’: 0.0001}

Bayesian
Ridge

{‘alpha_1’: 0.0001, ‘alpha_2’:
1e−06, ‘lambda_1’: 1e−06,

‘lambda_2’: 0.0001}
DT {‘max_depth’: None,

‘min_samples_split’: 10,
‘random_state’: 0}

DT {‘max_depth’: None,
‘min_samples_split’: 10,

‘random_state’: 0}
RF {‘max_depth’: None,

‘min_samples_split’: 5,
‘n_estimators’: 500,
‘random_state’: 0}

RF {‘max_depth’: None,
‘min_samples_split’: 2,

‘n_estimators’: 500,
‘random_state’: 0}

Original ERT {‘max_depth’: None,
‘min_samples_split’: 10,

‘n_estimators’: 500,
‘random_state’: 0}

PCA* ERT* {‘max_depth’: None,
‘min_samples_split’: 2,

‘n_estimators’: 100,
‘random_state’: 0}

(Continued)
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Table 3 (continued)

Preprocessing
Technique

Machine
Learning

Model

Best Hyperparameters Preprocessing
Technique

Machine
Learning

Model

Best Hyperparameters

AB {‘base_estimator’:
DecisionTreeRegressor(),

‘learning_rate’: 0.1, ‘loss’: ‘square’,
‘n_estimators’: 100,
‘random_state’: 0}

AB {‘base_estimator’:
DecisionTreeRegressor(),

‘learning_rate’: 0.01, ‘loss’: ‘linear’,
‘n_estimators’: 1000,
‘random_state’: 0}

GB {‘learning_rate’: 0.01, ‘loss’:
‘squared_error’, ‘max_depth’: 10,

‘n_estimators’: 1000,
‘random_state’: 0, ‘subsample’:

0.5}

GB {‘learning_rate’: 0.1, ‘loss’:
‘squared_error’, ‘max_depth’: 1,

‘n_estimators’: 1000,
‘random_state’: 0, ‘subsample’:

0.5}
XGB {‘booster’: ‘gbtree’, ‘gamma’: 0,

‘learning_rate’: 0.1, ‘max_depth’:
50, ‘n_estimators’: 1000,

‘objective’: ‘reg:squarederror’,
‘random_state’: 0, ‘subsample’:

0.5}

XGB {‘booster’: ‘gbtree’, ‘gamma’: 0,
‘learning_rate’: 0.1, ‘max_depth’:

3, ‘n_estimators’: 1000, ‘objective’:
‘reg:squarederror’, ‘random_state’:

0, ‘subsample’: 0.5}

MLR {‘fit_intercept’: True} MLR {‘fit_intercept’: False}
Ridge {‘alpha’: 1} Ridge {‘alpha’: 1000}
Lasso {‘alpha’: 0.01, ‘selection’: ‘cyclic’} Lasso {‘alpha’: 1, ‘selection’: ‘random’}

ElasticNet {‘alpha’: 0.01, ‘l1_ratio’: 0.0} ElasticNet {‘alpha’: 1, ‘l1_ratio’: 1.0}
Bayesian

Ridge
{‘alpha_1’: 0.0001, ‘alpha_2’:

