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ABSTRACT: The traditional You Only Look Once (YOLO) series network models often fail to extract satisfactory
features for road detection, due to the limited number of defect images in the dataset. Additionally, most open-source
road crack datasets contain idealized cracks that are not suitable for detecting early-stage pavement cracks with fine
widths and subtle features. To address these issues, this study collected a large number of original road surface images
using road detection vehicles. A large-capacity crack dataset was then constructed, with various shapes of cracks
categorized as either cracks or fractures. To improve the training performance of the YOLOv5 algorithm, which showed
unsatisfactory results on the original dataset, this study used median filtering to preprocess the crack images. The
preprocessed images were combined to form the training set. Moreover, the Coordinate Attention (CA) attention
module was integrated to further enhance the model’s training performance. The final detection model achieved a
recognition accuracy of 88.9% and a recall rate of 86.1% for detecting cracks. These findings demonstrate that the use of
image preprocessing technology and the introduction of the CA attention mechanism can effectively detect early-stage
pavement cracks that have low contrast with the background.
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1 Introduction
The road structure is a critical component of traffic infrastructure, providing a smooth and comfortable

driving environment for vehicle traffic [1]. However, due to factors such as severe weather, freeze-thaw cycles,
overweight vehicles, and construction defects, road structures may develop diseases [2]. These issues can
reduce their service life, increase maintenance costs, and compromise driving safety. Cracks are a common
type of pavement defect that is easily induced by the aforementioned factors. Cracks allow rainwater to
penetrate the pavement and weaken the local strength. Moreover, without proper and timely maintenance,
cracks can grow and develop into potholes, posing risks to traffic comfortableness [3]. Therefore, to ensure
driver safety and maintain pavement service levels, frequent crack detection is necessary. Over the past
few decades, researchers have proposed a variety of methods for detecting road cracks. In terms of the
inspection process, these methods can be mainly categorized into manual inspection [4] and computer vision
methods [5–7]. Traditional detection methods largely rely on manual inspection, which often has significant
drawbacks. They are usually labor-intensive, inefficient, subjective, prone to high rates of missed detection,
and will cause traffic interruption.
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Since pavement surface cracks are visible features that can be captured through images, engineers and
scholars have explored methods for detecting cracks via image analysis. Conventional image recognition
methods primarily identify faulty regions based on picture characteristics such as grayscale values [8].
The most common techniques include the Otsu method [9], edge detection [10], and region-growing
algorithms [11]. These methods can achieve satisfactory recognition performance for crack detection in
images with simple backgrounds and strong contrast. However, the recognition error rate is high for
images with complex backgrounds. While segmentation methods offer relatively high accuracy in identifying
pavement crack faults, their processing speed is slow [12]. Additionally, methods that rely on picture textures,
brightness, and connectivity to identify cracks, as well as those using dynamic thresholding algorithms, can
only produce coarse fracture patterns [13]. Moreover, crack recognition based on Canny edge detection is
prone to erroneous recognition. Overall, traditional image recognition methods require high standards for
image acquisition and processing in complex environments and diverse crack patterns. Their algorithms
may not be adaptable enough to handle the complex and variable urban road environment, leading to
false positives or missed detection. As a result, they are less effective in accurately identifying cracks,
necessitating manual feature extraction due to their low accuracy and high false-positive rates. Additionally,
the preprocessing approach has a direct impact on recognition performance [14,15]. These methods are not
superior at identifying intricate cracks and can be fooled by noise patterns. They are also more sensitive to
interference and ambient light.

