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ABSTRACT: An intelligent diagnosis method based on self-adaptive Wasserstein dual generative adversarial networks
and feature fusion is proposed due to problems such as insufficient sample size and incomplete fault feature extraction,
which are commonly faced by rolling bearings and lead to low diagnostic accuracy. Initially, dual models of the
Wasserstein deep convolutional generative adversarial network incorporating gradient penalty (1D-2DWDCGAN) are
constructed to augment the original dataset. A self-adaptive loss threshold control training strategy is introduced, and
establishing a self-adaptive balancing mechanism for stable model training. Subsequently, a diagnostic model based
on multidimensional feature fusion is designed, wherein complex features from various dimensions are extracted,
merging the original signal waveform features, structured features, and time-frequency features into a deep composite
feature representation that encompasses multiple dimensions and scales; thus, efficient and accurate small sample fault
diagnosis is facilitated. Finally, an experiment between the bearing fault dataset of Case Western Reserve University and
the fault simulation experimental platform dataset of this research group shows that this method effectively supplements
the dataset and remarkably improves the diagnostic accuracy. The diagnostic accuracy after data augmentation reached
99.94% and 99.87% in two different experimental environments, respectively. In addition, robustness analysis is
conducted on the diagnostic accuracy of the proposed method under different noise backgrounds, verifying its good
generalization performance.

KEYWORDS: Deep learning; Wasserstein deep convolutional generative adversarial network; small sample learning;
feature fusion; multidimensional data enhancement; small sample fault diagnosis

1 Introduction
As an indispensable support and transmission component in industrial equipment, the health condition

of rolling bearings is directly correlated with the operational efficiency and safety of the entire system [1].
Therefore, timely and accurate fault diagnosis of rolling bearings is regarded not only as a crucial guarantee
for the safe operation of main bearings but also as a key component in ensuring the efficient and reliable
operation of the entire industrial system. Especially in areas requiring high reliability, such as power
generation, railway transportation and aviation, the prevention and timely diagnosis of bearing failures are
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essential. Meanwhile, with the promotion of Industry 4.0 and the application of intelligent fault detection
technology, real-time monitoring, and data analysis are possible [2,3]. In recent years, with the advancement
of intelligent diagnostic methods, the application of deep learning in the field of fault diagnosis has been
steadily increasing. The implementation of deep learning technologies allows for the development of more
accurate and efficient fault diagnosis systems, remarkably enhancing the accuracy of fault diagnosis [4–7].
However, the field of fault diagnosis founded on deep learning currently faces two critical issues.

First, the efficient operation of deep learning models is often highly contingent upon a set of training
sets with sufficient data [8]. However, the fault data collected under different machine states often face
the problem of insufficient samples due to the complexity of machine operation and the random nature
of failures in real industrial environments [9–11], especially when the amount of data under the fault state
is much less than that under the normal operation state [12–14]. This phenomenon of inadequate sample
size results in a diminished recognition capability of the model for minority classes, thereby affecting
the accuracy of fault diagnosis and the generalization ability of the model. Currently, the predominant
research approaches can be broadly categorized into knowledge-level and data-level studies. Knowledge-level
approaches encompass strategies such as transfer learning and metal-earning, where transfer learning seeks
to leverage data and knowledge from the source domain to facilitate learning in the target domain. If the
distribution of data between the source and target domains deviates considerably, transfer learning may not
achieve satisfactory results [15–18]. Meta-learning demonstrates remarkable potential in certain scenarios by
learning efficient deep learning algorithms across various tasks [19–21]. However, the generalization ability
of its metaknowledge may be somewhat constrained where data is extremely scarce. Data-level approaches
encompass techniques such as synthetic minority oversampling technique (SMOTE) and generative adver-
sarial network (GAN). Inspired by random oversampling, Chawla et al. [22] proposed the SMOTE, which
increases the number of existing minority class samples by interpolating them. However, its effectiveness is
constrained due to the introduction of noise and the challenges associated with accurately capturing complex
data distributions. Accordingly, the utilization of GAN at the data level to synthesize minority classes for
augmenting the dataset is considered the optimal approach for enhancing classifier performance. Goodfellow
et al. [23] proposed a data synthesis model known as GAN, where the generator and discriminator are trained
through a game-theoretic framework to generate realistic data samples. As the study progressed, Radford
et al. [24] established the deep convolutional generative adversarial network (DCGAN) by substituting
conventional multilayer neural networks with convolutional neural network (CNN). This convolutional
variant of GAN demonstrated improved training performance across various datasets. Li et al. [25] presented
an advanced version of GAN, i.e., the Wasserstein DCGAN (WDCGAN), capable of generating data from
one-dimensional power grid datasets. The generated data serve as input for intelligent diagnostic models,
facilitating small-sample anomaly classification. Importantly, the generated data of the WDCGAN exhibit
similarity to real data, effectively stabilizing the training process.