1e−06, ‘lambda_1’: 1e−06,
‘lambda_2’: 0.0001}

Bayesian
Ridge

{‘alpha_1’: 0.0001, ‘alpha_2’:
1e−06, ‘lambda_1’: 1e−06,

‘lambda_2’: 0.0001}
DT {‘max_depth’: None,

‘min_samples_split’: 10,
‘random_state’: 0}

DT {‘max_depth’: None,
‘min_samples_split’: 10,

‘random_state’: 0}
RF {‘max_depth’: None,

‘min_samples_split’: 5,
‘n_estimators’: 500,
‘random_state’: 0}

RF {‘max_depth’: None,
‘min_samples_split’: 2,

‘n_estimators’: 500,
‘random_state’: 0}

Standardized ERT {‘max_depth’: None,
‘min_samples_split’: 10,

‘n_estimators’: 500,
‘random_state’: 0}

Kernel PCA ERT {‘max_depth’: None,
‘min_samples_split’: 5,

‘n_estimators’: 1000,
‘random_state’: 0}

AB {‘base_estimator’:
DecisionTreeRegressor(),

‘learning_rate’: 0.1, ‘loss’: ‘square’,
‘n_estimators’: 100,
‘random_state’: 0}

AB {‘base_estimator’:
DecisionTreeRegressor(),
‘learning_rate’: 0.1, ‘loss’:

‘exponential’, ‘n_estimators’: 100,
‘random_state’: 0}

GB {‘learning_rate’: 0.01, ‘loss’:
‘squared_error’, ‘max_depth’: 100,

‘n_estimators’: 1000,
‘random_state’: 0, ‘subsample’:

0.5}

GB {‘learning_rate’: 0.1, ‘loss’:
‘squared_error’, ‘max_depth’: 1,

‘n_estimators’: 100,
‘random_state’: 0, ‘subsample’:

0.7}
XGB {‘booster’: ‘gbtree’, ‘gamma’: 0,

‘learning_rate’: 0.1, ‘max_depth’:
50, ‘n_estimators’: 1000,

‘objective’: ‘reg:squarederror’,
‘random_state’: 0, ‘subsample’:

0.5}

XGB {‘booster’: ‘gbtree’, ‘gamma’: 0,
‘learning_rate’: 0.1, ‘max_depth’:

50, ‘n_estimators’: 100, ‘objective’:
‘reg:squarederror’, ‘random_state’:

0, ‘subsample’: 0.5}

(Continued)
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Table 3 (continued)

Preprocessing
Technique

Machine
Learning

Model

Best Hyperparameters Preprocessing
Technique

Machine
Learning

Model

Best Hyperparameters

MLR {‘fit_intercept’: True} MLR {‘fit_intercept’: True}
Ridge {‘alpha’: 0.1} Ridge {‘alpha’: 1}
Lasso {‘alpha’: 0.001, ‘selection’: ‘cyclic’} Lasso {‘alpha’: 0.1, ‘selection’: ‘random’}

ElasticNet {‘alpha’: 0.001, ‘l1_ratio’: 0.0} ElasticNet {‘alpha’: 0.1, ‘l1_ratio’: 1.0}
Bayesian

Ridge
{‘alpha_1’: 0.0001, ‘alpha_2’:

1e−06, ‘lambda_1’: 1e−06,
‘lambda_2’: 0.0001}

Bayesian
Ridge

{‘alpha_1’: 0.0001, ‘alpha_2’:
1e−06, ‘lambda_1’: 1e−06,

‘lambda_2’: 0.0001}
DT {‘max_depth’: None,

‘min_samples_split’: 10,
‘random_state’: 0}

DT {‘max_depth’: None,
‘min_samples_split’: 10,

‘random_state’: 0}
RF {‘max_depth’: None,

‘min_samples_split’: 5,
‘n_estimators’: 500,
‘random_state’: 0}

RF {‘max_depth’: None,
‘min_samples_split’: 5,

‘n_estimators’: 500,
‘random_state’: 0}

Normalized ERT {‘max_depth’: None,
‘min_samples_split’: 10,

‘n_estimators’: 500,
‘random_state’: 0}

Back
Elimination

ERT {‘max_depth’: None,
‘min_samples_split’: 10,

‘n_estimators’: 500,
‘random_state’: 0}

AB {‘base_estimator’:
DecisionTreeRegressor(),

‘learning_rate’: 0.01, ‘loss’: ‘linear’,
‘n_estimators’: 100,
‘random_state’: 0}

AB {‘base_estimator’:
DecisionTreeRegressor(),

‘learning_rate’: 0.1, ‘loss’: ‘square’,
‘n_estimators’: 100,
‘random_state’: 0}

GB {‘learning_rate’: 0.05, ‘loss’:
‘squared_error’, ‘max_depth’: 100,

‘n_estimators’: 1000,
‘random_state’: 0, ‘subsample’:

0.5}

GB {‘learning_rate’: 0.01, ‘loss’:
‘squared_error’, ‘max_depth’: 10,

‘n_estimators’: 1000,
‘random_state’: 0, ‘subsample’:

0.5}
XGB {‘booster’: ‘gbtree’, ‘gamma’: 0,

‘learning_rate’: 0.1, ‘max_depth’:
50, ‘n_estimators’: 1000,

‘objective’: ‘reg:squarederror’,
‘random_state’: 0, ‘subsample’:

0.5}

XGB {‘booster’: ‘gbtree’, ‘gamma’: 0,
‘learning_rate’: 0.1, ‘max_depth’:

50, ‘n_estimators’: 1000,
‘objective’: ‘reg:squarederror’,

‘random_state’: 0, ‘subsample’:
0.5}

MLR {‘fit_intercept’: True} MLR {‘fit_intercept’: True}
Ridge {‘alpha’: 1} Ridge {‘alpha’: 1}
Lasso {‘alpha’: 0.01, ‘selection’: ‘cyclic’} Lasso {‘alpha’: 0.1, ‘selection’: ‘random’}

ElasticNet {‘alpha’: 0.01, ‘l1_ratio’: 1.0} ElasticNet {‘alpha’: 0.1, ‘l1_ratio’: 1.0}
Bayesian

Ridge
{‘alpha_1’: 0.0001, ‘alpha_2’:

1e−06, ‘lambda_1’: 1e−06,
‘lambda_2’: 0.0001}

Bayesian
Ridge

{‘alpha_1’: 0.0001, ‘alpha_2’:
1e−06, ‘lambda_1’: 1e−06,

‘lambda_2’: 0.0001}
DT {‘max_depth’: None,

‘min_samples_split’: 2,
‘random_state’: 0}

DT {‘max_depth’: None,
‘min_samples_split’: 10,

‘random_state’: 0}
RF {‘max_depth’: None,

‘min_samples_split’: 10,
‘n_estimators’: 500,
‘random_state’: 0}

RF {‘max_depth’: None,
‘min_samples_split’: 5,

‘n_estimators’: 500,
‘random_state’: 0}

Discretized ERT {‘max_depth’: 10,
‘min_samples_split’: 10,

‘n_estimators’: 1000,
‘random_state’: 0}

Forward
Selection

ERT {‘max_depth’: None,
‘min_samples_split’: 10,

‘n_estimators’: 500,
‘random_state’: 0}

(Continued)
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Table 3 (continued)

Preprocessing
Technique

Machine
Learning

Model

Best Hyperparameters Preprocessing
Technique

Machine
Learning

Model

Best Hyperparameters

AB {‘base_estimator’:
DecisionTreeRegressor(),
‘learning_rate’: 0.1, ‘loss’:

‘exponential’, ‘n_estimators’: 500,
‘random_state’: 0}

AB {‘base_estimator’:
DecisionTreeRegressor(),

‘learning_rate’: 0.1, ‘loss’: ‘square’,
‘n_estimators’: 100,
‘random_state’: 0}

GB {‘learning_rate’: 0.01, ‘loss’:
‘squared_error’, ‘max_depth’: 1,

‘n_estimators’: 1000,
‘random_state’: 0, ‘subsample’:

1.0}

GB {‘learning_rate’: 0.01, ‘loss’:
‘squared_error’, ‘max_depth’: 10,

‘n_estimators’: 1000,
‘random_state’: 0, ‘subsample’:

0.5}
XGB {‘booster’: ‘gbtree’, ‘gamma’: 2,

‘learning_rate’: 0.01, ‘max_depth’:
50, ‘n_estimators’: 500, ‘objective’:
‘reg:squarederror’, ‘random_state’:

0, ‘subsample’: 0.7}

XGB {‘booster’: ‘gbtree’, ‘gamma’: 0,
‘learning_rate’: 0.1, ‘max_depth’:

50, ‘n_estimators’: 1000,
‘objective’: ‘reg:squarederror’,

‘random_state’: 0, ‘subsample’:
0.5}

MLR {‘fit_intercept’: False}
Ridge {‘alpha’: 1000}
Lasso {‘alpha’: 10, ‘selection’: ‘cyclic’}

ElasticNet {‘alpha’: 10, ‘l1_ratio’: 0.6}
Bayesian

Ridge
{‘alpha_1’: 1e−06, ‘alpha_2’:
0.0001, ‘lambda_1’: 0.0001,

‘lambda_2’: 1e−05}
DT {‘max_depth’: 10,

‘min_samples_split’: 2,
‘random_state’: 0}

RF {‘max_depth’: 10,
‘min_samples_split’: 2,

‘n_estimators’: 500,
‘random_state’: 0}

ERT {‘max_depth’: None,
‘min_samples_split’: 2,

‘n_estimators’: 1000,
‘random_state’: 0}

AB {‘base_estimator’:
DecisionTreeRegressor(),
‘learning_rate’: 0.05, ‘loss’:

‘square’, ‘n_estimators’: 500,
‘random_state’: 0}

GB {‘learning_rate’: 0.01, ‘loss’:
‘squared_error’, ‘max_depth’: 10,

‘n_estimators’: 1000,
‘random_state’: 0, ‘subsample’:

0.5}

Polynomial
Features

XGB {‘booster’: ‘gbtree’, ‘gamma’: 0,
‘learning_rate’: 0.01, ‘max_depth’:

50, ‘n_estimators’: 1000,
‘objective’: ‘reg:squarederror’,

‘random_state’: 0, ‘subsample’:
0.5}

Notes:
* Best model.
** Other parameters that were not mentioned in this table hold default values in the scikit-learn library.
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4 Machine Learning-Based Sensitivity Analysis
The sensitivity analysis based on machine learning was carried out to determine which factors most

strongly affect the strengths of cement composites reinforced with carbon nanotubes in compression and
flexure. This analysis relied on the top-performing machine learning models trained on the raw data,
which helped maintain the original relationships among the variables and supported reliable evaluation. The
decision tree model was used for compressive strength, while the gradient boosting model was chosen for
flexural strength, as both showed the highest performance scores when compared to other configurations that
included data preprocessing. The reasoning behind this approach stems from the fact that pairing a model
with a preprocessing method can result in an opaque system, where the path from input to output becomes
difficult to trace or explain. For compressive strength, the feature importance results shown in Fig. 10 indicate
that the water-to-cement ratio plays the most dominant role, contributing 69.84% of the total influence.
This outcome supports established theory, as the water-to-cement ratio has long been recognized as a
central factor in determining how strong concrete becomes. When this ratio is lower, it typically results
in higher compressive strength, as the reduced amount of water leads to less porosity and better bonding
among cement particles. Curing time also showed a strong influence, with a contribution of 14.08%, as it
directly affects the cement hydration process, which controls how strength develops as the material sets. The
presence of CNTs, contributing 6.48% to the feature importance, further enhances the compressive strength
by providing additional reinforcement and improving the composite’s microstructure.