To overcome the limitations and difficulties associated with manually extracting damage-sensitive
features and using traditional machine learning methods for classification, there has been a surge of
research on structural health monitoring based on deep learning. In 2006, Hinton et al. [16] introduced
the concept of deep learning, leveraging the multi-layer abstraction process of the human brain to generate
abstract representations of data such as images and language. Deep neural networks do not require feature
engineering; once adequately trained, they can effectively respond to the properties of the data, although it
may be challenging to understand and articulate how each layer is computed. Thus, deep learning is a superior
solution for the multi-scale nature of pavement crack identification and the complex environment with
diverse backgrounds. In recent years, deep learning algorithms have made significant progress in detecting
pavement faults. Zhang et al. [17] proposed a road fracture detection system based on deep convolutional
neural networks (CNN), using a rectified linear unit (ReLU [18]) as the activation function to accelerate
model convergence during training. Jiang et al. [19] employed drones to capture images of cracks and identify
them in real time, enabling crack width measurement. Deep learning is frequently combined with CNN
techniques to perform detection tasks [20]. Geetha et al. [21] developed a concrete crack detection and
classification method using dynamic threshold image binarization and 1D-DFT-CNN (1D Discrete Fourier
Transform Convolutional Neural Network) to enhance real-time crack detection and classification efficiency.
Yang et al. [22] introduced a Feature Pyramid and Hierarchical Boosting Network (FPHBN)-based crack
detection method for concrete, improving boundary localization and accuracy. This method demonstrated
superior accuracy, speed, and robustness over other approaches, especially in challenging images with
shadows and low contrast. Lu et al. [23] presented an advanced road crack detection method using a U-
Net framework combined with a pyramid-assisted supervision module and a spatial-channel dual attention
module, achieving high accuracy and robustness under various conditions. Cha et al. [24] proposed a vision-
based concrete crack detection method that utilized a deep CNN structure to automatically learn image
features without manually computing defect features.

The YOLO series, as an advanced single-stage target detection algorithm, is known for its fast detection
speed and high accuracy, evolving up to YOLOv11. While YOLOv11 has seen significant improvements
in architecture and performance, YOLOv5 retains several key advantages and remains highly relevant for
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specific applications. Since its release in 2020, YOLOv5 has undergone multiple iterations and optimizations.
Its maturity and stability make it a widely used and reliable target detection model in both industry and
academia. YOLOv5 offers a variety of model sizes, including YOLOv5n, YOLOv5s, and YOLOv5m, which are
suitable for a range of scenarios from embedded devices to high-performance servers. The lightweight design
of YOLOv5 also performs well in resource-constrained environments. YOLOv5 features a simple training
process [25], low training and inference costs, and supports a variety of data augmentation techniques
and hyperparameter optimization methods. Additionally, it offers a rich model export format, facilitating
deployment on different platforms. In specific tasks, YOLOv5’s transfer learning performance is slightly
better compared to YOLOv11, despite YOLOv11’s more stable mean Average Precision (mAP). Khanam
et al. [26] compared three target detection models—YOLOv5, YOLOv8, and YOLOv11—and found that
YOLOv5 offers satisfactory computational efficiency while maintaining high accuracy.

In recent years, an increasing number of studies have combined attention mechanisms with YOLOv5.
By introducing different attention mechanisms, such as SE (Squeeze-and-Excitation), CBAM (Convolutional
Block Attention Module), ECA (Efficient Channel Attention), and CA (Coordinate Attention), the perfor-
mance of YOLOv5 in the target detection task has been significantly improved. Zhou et al. [27] optimized
the YOLOv5s model by introducing a lightweight coordinate attention module, enabling the network to
more accurately locate targets and improve detection accuracy. The experimental results indicated that
the improved YOLOv5 model can effectively identify road cracks. Liu et al. [28] proposed a lightweight
object detection algorithm based on the attention mechanism and YOLOv5. Experimental results on remote
sensing datasets, such as RSOD (Remote Sensing Object Detection Dataset) and DIOR (Detection in Optical
Remote), showed that the algorithm improved average accuracy by 1.4% and 1.2%, respectively, compared to
the YOLOv5s algorithm.

Aside from the development of detection models, crack datasets are of great importance for crack
detection tasks. Many scholars have created their own crack sample sets, but the sample sizes are usually
small, ranging from a few hundred to a thousand photos [29]. For example, the Crack Forest Dataset (CFD)
contains 118 pavement photos, while the Crack Water Hole Dataset (CrackWH100) includes 100 pavement
images. However, training deep neural networks requires large datasets. To address the challenge of crack
identification using deep learning, a significant number of pavement crack photos need to be gathered and
labeled. To compensate for the lack of sample sets, many researchers frequently employ data augmentation
techniques. Yet, the actual crack condition in real-world contexts still plays a crucial role in the model training
process. Therefore, a dataset containing a large number of labeled pavement fractures is essential for deep
learning-based pavement crack identification.