Moreover, the majority of current diagnostic models primarily rely on unidimensional single-
information inputs, resulting in insufficient sample coverage and consequently diminishing generalization
capability and diagnostic accuracy of the model. Therefore, the limitations of diagnostic models stemming
from single-information inputs are evident, necessitating the incorporation of multidimensional information
to enhance diagnostic accuracy and comprehensiveness [26,27]. In recent years, CNN have demonstrated
remarkable advantages in equipment fault identification due to their superior automatic feature extraction
and pattern recognition capabilities. Efficient and accurate diagnostics can be achieved by CNN through the
direct processing of input two-dimensional images or vibration signals [28–31]. Chen et al. [32] transformed
the original one-dimensional vibration signals into a two-dimensional matrix structure and employed CNN
for fault identification. Gao et al. [33] converted one-dimensional vibration signals into a time-frequency
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grayscale map and achieved the diagnosis classification of faults through CNN. However, vibration signals,
as one-dimensional time series, exhibit certain temporal correlations and continuity characteristics. The
conversion of one-dimensional data into two-dimensional arrays can disrupt the spatial correlation of the
signals, leading to the loss of one-dimensional waveform feature information [34]. Therefore, extensive
research has been conducted by scholars domestically and internationally on one-dimensional convolutional
neural networks (1DCNN) due to the uniqueness of one-dimensional time series. Ye et al. [35] designed
a diagnostic method that successfully improves recognition accuracy by integrating variational modal
extraction with an enhanced 1DCNN. While this approach preserves spatial information and waveform
features by utilizing one-dimensional vibration signals as input data, it neglects certain fault characteristics
in the frequency domain. Subsequently, researchers have introduced dual-channel CNN, utilizing the
frequency spectrum and time-frequency representations of the original vibration signals as input for
diagnostic detection, thereby enabling fault diagnosis [36]. The method incorporates frequency domain
feature extraction. However, it fails to extract the information effectively from the original time series and the
structural information manifesting in the time domain. Furthermore, existing diagnostic methods based on
feature fusion do not fundamentally address the challenge of inadequate sample size. Thus, further studies
on small-sample fault diagnosis for feature fusion are required in the future.

In response to the emergence of the aforementioned issues, a small-sample diagnosis method based on
self-adaptive Wasserstein dual generative adversarial networks and feature fusion is proposed in this study,
and the main contributions can be summarized as follows:

1. This method utilized continuous wavelet transform and grayscale image transformation, incorporat-
ing one-dimensional vibration signals, time-frequency images, and grayscale images as input data,
which include the waveform features, structural features, and time-frequency features of the one-
dimensional signals.

2. Dual models of one-dimensional and two-dimensional WDCGAN were constructed for the sample
augmentation of multidimensional data, thereby generating an augmented new dataset. Additionally,
a self-adaptive loss threshold control training (SALTCT) strategy was incorporated into the model to
achieve a stable training process. Instance normalization (IN) is substituted for batch normalization
(BN) to preserve the independence of each sample and thus extract all the important information
contained in the data.

3. Within the diagnostic classification module, a method known as multidimensional feature fusion
convolutional neural network (MDFFCNN) was devised to facilitate in-depth feature extraction and
fusion of three categories of fault features, thereby achieving efficient and precise fault diagnosis.

This paper is structured as follows: Section 2 offers a comprehensive overview of the theoretical
background underpinning the method. In Section 3, the proposed method is described in detail. Section 4
presents the experimental results obtained through the application of this method. Finally, Section 5 provides
a conclusion to this study.

2 Theoretical Background

2.1 GAN and Its Improved Models
As an unsupervised deep learning model, GAN is fundamentally based on the principles of zero-sum

game theory. The network comprises a generator (G) and a discriminator (D), and through the iterative
optimization involving adversarial training and backpropagation between G and D, the model ultimately
attains Nash equilibrium, resulting in the generation of realistic and diverse data. The objective function of



1014 Struct Durab Health Monit. 2025;19(4)

GAN is defined as follows:

min
G

max
D

V (D, G) = Ex∼Pr(x) (x) log D (x)+
Ez∼Pz(z) [log (1 − D (G (z)))] ,

(1)

where x represents the real data sampled from the true data distribution Pr. The objective of the discriminator
is to maximize the probability that input samples belong to the real data distribution, while the aim of the
generator is to ensure that the distribution of generated data closely approximates that of the real samples,
with its input being a random noise vector z sampled from a normal distribution Pz(z).

DCGAN replaces the conventional multilayer neural networks with GAN based on CNNs, and this
convolutional variant of GAN demonstrates stable training performance across numerous datasets. Wasser-
stein GAN (WGAN) [37] enhances the training stability of GANs and the diversity of generated samples by
introducing the Wasserstein distance as a metric and imposing a Lipschitz constraint on the discriminator,
with its objective function illustrated in Eq. (2):

min
G

max
D∈Δ

V (D, G) = Ex∼Pr [D (x)] − Ex∼P g
[D (x)] , (2)

where Pg is the generated data distribution defined by the implicit generative model G, and Δ is the 1 −
Lipschitz condition. The gradient penalty (GP) method is introduced in WGAN-GP to overcome the
limitations associated with weight clipping in WGAN [38]. Specifically, a gradient-related penalty term is
incorporated into the loss function of the discriminator in WGAN-GP, thereby indirectly enforcing the
Lipschitz constraint. This enhancement not only simplifies the training process but also improves the stability
of WGAN and the quality of the generated samples. The objective function of WGAN-GP is shown in Eq. (3):

min
G

max
D

V (D, G) = −Ex∼Pr [D (x)] + Ex̂∼Pg [D (x̂)]+

λEx̂∼Px̂ [(∥ ∇x̂ D (x̂) ∥2 −1)2] ,
(3)

where λ represents the GP coefficient, x̂ denotes the random interpolation sampling along the line connecting
Pr and Pg , and ∣∣•∣∣ indicates the L2 norm of the gradient.

In this study, a data generation model named WDCGAN with GP (WDCGAN-GP) was employed. The
proposed model incorporates part of the CNN architectures from DCGAN into the framework of WGAN-
GP. By optimizing the model architecture and incorporating convolutional layers alongside feature extraction
capabilities, this model is designed to capture the diversity within the data while reducing computational
costs and enhancing training efficiency.