Figure 10: Feature importance analysis for the compressive and flexural strength cases

The partial dependence plots in Fig. 11 further elucidate the impact of these parameters. The plot for
the water/cement ratio shows a clear negative correlation with compressive strength, confirming that a lower
ratio results in higher strength. The CNT content plot indicates that an optimal range of CNT concentration
exists, beyond which the benefits plateau or even diminish, likely due to agglomeration issues that can
negatively affect the composite’s uniformity. The curing time plot demonstrates a positive correlation, with
strength increasing significantly up to a certain period, beyond which the gains are marginal.
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Figure 11: Partial dependence plots for the compressive strength of concrete

For flexural strength, the feature importance analysis in Fig. 9 reveals a more balanced distribution
among the top factors. The water/cement ratio (23.03%), curing time (22.24%), and CNT content (21.77%)
are nearly equally influential. This balanced importance suggests that flexural strength is affected by a
combination of factors, each contributing significantly to the overall performance. The theoretical basis for
these findings lies in the nature of flexural strength, which is sensitive to both the composite’s ductility
and the quality of the cement matrix. The partial dependence plots in Fig. 12 provide further insights. The
water/cement ratio plot indicates a nonlinear relationship with flexural strength, where both very high and
very low ratios can be detrimental. This observation can be attributed to the dual requirement of adequate
hydration and maintaining structural integrity, which are critical for flexural performance. The CNT
content plot highlights the importance of achieving a uniform dispersion of CNTs, as higher concentrations
can enhance the composite’s toughness and crack resistance, but only if the dispersion is adequate. The
curing time plot, similar to compressive strength, shows that prolonged curing enhances flexural strength,
emphasizing the role of complete hydration and internal curing in developing flexural properties. The
sensitivity analysis also reveals interesting contrasts between the factors influencing strengths. While the
water/cement ratio and curing time are significant for both properties, their relative importance and the
nature of their influence differ. For compressive strength, the water/cement ratio has an overwhelming
impact, overshadowing other factors. In contrast, for flexural strength, multiple factors contribute more
evenly, reflecting the complex interplay between ductility, toughness, and matrix quality. The role of CNTs is
another area where differences are observed. In compressive strength, CNT content is moderately important,
suggesting that while CNTs enhance strength, other factors like the water/cement ratio and curing time
are more critical. For flexural strength, CNT content is nearly as important as the water/cement ratio and
curing time, highlighting the significant role of CNTs in enhancing the toughness and crack resistance of the
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composite. Therefore, these results have reflected theoretical and practical implications. From a theoretical
perspective, the findings confirm the critical roles of water/cement ratio and curing time in determining
the mechanical properties of cement composites. The importance of CNT content, especially for flexural
strength, highlights the potential of nanomaterials to enhance composite performance. The nonlinear
relationships observed in the partial dependence plots align with the complex nature of composite materials,
where optimal ranges exist for various parameters. Practically, these insights can guide the design and
optimization of CNT-reinforced cement composites. For instance, optimizing the water/cement ratio and
curing conditions can significantly enhance both strengths. Additionally, achieving uniform CNT dispersion
is crucial for realizing the full benefits of CNT reinforcement. These findings can inform guidelines for
mix design, curing protocols, and quality control in the production of advanced cement composites. The
feature importance analysis provides specific recommendations for optimizing the properties of CNT-
reinforced cement composites. For compressive strength, it is recommended to focus on maintaining a
low water/cement ratio, ensuring adequate curing time, and optimizing CNT content within a specific
range. These factors are paramount in achieving high compressive strength. For flexural strength, a balanced
approach is necessary, considering the water/cement ratio, curing time, and CNT content collectively
to enhance toughness and crack resistance. The detailed partial dependence plots offer further practical
insights. For instance, the optimal water/cement ratio for compressive strength is around 0.2 to 0.3, beyond
which the benefits diminish. Similarly, for flexural strength, maintaining the water/cement ratio within a
moderate range (0.3 to 0.4) is crucial. For CNT content, an optimal range is identified, typically around 0.025
to 0.05 wt%, beyond which agglomeration can negatively impact the composite’s performance.