Moreover, crack quantification is a crucial step in structural health monitoring, providing a basis for
structural damage assessment by obtaining the geometric characteristics of cracks [30]. After deep learning-
based crack detection, quantification is achieved through image processing techniques. These include using
edge detection algorithms (such as Sobel and Canny) to extract edge information, applying global or adaptive
thresholding methods for segmentation, and expanding the crack area using region growing algorithms.
The geometric features of the crack region are then calculated to obtain crack characteristics. One approach
is to use bounding boxes to isolate the crack region and apply image processing for segmentation. Kang
et al. [31] used an object detection model to locate cracks and proposed an improved distance transformation
method (DTM) to measure crack thickness and length in pixels. This method achieved an accuracy of
93% for crack length and width measurements across 100 tested images. Another approach involves using
semantic segmentation networks, followed by image processing to fix the crack region and carry out
quantification. Quantitative indicators for cracks include length (obtained by extracting crack skeleton lines),
width (calculated from the pixel distance between crack edges), and area (estimated by counting pixels
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in the crack region). Other metrics include crack density and geometric shape. New methods for crack
quantification are rapidly emerging. Peng et al. [32] introduced an automatic detection and quantification
method for bridge cracks, quantifying crack width by measuring the minimum distance between crack edges
in segmented images. Guo et al. [33] proposed estimating crack width by calculating the crack angle using
the cosine function, achieving a crack detection accuracy of 0.992.

Regarding the practical application of computer vision-based pavement crack detection, developing
an integrated detection system is essential for rapid image collection. These techniques address the disad-
vantages of traditional manual detection, saving personnel and material resources while eliminating the
influence of human subjectivity [34]. For example, the Canadian company Roadware developed the ARAN
(Automatic Road Analyzer) detection vehicle, equipped with two charge-coupled device (CCD) cameras for
image data collection [35]. The ARAN uses a synchronized, high-intensity flash to reduce shadows from
objects like trees and fences, even in direct sunlight, and can theoretically capture road surface images in the
absence of natural light. Similarly, the University of Arkansas developed the Digital Highway Data Vehicle
(DHDV), a real-time pavement defect detection system that uses a CCD camera mounted on a test vehicle
to capture images of pavement degradation [36]. It employs a Global Positioning System (GPS) to locate
fractures and a distance measurement instrument [37] (DMI) to collect distance information. The data is
processed by a dual-CPU microprocessor and sent in real time to a multi-CPU computer for damage analysis.
This system integrates digital image acquisition and processing components to enable rapid data collection,
detection, and classification of pavement cracks.

This paper proposes a method for detecting early pavement cracks based on deep learning and image
processing. To collect sufficient training image samples in real-world scenarios, a road detection vehicle
equipped with a camera module was used. Modifications, including image processing and the incorporation
of an attention mechanism into YOLO, were investigated to enhance crack detection capabilities. The results
indicated that training with annotated raw images alone was insufficient for detecting early pavement cracks
with low contrast against the background. Enhancing YOLOv5’s detection ability through image processing
and an attention module significantly improved performance. This study provides a reference for detecting
early pavement cracks, aiding in preventive maintenance.

2 Establishment of Pavement Crack Dataset
Deep learning is a presentation learning method that enables a network model to learn relevant features

and representations directly from raw data and perform classification tasks. However, deep CNN models
typically involve a large number of parameters that need to be optimized and adjusted. Therefore, in target
detection tasks involving pavement cracks, a substantial number of crack images are often required to train
neural networks effectively. Additionally, in real-world scenarios, pavement cracks vary in length, width, and
shape, and many crack images contain various interference factors, including uneven illumination, water
stains, shadows, manhole covers, etc. Consequently, an ideal pavement crack dataset should include a large
number of crack images with diverse geometries and different types of noise patterns.

The image acquisition experiment collected pavement images from different sections and under varying
weather conditions at different times. This study captured approximately 60 km of road surface images in
cities such as Wenzhou and Jinhua in Zhejiang Province. A Road detection vehicle equipped with a camera
module was used for image collection, resulting in a dataset of 10,000 road surface images with a resolution of
4000× 2000 pixels. The pavement images collected in Jinhua, Zhejiang Province, exhibit moderate brightness
with minimal interference, such as leaf shadows. Linear cracks are the predominant type, accompanied by
some mesh cracks. These linear cracks tend to be longer in length but narrower in width. In contrast, the road
surface images collected from Ouhai Avenue in Wenzhou are generally darker and contain more interference,
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such as leaf shadows. Additionally, some images from Ouhai Avenue feature wet surfaces with more complex
texture patterns. The road inspection vehicles and route maps are shown in Fig. 1.