2.2 Instance Normalization
Instance Normalization (IN) is a widely used technique, particularly in tasks such as image generation

and style transfer. It operates by computing the mean and standard deviation for each channel of an input
sample, normalizing the sample based on these statistics. This method can effectively remove unnecessary
style information from the image by independently adjusting the statistics of each sample, thereby capturing
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content features [39]. The expression for IN is delineated in Eq. (4).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yni j =
xni j − μni√

σ 2
ni + ε

,

μni =
1
L

L
∑
l=1

xni j ,

σ 2
ni =

1
L

L
∑
l=1
(xni j − μni)

2 ,

(4)

where x is the input tensor containing N signal samples (x ∈ RN×C×L). xnij represents the nij-th element; C, N,
L, and ε respectively represent the number of channels, the number of samples in batch, the sample length,
and the numerical stability coefficient.

3 Proposed Method

3.1 Multidimensional Data Enhancement Model
One-dimensional and two-dimensional Wasserstein DCGANS (1DWDCGAN and 2DWDCGAN) are

constructed in this study as generative adversarial models. The model architecture and key parameters are
presented in Tables 1 and 2. The integration of certain components of the DCGAN is incorporated into
the model based on WGAN-GP. In this study, convolutional and inverse convolutional layers are used in
the generator and discriminator, respectively. Convolutional layers help extract localized features from the
signal and gradually learn high-level features through multiple layers of convolution. In the generator, the
inverse convolutional layer is used to map the low-dimensional latent vectors back into the signal space, thus
generating a more accurate orientation signal. With this design, important data features in the signal can be
captured while generating representative fault signals. Rectified linear unit (ReLU) is used as the activation
function of the generator, and the tanh activation function in the output layer is employed to ensure that
the generated signals remain within a reasonable range and fit the distribution of the real signals. The use
of leaky ReLU as the activation function of the discriminator effectively mitigates the gradient vanishing
problem while improving the performance of the model under different input signals. Given that each data
point within a sample contains considerable unique information, the application of BN may lead to the loss
of distinctive detailed features in individual samples. BN standardizes the distribution of data across an entire
batch and may lead to the loss of distinctive detailed features in each generated sample. As a result, IN is
substituted for BN to preserve the independence of each sample.

Table 1: Structure and key parameters of 1DWDCGAN

Layer Normalization Activation function Channel Kernel Stride
Generator Fully-connected – ReLU 256 – –

Deconv1 InstanceNorm ReLU 128 5 × 5 2
Deconv2 InstanceNorm ReLU 64 5 × 5 4
Deconv3 InstanceNorm ReLU 32 5 × 5 4
Deconv4 – Tanh 1 5 × 5 4

Discriminator Conv1 – LeakyReLU 1 5 × 5 4
Conv2 InstanceNorm LeakyReLU 32 5 × 5 4
Conv3 InstanceNorm LeakyReLU 64 5 × 5 4

(Continued)
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Table 1 (continued)

Layer Normalization Activation function Channel Kernel Stride
Conv4 InstanceNorm LeakyReLU 128 5 × 5 2

Fully-connected – – 1 – –

Table 2: Structure and key parameters of 2DWDCGAN

Layer Normalization Activation function Channel Kernel Stride
Generator ConvTranspose1 InstanceNorm ReLU 256 4 × 4 1

ConvTranspose2 InstanceNorm ReLU 128 4 × 4 2
ConvTranspose3 InstanceNorm ReLU 64 4 × 4 2
ConvTranspose4 InstanceNorm ReLU 32 4 × 4 2
ConvTranspose5 – Tanh 3 4 × 4 2

Discriminator Conv1 – LeakyReLU 16 4 × 4 2
Conv2 InstanceNorm LeakyReLU 32 4 × 4 2
Conv3 InstanceNorm LeakyReLU 64 4 × 4 2
Conv4 InstanceNorm LeakyReLU 128 4 × 4 2
Conv5 – – 1 4 × 4 2

The architecture of the 1DWDCGAN is based on a one-dimensional convolutional structure, which
facilitates the extraction of deep features for the generator and discriminator. Fully connected layers serve
as the input layer of the generator and the output layer of the discriminator. The batch size is set to 5,
and the generator and discriminator use the Adam optimizer and a learning rate of 0.0002, with 30,000
iterations. By contrast, the 2DWDCGAN model adopts a two-dimensional convolutional approach, whereby
a 100-dimensional random noise vector, consistent with a Gaussian distribution, is mapped to various
convolutional feature maps, which culminate in the generation of two-dimensional images. The batch size
is set to 32. For the optimizer, Adam is adopted for the generator and discriminator, and the learning rate is
0.0002. The number of iterations is 500.

A self-adaptive training strategy based on loss threshold control, termed SALTCT, is introduced to
ensure that the model converges stably and approaches a Nash equilibrium state. This strategy regulates
the training intensity between the generator and the discriminator to achieve a balance in their learning
capacities, thereby mitigating oscillatory phenomena during the training process and enhancing model
stability. The mathematical expression is shown as follows:

ΔL = ∣LG ∣ − ∣LD ∣, (5)

train G = { True if ΔL > T
False otherwise , (6)

train D = { True if ΔL < −T
False otherwise , (7)

where ΔL is the loss difference; LG, LD are the generator loss and discriminator loss, respectively. Eqs. (6)
and (7) denote the training conditions for the generator and discriminator, respectively, and T is the preset
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threshold. A threshold T of 1.5 was established in advance to assess the acceptable range of discrepancy in the
loss function values between the generator and discriminator during each iteration. In the original training
loop, the parameters of the generator and discriminator are updated during each iteration. Following the
updates, the loss values for both are computed, and the difference ΔL is calculated. ΔL > T indicates that
the discriminator may be too strong or the generator is too weak. Hence, additional training iterations are
conducted while keeping the parameters of the other network fixed, with the generator being trained an
additional five times. Conversely, if ΔL < −T, the discriminator is trained an additional five times. After each
additional iteration, the loss discrepancy ΔL is recalculated until it returns to the range of [−T, T]. Once
the loss discrepancy meets the threshold condition, the current state of training is deemed stable, and the
original training loop is continued.