Figure 12: Partial dependence plots for the flexural strength of concrete
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Indeed, existing literature confirms some of the results observed in this sensitivity analysis. For instance,
Kim et al. [64] observed a drop in the strengths of concrete with the increase in the water to cement ratio.
Adhikary et al. [65] discussed an increasing and then dressing trend in the effect of CNT content on the
strengths of the composite. This trend was confirmed experimentally by Vesmawala et al. [66] with a value
of 0.4% being the optimum for the compressive strength of concrete, which is similar to the results obtained
in this study. Kang et al. [67] reported a very similar trend to the one obtained in this study for the relation
between the curing time and the compressive strength of the composite mixture. These observations confirm
the consistency of the results obtained in this study with the existing literature.

5 Conclusion
This study focused on closing the current gap in understanding how different factors influence the

strength of cement composites reinforced with carbon nanotubes. Although many studies have been carried
out in this area, most have not examined these materials using large datasets, which are better suited for
capturing the full range of variable interactions. This work applied machine learning to run a sensitivity
analysis, aiming to improve prediction of mechanical properties while also identifying which parameters
have the strongest effect. The models developed in this process were chosen based on performance and
consistency, allowing for more dependable results. The findings help clarify which factors matter most when
designing these composites for structural use. This kind of understanding supports more reliable design
practices for construction materials made with carbon nanotubes. The main outcomes of this study are listed
below:

1. For predicting compressive strength, the GB model combined with polynomial features provided the
best estimation results, achieving an R value of 95%, an NRMSE of 9%, an NMAE of 5%, and an A10 score
of 77%. This model significantly outperformed others by accurately capturing the complex interactions
within the data.

2. For predicting flexural strength, the ERT model with PCA preprocessing yielded the best results, with
an R value of 89%, an NRMSE of 10%, an NMAE of 6%, and an A10 score of 69%. This combination
effectively leveraged the benefits of dimensionality reduction and robust ensemble learning to enhance
prediction accuracy.

3. The water-to-cement ratio emerged as the most significant factor influencing both strengths. For
compressive strength, a lower ratio led to higher strength due to reduced porosity and improved
bonding. For flexural strength, a moderate ratio was crucial, balancing adequate hydration with
structural integrity.

4. Curing time significantly impacted both strengths. Extended curing periods improved the hydration
process, resulting in better development of mechanical properties. The optimal curing period was
identified as at least 28 days.

5. The content of CNTs played a crucial role, especially in flexural strength, where it significantly enhanced
the composite’s toughness and crack resistance. However, an optimal range of CNT concentration was
necessary to avoid issues related to agglomeration.

6. Advanced data preprocessing methods combined with machine learning approaches significantly
improved the predictive accuracy of strengths compared to simpler models. The GB with polynomial
features for compressive strength and ERT with PCA for flexural strength were identified as the
best-performing models.

7. The findings confirmed the theoretical understanding of the critical roles of water/cement ratio,
curing time, and CNT content in determining mechanical properties. Practically, these insights guide
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the optimization of mix design, curing protocols, and quality control for CNT-reinforced cement
composites, promoting the development of more durable and resilient construction materials.

Finally, based on feature importance and partial dependence results, this study recommends a
water/cement ratio of 0.20–0.30 for optimal compressive strength, a CNT content of 0.025–0.05 wt% to
maximize flexural performance without agglomeration issues, and a minimum curing period of 28 days to
ensure full hydration. While this study provides valuable insights, it also has limitations. The dataset used,
although comprehensive, may not encompass all possible variations of CNT-reinforced cement composites.
Future studies should consider a broader range of compositions and conditions to validate and extend the
findings. Additionally, the machine learning models employed, while effective, could be further refined
with larger datasets and more advanced techniques. Future research should also explore the long-term
performance and durability of CNT-reinforced cement composites under various environmental conditions.
Investigating the effects of different types of CNT functionalization and dispersion methods on mechanical
properties can provide deeper insights into optimizing these advanced materials. Moreover, accounting for
the interaction between the features when doing a sensitivity analysis would be another key area that can be
studied in the future.
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