Road detection vehicle Detection roadmap

Figure 1: Road detection vehicle and detection roadmap

In this paper, the LabelImg software was employed to further annotate the acquired images. A total of
1400 images containing cracks were annotated, and the pavement cracks were categorized into two types:
cracks and fracturing, as illustrated in Fig. 2. The number of original images and processed datasets, the
resolution of the images, and the sample distribution are summarized in Table 1.

(a) Crack with marking line interference (b) Densely cracked pavement surface

Figure 2: Typical label examples

Table 1: Dataset parameters

Raw image quantity Crack image quantity Image resolution Training ratio setting
10,000 1400 4000 × 2000 8:1:1

3 Model Training and Evaluation
YOLOv5 [38] is an upgrade from YOLOv4 [39,40], and it offers four publicly available network

architectures: YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. Among these, the YOLOv5s network has the
shallowest depth and narrowest feature map width. The other three models are based on YOLOv5 and have
been expanded and developed accordingly.

YOLOv5s consists of two major components: the backbone and the neck. The backbone of YOLOv5
employs the CSPDarknet (Cross Stage Partial Darknet) [41] and SPP (Spatial Pyramid Pooling) [42]
framework. The Neck component of YOLOv5 utilizes the PANet (Path Aggregation Network) structure,
whose primary function is to generate feature pyramids [43]. These feature pyramids enhance the detection
of objects at multiple scales, enabling the recognition of the same object at different sizes and scales. The
structure of the YOLOv5s model is shown in Fig. 3.
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Figure 3: YOLOv5s model

Target detection algorithms are typically evaluated using metrics such as the F1 score, mAP, Recall,
Precision. In deep learning, prediction results can be categorized into four types: True Positive (TP), when
both the actual and predicted values are positive; False Negative (FN), when the actual value is positive but
the prediction is negative; False Positive (FP), when the actual value is negative but the prediction is positive;
and True Negative (TN), when both the actual and predicted values are negative. The calculation process is
as follows:

Precision = TP
TP + FP

(1)

Recal l = TP
TP + FN

(2)

The F1 score is a balance between Precision and Recall. It considers both the Precision rate and the
completeness rate, delivering a proper balance between the two indicators. It is computed as follows:

F1 = 2 ∗ P ∗ R
P + R

(3)

Precision-Recall Curve: The P-R curve is generated by computing Precision and Recall for each
prediction and plotting the curve based on their relationship. Different computer vision tasks have varying
tolerances for the two types of errors. Usually, efforts are made to reduce one type of error without exceeding a
specific threshold for the others. In target detection, AP (Average Precision) serves as a comprehensive metric
to balance both. The AP is calculated as the area under the interpolated Precision-Recall curve, bounded by
the X-axis. It is calculated as follows:

AP = ∑
n−1
i=1 (ri+1 − ri)pinterp (ri+1) (4)
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The AP value is determined for only one category. After the AP is determined, calculating the mAP is
straightforward. It is necessary to compute the average precision since AP is calculated for each category. By
determining the mean value, the mAP assesses how well the trained model detects all categories. In this paper,
the datasets were divided into training sets, test sets, and validation sets with a ratio of 8:1:1, and the training
epoch was set to 100. A GPU server was used for training, and the parameters are presented in Table 2. The
training results are illustrated in Fig. 4.

Table 2: GPU server parameters

Name Version
CPU Inter(R) Xeon(R) Silver 4215R CPU
GPU NAVIDA GeForce RTX 3090
Cuda 11.5

PyTorch 11.0
PyCharm pyCharm2022

Python 3.8

(a) Precision-confidence (b) Recall-confidence

(c) F1-confidence (d) Precision-recall

Figure 4: YOLOv5s training results

As can be seen, the training mAP is only 0.323. To improve the training effect, this paper used the median
filtering method to enhance the images and improve the dataset. Median filtering [44,45] is primarily used
to remove image noise. It is a nonlinear filtering technique and a statistical method that assigns each pixel’s
gray value as the median of the gray values of all pixels within a local neighborhood window. This technique
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replaces individual pixel values in a digital image with the median value of the neighboring points, aiming
to bring the neighboring pixel values closer to the actual values and thereby remove isolated noise points.