3.2 Novel Multidimensional Feature Fusion Fault Diagnosis Method
To address the low diagnostic accuracy and insufficient generalization ability of the model caused by

the limitations of single-dimensional and single-information input data characteristics, this study intro-
duces an innovative intelligent diagnostic model, namely, MDFFCNN. It incorporates one-dimensional
vibration signals, grayscale images, and time-frequency images as simultaneous inputs. A 1DCNN and
two-dimensional convolutional neural network (2DCNN) modules are employed to extract deep features
concurrently from the three types of input samples, which are then fused into a multidimensional, multiscale
deep composite feature representation that encompasses the original signal waveform features, structured
features, and time-frequency characteristics. In the fusion process, a feature concatenation method is adopted
to merge one-dimensional signal features with two sets of two-dimensional image features. The features
of each channel can model the signal from different dimensions. By concatenating these features, the
multilevel information of the signal can be captured, and rich and comprehensive composite features are
formed. This approach enables the model to consider multidimensional information such as time, space,
and frequency comprehensively, thereby improving diagnostic performance. Ultimately, an intelligent fault
diagnosis for small samples with multidimensional input is achieved, with the specific model architecture
and key parameters illustrated in Fig. 1.

In the MDFFCNN model, the convolutional layer integrates one-dimensional and two-dimensional
convolution operations to extract fault features. To introduce nonlinear mapping capabilities, ReLU is
employed as the activation function. A maximum pooling layer is added after each convolution module to
reduce the dimensionality of the output features, defined as follows:

yki j = max
(p ,q)∈Ri j

xx pq , (8)

where ykij denotes the maximum pooling output value of the pooling region Rij associated with the k-th
feature map; xxpq represents the element located at (p, q) within the pooling region Rij.
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Figure 1: Structure and key parameters of MDFFCNN

In the final convolutional module, global average pooling (GAP) is employed to replace the fully
connected layer, with the aim of capturing global feature information of the model while minimizing the
number of parameters. This enables the model to prioritize global features across the entire feature map,
rather than being limited to local regions, thereby mitigating the overfitting phenomenon typically induced
by the extensive weight parameters present in traditional fully connected layers. Let F denote an input feature
map with dimensions H × W × C, where H, W, and C correspond to the height, width, and number of
channels of the feature map, respectively. The operation of GAP can be expressed by the following equation:

GAP (F) =
⎡⎢⎢⎢⎢⎣

1
H ×W

H
∑
i=1

W
∑
j=1

F (i , j, c)
⎤⎥⎥⎥⎥⎦

C

c=1

, (9)

where F (i, j, c) denotes the value of channel c at position (i, j) in the feature map F, and the output of GAP(F)
is a vector of length C, where each element represents the global average of the corresponding channel.

In the 2DCNN module, the extracted time-frequency and structured features are flattened into one-
dimensional features using a flattening layer, facilitating the integration of deep features of different
dimensions at the fusion layer. The operational steps of the flattening layer are illustrated in Eqs. (10) and (11).

Qi =
⎛
⎜
⎝

s11 ⋅ ⋅ ⋅ s1h
⋮ ⋅ ⋅ ⋅ ⋱

sh1 ⋅ ⋅ ⋅ shh

⎞
⎟
⎠

, (10)



Struct Durab Health Monit. 2025;19(4) 1019

qT
i = f l atten (Qi) = [s11 , ⋅ ⋅ ⋅ , s1h , ⋅ ⋅ ⋅ , sh1 , ⋅ ⋅ ⋅ , shh] , (11)

where Qi denotes the two-dimensional feature map extracted by the 2DCNN with a size of h × h, Shh
represents the feature value at the h-th row and h-th column, and qT

i signifies the flattened feature vector.
The definition of the fusion layer is as follows:

dT
i = FF (qi1 , qi2, qi3) =

[s111 , ⋅ ⋅ ⋅ , shh1 , s112 , ⋅ ⋅ ⋅ , shh2, ⋅ ⋅ ⋅ , s113 , ⋅ ⋅ ⋅ , shh3] , (12)

where qi1 is the one-dimensional feature vector of the original signal, while qi2 and qi3 are the time-
frequency and structured two-dimensional feature vectors extracted after processing with Continuous
wavelet transform (CWT) and grayscale image transform (GIT), respectively [40–42]. S. . .1, S. . .2 and S. . .3
represent the individual feature values of qi1, qi2, and qi3, respectively. Finally, a SoftMax layer is employed
as the classifier to categorize the multidimensional feature vector obtained after deep feature fusion, thereby
achieving fault diagnosis based on multidimensional feature integration. The batch size is set to 64, utilizing
the Adam optimizer with a learning rate of 0.001.

3.3 Diagnostic Framework Process of the Proposed Method
A method for small-sample diagnosis based on self-adaptive Wasserstein dual generative adversarial

network and feature fusion is proposed to address the issue of inadequate sample size prevalent in industrial
applications and the challenges of accurate diagnosis caused by the limitations of single information input
in intelligent diagnostic models. The overall framework of this method is illustrated in Fig. 2 and consists of
three primary stages.

Stage 1: The continuous bearing vibration signals that are collected are segmented into multiple samples
based on predefined time windows and normalized. The CWT and GIT preprocessing methods are applied
to convert the raw signals into time-frequency and grayscale images, respectively. The one-dimensional raw
vibration signals and the resulting two-dimensional images are divided into training, validation, and test
sets in a 7:2:1 ratio. Independent validation and test datasets are employed to effectively mitigate the risk of
overfitting and evaluate the performance of the model on unseen data.

Stage 2: 1D-2DWDCGAN are constructed as data synthesis models, incorporating the SALTCT strategy
to enhance model convergence speed. Subsequently, these two models are employed to synthesize samples
of one-dimensional vibration signals, grayscale images, and time-frequency images with various data
augmentation ratios. The synthesized data, along with the real data, are utilized as inputs for the subsequent
diagnostic models, thereby effectively augmenting the dataset.

Stage 3: The MDFFCNN model is utilized for fault diagnosis detection, with different ratios of enhanced
data used as input during training. Multidimensional convolutional layers are employed to extract the raw
signal waveform features, structured features, and time-frequency characteristics. A fusion layer is used
to concatenate and integrate deep features from different convolutional paths. During the testing phase,
accurate classification of unknown samples is performed, ultimately achieving intelligent fault diagnosis for
small samples with multidimensional inputs.
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Figure 2: The framework of the proposed method

4 Experimental Verification

4.1 Dataset Description and Preprocessing
The performance and effectiveness of the diagnostic method proposed in this study were validated

by conducting evaluations on datasets under the 1HP operating condition from the Case Western Reserve
University (CWRU) bearing dataset [43] and data collected from the bearing fault simulation experimental
platform developed by our research group. The testing platform and fault types are shown in Fig. 3.

Under the 1 HP operating condition of the CWRU dataset, the experimental motor operated at a speed
of 1772 rpm. Normal and fault data for the drive-end bearings were sampled at a frequency of 12 kHz. The
CWRU dataset consists of four different fault categories: normal (N), outer ring fault (OR), inner ring fault
(IR) and ball fault (B). Each fault category includes three different fault sizes: 0.007, 0.014, and 0.021 inches.
Therefore, the experiment involved a total of 10 operating states in the CWRU dataset. The bearing fault
simulation test platform was used to collect fault data under constant speed conditions. The experimental
platform is principally constructed from an active motor, a radial loading device, and precision bearings,
complemented by accelerometers for vibration monitoring, a laptop-based control interface, load motors
with frequency converters, and an NI9234 data acquisition module. During the experiment, an accelerometer
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was positioned at the upper end of the bearing seat to collect vibration signals for analysis. The sampling
frequency was set to 12.8 kHz, with a sampling duration of 15 s. The speed and load were maintained at
2400 rpm and 0.5 MPa, respectively. The bearing model used was N1006EM, with its physical parameters
provided in Table 3. The processing of bearing rolling elements, along with inner and outer ring pitting faults,
was carried out using electrical discharge machining. The fault diameters were set to 1.4 mm for moderate
faults and 1.8 mm for severe faults. Therefore, the experiment involved a total of seven fault states. The specific
classification and label definitions are provided in Tables 4 and 5, respectively.

Signal Collection Card

Radial Loading

Device

Frequency

Transformer

Command

Motor

Torque Sensor

Bearing

Accelerometer

Notebook

Medium Ball Medium Outer Medium Inner

Severe Ball Severe Outer Severe Inner

(a) (b)

Figure 3: Experimental platform for rolling bearing failure simulation: (a) Bearing failure simulation experiment
platform, (b) Types of bearing faults

Table 3: Physical parameters of the N1006EM-type bearing

External
diameter

Bore
diameter

Pitch
diameter

Rolling
element pitch

diameter

Number of
rolling

elements

Contact
angle

55 mm 30 mm 42.5 mm 6 mm 15 0

Table 4: Description of the CWRU dataset

Identification label Fault unit Fault diameter (in)
0 Drive End Fault-Ball 0.07
1 Drive End Fault-Ball 0.14
2 Drive End Fault-Ball 0.21
3 Drive End Fault-Inner 0.07
4 Drive End Fault-Inner 0.14
5 Drive End Fault-Inner 0.21
6 Drive End Fault-Outer 0.07
7 Drive End Fault-Outer 0.14
8 Drive End Fault-Outer 0.21
9 Normal-Baseline –
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Table 5: Description of the fault simulation experiment platform dataset

Identification label Fault unit Fault diameter (mm)
0 Fault-Medium-Ball 1.4
1 Fault-Severe-Ball 1.8
2 Fault-Medium-Inner 1.4
3 Fault-Severe-Inner 1.8
4 Fault-Medium-Outer 1.4
5 Fault-Severe-Outer 1.8
6 Normal-Baseline –

The original vibration signals of the experimental bearings in two datasets were segmented into
independent samples containing 1024 data points under each different operating state, generating a total
of 100 samples. Following signal normalization and the application of CWT and GIT for two-dimensional
image conversion, 100 one-dimensional signal samples, grayscale images, and time-frequency graphs were
obtained for each working condition. Consequently, the dataset was partitioned into training, validation, and
test sets at a ratio of 7:2:1. Within the data augmentation module, three augmentation tasks were established
for experimentation: no data augmentation, 1:3 ratio data augmentation, and a 1:4 ratio enhanced task
involving a mixture of synthetic and original data. The primary objective of these tasks was to investigate the
impact of varying data enhanced ratios on the diagnostic accuracy of the model. With the CWRU dataset
taken as an example, detailed information regarding the dataset partitioning and the augmentation tasks is
presented in Table 6.

Table 6: Dataset partition and amount

1:1 (Task 1) 1:3 (Task 2) 1:4 (Task 3)

Label Tr Va Te Tr Va Te Tr Va Te
0 70 20 10 210 60 30 280 80 40
1 70 20 10 210 60 30 280 80 40
2 70 20 10 210 60 30 280 80 40
3 70 20 10 210 60 30 280 80 40
4 70 20 10 210 60 30 280 80 40
5 70 20 10 210 60 30 280 80 40
6 70 20 10 210 60 30 280 80 40
7 70 20 10 210 60 30 280 80 40
8 70 20 10 210 60 30 280 80 40
9 70 20 10 210 60 30 280 80 40

Note: Tr means Training set, Va means Validation set, Te means
Test set.
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4.2 Experiments with the CWRU Dataset
4.2.1 Data Quality Assessment and Analysis

Following the training of the 1DWDCGAN model for data synthesis, the time domain spectrum of real
and synthetic samples were computed and compared across 10 fault conditions, as illustrated in Fig. 4. As
shown in the figure, the synthetic samples exhibit considerable diversity across various fault conditions while
retaining the essential characteristics of the original signals.