The core mechanism is as follows: Firstly, a square-shaped region centered on a specific pixel is
identified. Then, the gray values of all pixels in this region are sorted, and the median value is chosen as
the new gray value for the central pixel. This region is commonly referred to as the window. As the window
scans across the image from top to bottom, the median filtering technique effectively smooths the image,
particularly at the edges of image regions where gray values can fluctuate significantly and rapidly. The filter
can remove these components and smooth the image. The schematic diagram of the median filtering is shown
in Fig. 5. Typical examples of using median filtering for preprocessing are presented in Fig. 6. It can be seen
that the filtered images are not very different from the original images. The reason might be that median
filtering is used to remove isolated noise points. Due to the human eye’s limited perception of detailed changes
in the images, it may be difficult to observe significant differences with the naked eye. After median filtering,
the number of crack images was increased to 2800.

Figure 5: Median filtering sketch map

(a) Before median filtering (b) After median filtering

(c) Before median filtering (d) After median filtering

Figure 6: (Continued)
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(e) Before median filtering (f) After median filtering

Figure 6: Comparison of effect before and after median filtering of road crack image

The dataset after median filtering and the training results of YOLOv5 are shown in Fig. 7. It is evident
that median filtering significantly enhances the training performance of YOLOv5s. All four metrics show
marked improvement: Precision increases from 0.381 to 0.816, Recall value rises from 0.370 to 0.753,
the F1 value jumps from 0.375 to 0.873, and mAP climbs from 0.323 to 0.794. The primary reason for
this improvement is the reduction of noise patterns in the training images and the increased number of
training samples.

(a) Precision-confidence (b) Recall-confidence

(c) F1-confidence (d) Precision-recall

Figure 7: YOLOv5s training results after median filtering

However, there are still some limitations in the training effect of the dataset after median filtering.
Therefore, this paper further enhances the YOLOv5s model by incorporating the CA mechanism [46].
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The CA mechanism splits channel attention into two separate one-dimensional feature encoding processes,
focusing on spatial coordinates and attentional focus. By capturing long-range dependencies along one
spatial axis while retaining precise location information along another, it improves the accuracy of crack
detection and the generalization capability of the model. The schematic of the CA mechanism is shown
in Fig. 8. For the height coordinate operation, the output in the height direction can be expressed as:

zh
c (h) =

1
W ∑0≤i<W xc (h, i) (5)

As for the width coordinate operation, the output in the width direction can be expressed as:

zω
c (ω) =

1
H∑0≤i<H xc ( j, ω) (6)

Residual

X Avg Pool Y Avg Pool

Concat+Conv2d

BatchNorm+Non-linear

Conv2d

Sigmoid

Conv2d

Sigmoid

Re-weight

input

output

C×W×H

C×W×H

C×1×W

C×1×W

C×1×WC×H×1

C×H×1

C×H×1

Clr×1×(W+H)

Clr×1×(W+H)

Figure 8: The schematic of CA attention mechanism

The transformation along the vertical and horizontal axes independently merges features across two
distinct spatial dimensions, resulting in a pair of directional sensing feature maps. Transforming the vertical
and horizontal dimensions also enables the attention module to capture long-range dependencies along
a single spatial direction, while concurrently maintaining exact spatial location details along the other.
This enhances the network’s precision in target localization. The CA attention mechanism concatenates
the transformation of the vertical and horizontal dimensions and applies a convolution function for the
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transformation operation. It then decomposes the transformation along the dimension, segregating into two
distinct components. The calculation process is as follows:

f = δ (F1 ([zh , zω])) (7)

gh = σ (Fh ( f h)) (8)

gω = σ (Fω ( f ω)) (9)

The final output of the CA attention mechanism is obtained:

yc (i , j) = xc (i , j) × gh
c (i) × gω

c ( j) (10)

The attention mechanism can be incorporated into various locations within the YOLOv5s network.
For instance, it can be added to every CBL module to implement a full network attention mechanism.
Alternatively, it can be integrated into the final layer of the backbone network. To reduce computational load,
this paper adds the attention mechanism to the last layer of the backbone network.

The training results of YOLOv5s with CA after median filtering are shown in Fig. 9. It can be observed
that integrating the CA attention mechanism further improves the performance of YOLOv5s. As shown
in Table 3, the Precision increased from 0.816 to 0.889, the Recall increased from 0.753 to 0.861, the F1
increased from 0.783 to 0.875, and the mAP value increased from 0.794 to 0.920. Although the improvement
from the CA attention mechanism is not as substantial as that from median filtering, it still effectively
enhances the training outcomes. The results of the three experimental groups are summarized in the
table below.