Figure 4: Comparison of the time domain waveform between real samples and generated samples
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The quality of time-frequency and grayscale images directly influences the effectiveness of fault
diagnosis. If the generated two-dimensional image samples accurately reflect the potential data distribu-
tion characteristics provided by real images, they may serve as a robust representational foundation for
subsequent fault diagnosis models. The comparison between the real samples and the generated samples is
presented in Figs. 5 and 6.

real

generate

Figure 5: Comparison of the time-frequency images of real samples and generated samples

real

generate

Figure 6: Comparison of the grayscale images of real samples and generated samples

A comparison between the generated images and the original images reveals that the features within
the generated samples exhibit a distribution that is largely consistent with the features of the real samples.
The tiny differences highlight the ability of the generative model to learn the distribution of the real data and
its capacity to capture complex data distributions, rather than merely replicating the original samples. An
arbitrary fault condition was selected to analyze quantitatively the differences in data distribution between
the generated samples of the time-frequency images and grayscale images and their corresponding real
samples. The pixel data were segmented into multiple intervals, and the frequency for each interval was
computed to produce histograms that visualize the data distributions of both sets. Fig. 7a represents the
data distribution of the time-frequency graphs, while Fig. 7b corresponds to that of the grayscale images.
This demonstrates a high degree of congruence in feature distribution between the generated data and
the real data while also showcasing the unique capability possessed by the generative model to produce
diverse data. Therefore, the similarities observed between the synthesized data of the three types and the
real data validate the effectiveness of the one-dimensional and two-dimensional WDCGAN model data
augmentation framework utilized in this study within a multidimensional data space, effectively alleviating
issues of inadequate data.
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(a) (b)

Figure 7: Comparison of real and generated data distribution: (a) the data distribution of the time-frequency graphs,
(b) the data distribution of the grayscale images

The introduction of the SALTCT mechanism allows the WDCGAN model to adjust its training strategy
flexibly when confronted with the challenges of different training stages, ensuring a balanced and stable
training process for the generator and the discriminator, thereby mitigating the risk of overfitting due
to excessive training of either component. The loss of the generator and discriminator of the standard
model and the model after the introduction of the SALTCT mechanism are shown in Fig. 8, from which
it can be observed that the optimization speeds of the generator loss and discriminator loss after the
introduction of the SALTCT mechanism are better than those of the standard model. In addition, the loss
curve of the improved model is more stable in the late stage of training, which indicates that the improved
model has stronger robustness and stability in the face of complex data, while the fluctuation within a
certain range indicates that the model is constantly optimized without local optimality, thus improving the
training efficiency.

(a) (b)

Figure 8: Loss of generator and discriminator: (a) Standard model, (b) Improved model
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4.2.2 Results and Comparison of Small-Sample Fault Diagnosis
To illustrate further the of the proposed method in dealing with small-sample fault diagnosis with

multidimensional information inputs, this study used one-dimensional and two-dimensional WDCGAN
data augmentation models to set up the dataset with an augmentation ratio of 1:1 as a small-sample dataset
according to different expansion ratios, as described in 4.1, and it was augmented with the data to construct a
new dataset. The specific methods of using them to train different diagnostic models for diagnosis are shown
in Table 7.

Table 7: Different methods for performing fault diagnosis

Method Data enhanced approaches Classifier
1 1DWDCGAN 1DCNN
2 2DWDCGAN 2DCNN(CWT)
3 2DWDCGAN 2DCNN(GIT)
4 1DWDCGAN CNN-LSTM
5 1DWDCGAN + 2DWDCGAN MDFFCNN

During the experimental process, the 1DCNN and 2DCNN network architectures and parameter
settings employed in Methods 1, 2, and 3 were ensured to be identical to those proposed in Method 4 of
this study. Each method was subjected to 10 tests to minimize random errors. The average testing results are
illustrated in Table 8 and Fig. 9.

Table 8: Fault diagnosis accuracy (%) of test set under different methods and different data enhanced ratios

Enhanced ratio Method 1 Method 2 Method 3 Method 4 Method 5
1:1 96.32 91.15 98.37 98.74 99.31
1:3 98.53 96.82 99.34 99.46 99.92
1:4 99.52 99.41 99.67 99.79 99.94

In Fig. 9, the x-axis represents the different experimental methods under the three data-enhanced
ratios, and the y-axis represents the accuracy of classification. Table 6 shows that the classification accuracy
of the proposed method is remarkably improved in diagnosis. In Task 1 without data enhancement, the
diagnosis accuracy of MDFFCNN model proposed in this study reaches 99.31%. Compared with the other
four comparison models, the accuracy rate is increased by 2.99%, 8.16%, 0.94%, and 0.57%. In addition,
the confusion matrix can intuitively display the classification of various fault types, and predict labels can
be obtained by inputting test set samples into the model for training. Therefore, the confusion matrix is
introduced to evaluate the model and further verify its reliability. The confusion matrices of different methods
are shown in Fig. 10.
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Figure 9: Classification accuracy of five methods with different data enhanced ratios

(a) (b) (c)

(d) (e)

Figure 10: Comparison of confusion matrices for different diagnostic methods in Task 1: (a) Method 1, (b) Method 2,
(c) Method 3, (d) Method 4, (e) Method 5

In Tasks 2 and 3 with different data-enhanced ratios, the accuracy of the test set on the MDFFCNN
model reaches over 99.80% through sample expansion of the original dataset by 1DWDCGAN and 2DWD-
CGAN, which are improved in different degrees compared with other methods. However, reflecting the
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performance of the model fully by only relying on the accuracy rate as the evaluation index is often difficult.
To reveal the performance of the model in the fault diagnosis task, this study selects Precision, Recall, and F1-
score with more detailed and comprehensive evaluation capabilities as the additional evaluation indexes of
the test to better reflect the predicted performance of the model. Precision directly measures the proportion
of true positive samples among those identified as positive by the model; Recall can reflect the correct
proportion of each type of fault; F1-score can reflect the comprehensive level of Precision and Recall. The
higher the value is, the more accurate the model classification is. The calculation methods of the three are as
follows [9]:

Precision = TP
TP + FP

, (13)

Recal l = TP
TP + FN

, (14)

F1 − score = 2 × Precision × Recal l
Precision + Recal l

, (15)

where TP represents true positive case, TN represents true counterexample, FP represents false positive case,
and FN represents false counterexample. The test results are shown in Table 9. In the experiment, the three
prediction indicators of all methods under data enhancement are higher than the prediction results of the
original dataset. With the increase in the data enhancement ratio, the failure dataset is supplemented; thus,
the performance indicators, such as Precision, Recall, and F1-score, are improved synchronously. Therefore,
the data enhancement model used in this study can effectively solve the inadequate data phenomenon,
provide sufficient data basis for the follow-up diagnosis model training, and improve the diagnosis accuracy
and efficiency.

Table 9: The Precision, Recall and F1-score of the fault diagnosis using different methods

Enhanced ratio Method 1 Method 2 Method 3 Method 4 Method 5

P R F1 P R F1 P R F1 P R F1 P R F1

1:1 0.968 0.962 0.971 0.920 0.900 0.891 0.987 0.982 0.983 0.987 0.985 0.986 0.993 0.990 0.994
1:3 0.983 0.985 0.981 0.973 0.969 0.969 0.993 0.993 0.993 0.993 0.994 0.994 1.000 0.998 0.999
1:4 0.994 0.995 0.994 0.993 0.994 0.993 0.995 0.995 0.995 0.997 0.997 0.995 1.000 0.999 0.997

Note: P denotes the Precision, R denotes the Recall, and F1 denotes the F1-score.

The proposed method in this study has shown remarkable advantages in many aspects, not only
surpassing the single-dimensional detection method enhanced on the basis of different proportions of data
on the quantitative index of prediction performance but also achieving increased convergence rate in the
model training stage, which marks the dual optimization of the method in improving the detection efficiency
and accuracy. In this study, a function is defined to judge whether the model is stable and converged. When
the fluctuation of the accuracy of the verification set is less than Q in the continuous N iterations of the model,
the model is considered to be stable and converged. In this process, N was set to 4, and Q was established
at 0.005. The number of iterations for the dataset to achieve stable convergence during training under two
operating conditions is shown in Table 10. As shown in the table, the proposed method reached convergence
at the 34th iteration during training on the dataset without data augmentation under different operating
conditions. In training under different data augmentation ratios, the proposed model can reach convergence
within 10 iterations. Compared with other fault diagnosis methods, the method in this study not only has
increased convergence speed but also can effectively relieve the inadequate data problem through data
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enhancement technology while guaranteeing diagnosis accuracy and enhance the generalization capacity
and robustness of the model, thus showing stronger adaptability and reliability in the actual application.

Table 10: The convergence speed (Epoch) of fault diagnosis with different methods and different data enhanced ratios

Enhanced ratio Method 1 Method 2 Method 3 Method 4 Method 5
1:1 48 116 171 41 34
1:3 23 51 162 15 10
1:4 16 40 134 13 8

4.3 Experiments with the Fault Simulation Experimental Platform Dataset
4.3.1 Stability Analysis of the Model Training Process

In the experiments with the fault simulation experimental platform dataset, the variation of the
generator and discriminator losses in five different network architectures, including the proposed method,
is compared, as shown in Fig. 11. The experimental results show that although all the methods exhibit a
certain degree of loss fluctuation during the training process, the fluctuation amplitude of the loss curve
for the method proposed in this study is considerably lower than that of the other comparison methods,
and the training process is overall more stable. Furthermore, the proposed method achieves the lowest final
loss values, further highlighting its superior performance. This phenomenon indicates that SALTCT can
effectively suppress the instability in the training process, avoid the risk of overtraining of generators and
discriminators, and improve the convergence and robustness of the model. The stability of the loss curve also
reflects that the method has stronger adaptability to complex datasets and can be continuously optimized
without converging to a local optimum.

(a) (b)

Figure 11: Comparison of generator and discriminator loss curves with different methods: (a) Generator loss, (b)
Discriminator loss

4.3.2 Results and Comparison of Small-Sample Fault Diagnosis
In the process of implementing small-sample fault diagnosis, training tests are conducted in accordance

with the new datasets of different data enhancement tasks as the input of the diagnosis model. Fig. 12
and Table 11 show the fault diagnosis accuracy comparison of different methods under different data
enhancement ratios. Method 3 showed poor diagnostic accuracy in Task 1 of small sample without data
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enhancement, which may be related to its insufficient adaptability in different experimental environments
and operating conditions. The diagnostic results after sample expansion of Tasks 2 and 3 showed a high
accuracy rate of over 98%, thus verifying the influence of sample size on diagnostic accuracy. The accuracy
rate of the proposed method reaches 99.87% under the mission with the enhancement ratio of 1:4, and the
accuracy rate increases by 0.74%, 1.38%, 0.98%, and 0.53% compared with other methods. In addition, the
diagnosis accuracy under the other two tasks is improved to different degrees compared with other methods,
which verifies the remarkable advantages of this method in fault diagnosis under the background of data
scarcity and the generalization ability and strong robustness of this method in a complex and changeable
experimental environment.