(a) Precision-confidence (b) Recall-confidence

(c) F1-confidence (d) Precision-recall

Figure 9: YOLOv5s-CA training results after median filtering
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Table 3: YOLOv5 training results with CA attention mechanism

Dataset Precision Recall F1 mAP
Before median filtering 0.381 0.370 0.375 0.323
After median filtering 0.816 0.753 0.783 0.794

YOLOv5s-CA and median filtering 0.889 0.861 0.875 0.920

4 Model Visualization Test
The head part of YOLOv5s contains three detection heads, which scan the entire image at once and

output several candidate boxes. Each candidate box has a confidence value, indicating the likelihood of a
target being present in that region. This confidence value is a probability between 0 and 1. During detection,
a fixed threshold screening method is first used to eliminate candidate boxes with confidence values below
the threshold. To address the issue of multiple prediction boxes for the same object, the Non-Maximum
Suppression (NMS) algorithm is employed to remove highly overlapping candidate boxes.

The NMS method selects prediction box B1 with the highest confidence as the baseline and removes
all other prediction boxes whose Intersection over Union (IoU) values with B1 exceed the threshold. The
second NMS method selects the prediction box B2 with the second highest confidence as the baseline and
removes all other prediction boxes whose IoU values with B2 exceed the threshold. This process is repeated
until all prediction boxes have been used as baselines. The IoU is an intersection ratio reflects the overlap of
two rectangular boxes. The formula is as follows:

IoU = BoxA⋂BoxB

BoxA⋃BoxB
(11)

The process of target detection typically generates numerous highly overlapping frames for the same
object. To reduce the number of prediction frames, NMS with overlap suppression is commonly used. When
the overlap, measured by the IoU, exceeds the NMS threshold, redundant frames are removed, retaining
only the most confident prediction. In this case, the YOLOv5s-CA model is also applicable for the detection
task. The NMS threshold is set to 0.9, and the confidence threshold is established at 0.5. Fig. 10 below shows
the crack detection results for typical pavement images. It can be seen that the YOLOv5s-CA model can
detect various types of pavement cracks on different roads. For example, in Fig. 10a, the proposed model can
detect cracks that are imperceptible to the human eye. In Fig. 10d, the proposed model can detect fracturing
that is also imperceptible to the human eye. For pavement images with different brightness and texture
characteristics, the model can detect cracks effectively. The proposed model can better detect actual pavement
cracks and has potential practical engineering application value. Moreover, the proposed model eliminates
many noise patterns, such as the white road marker lines and shadows in all the sub-images, and the patch
mark in Fig. 10b,d. However, it is noted that the proposed model might face challenges when the background
of the pavement images is complicated.
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(a) Cracks with overexposed background (b) Crack with block patch interference

(c) Crack with marking line interference (d) Crack with line patch interference

Figure 10: Typical examples of crack detection with YOLOv5s-CA

5 Conclusions
This study introduces a novel approach that combines deep learning and image processing techniques

to detect early-stage pavement cracks characterized by low contrast. The raw crack images were preprocessed
using median filtering, and the YOLOv5s network was enhanced by incorporating the CA attention
mechanism. This research provides a reference for identifying fine-width and low-contrast pavement cracks.
The main findings of this investigation are as follows:

(i) To address the scarcity of road crack datasets, a collection of 10,000 raw pavement images with a
resolution of 4000 × 2000 was assembled. Among them, 1400 crack images were selected and annotated.
The resulting crack dataset encompasses images featuring diverse background conditions, such as varying
brightness levels, water stains, and shadows.

(ii) When trained on the dataset of raw images, YOLOv5s produced suboptimal detection results, with a
mAP value of just 0.323. However, by applying median filtering to remove noise from the original images and
increase image numbers, the YOLOv5s achieved significantly improved results, with a mAP value of 0.794
and an F1 score of 0.783. This indicates that training directly on annotated sample images (early pavement
crack images with low-contrast features) may lead to unsatisfactory outcomes. Therefore, image processing
techniques can be effective in addressing this challenge.

(iii) In addition to improving the crack detection capacity, the YOLOv5s model was enhanced by
incorporating the CA attention mechanism. This modification led to further performance improvements,
resulting in a mAP value of 0.920 and an F1 score of 0.875.
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