Figure 12: Classification accuracy of five methods with different data enhanced ratios

Table 11: Fault diagnosis accuracy (%) of test set under different methods and different data enhanced ratios

Enhanced ratio Method 1 Method 2 Method 3 Method 4 Method 5
1:1 96.29 90.71 84.29 96.97 97.14
1:3 98.29 98.28 98.00 98.84 99.15
1:4 99.13 98.49 98.89 99.34 99.87

On the basis of Accuracy, Precision, Recall, and F1-score, the ROC-AUC is introduced in this study
as a metric for evaluating model performance. The ROC curve can illustrate the model’s performance
across different thresholds, enabling a comprehensive understanding of the trade-off between sensitivity
and specificity, which is crucial to addressing the requirements of various application scenarios. ROC-
AUC is a standardized metric that allows for the comparison of model performance on the same task,
regardless of the specific implementation or parameter settings, thereby facilitating a comparative evaluation
of the performance of different models. Fig. 13 presents the ROC curves for each model in Task 1 and
the quantitative AUC metrics for the ROC curves. As the apex of the ROC curve approaches the upper-
left corner, the discriminatory power of the model increases, with increased sensitivity and specificity.
Therefore, Fig. 13 indicates that the AUC value of the proposed method reaches 0.9946, which is improved
in different degrees compared with other models; thus, it is more sensitive and reliable.

In practical industrial settings, the raw signals collected by sensors often contain considerable back-
ground noise. Gaussian white noise of varying intensities is added to the original signals to assess the
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robustness of the model under strong background noise. Signal-to-noise ratio (SNR) is employed as an
indicator of noise magnitude, and its definition is described as follows:

SNR = 10 log10
Ps

Pn
, (16)

where Ps denotes the signal power, and Pn denotes the noise power. When the SNR is below 0, it indicates
that the noise energy exceeds that of the original signal, making it challenging to extract meaningful features
from the noisy signal. In the SNR range of −2–6 dB, diagnostic accuracy tests were conducted 10 times under
different noise conditions for each method, and the average values were calculated, as shown in Fig. 14. As
shown in the figure, at SNR values of −2 and 0, the accuracy of the proposed method is 75.62% and 82.33%,
respectively, demonstrating a similar poor performance as the other methods. This result suggests that these
models are not suitable for fault diagnosis in environments with strong noise backgrounds. However, as
the SNR increases, diagnostic accuracy improves, reaching over 90% at SNR = 6, thereby confirming the
robustness of the proposed method in various noise conditions.

Figure 13: ROC curve and AUC for each method

Figure 14: The accuracy of different methods under different noise environment
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4.4 Timeliness of Fault Diagnosis
To demonstrate further the timeliness of the fault diagnosis method proposed in this article, Tables 12

and 13 respectively calculate the sample generation time and diagnostic model training time for the two
datasets under the enhanced ratio of 1:4 task. As shown in the table, the main time consumption among all
methods is the generation of samples. In terms of diagnostic model time consumption, the method proposed
in this study takes the longest time because to improve diagnostic accuracy, three different features are fused,
and the large number of model parameters leads to a long training time. In consideration of the diagnostic
accuracy and robustness of the diagnostic model, the method proposed in this study can achieve good
diagnostic results with little impact on time consumption. The environment of the whole experiment is as
follows: CPU, Intel Corei5-13400F; GPU, NVIDIA RTX 4060 and Python 3.9.

Table 12: Time consumption (s) of different diagnostic methods on the CWRU dataset

Method Sample generation time Diagnostic model training time
1 573.72 83.58
2 372.74 586.08
3 406.86 506.10
4 573.72 115.86
5 573.72 994.29

Table 13: Time consumption (s) of different diagnostic methods on the failure simulation experiment platform dataset

Method Sample generation time Diagnostic model training time
1 656.45 65.29
2 418.93 366.31
3 485.41 370.88
4 656.45 91.55
5 656.45 685.35

5 Conclusion
A novel diagnosis method for rolling bearing under a small-sample condition is proposed in this

study. This method leverages an original dataset to generate new samples in multiple dimensions through
improved 1D-2DWDCGAN dual models, thereby expanding the dataset. Subsequently, multidimensional
feature fusion and detection are performed on the compensated dataset using the MDFFCNN model.
Experimental validation is conducted on a bearing dataset under various operating conditions. Results
illustrate that the proposed 1D-2DWDCGAN dual models validate its capability to generate high-quality
samples by comparing the similarity between generated samples and actual samples and achieving data
enhancement. Concurrently, the self-adaptive loss threshold control strategy further refines the parameter
adjustments during the training process, enabling the model to converge more stably toward the optimal
solution, thereby accelerating training speed. Finally, the fault diagnosis method based on the MDFFCNN
utilizes a multilayer convolutional network structure that automatically learns and extracts deep features
from raw data, integrating multidimensional features such as waveform features, structured features, and
time-frequency features to form composite deep features. In comparisons of multiple diagnostic methods
under varying data enhanced ratios, the proposed model demonstrates remarkable improvements in
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quantifiable metrics and convergence speed, with the enhancement effect becoming more pronounced as
the enhancement ratio increases, thereby fully leveraging the complementarity among different dimensional
information to achieve high-precision fault diagnosis.

Although the proposed method has achieved satisfactory results in the diagnosis of small-sample faults,
several areas warrant further exploration, e.g., the optimization and improvement of the data generation
model architecture and the investigation of strategies to reduce the computational costs of the overall
workflow. While these works may be associated with an increase in computational load, they are still worthy
of investigation due to their potential contribution to enhancing diagnostic accuracy.
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