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ABSTRACT: Rolling bearings are important parts of industrial equipment, and their fault diagnosis is crucial to

maintaining these equipment’s regular operations. With the goal of improving the fault diagnosis accuracy of rolling

bearings under complex working conditions and noise, this study proposes a multiscale information fusion method

for fault diagnosis of rolling bearings based on fast Fourier transform (FFT) and variational mode decomposition

(VMD), as well as the Senet (SE)-TCNnet (TCN) model. FFT is used to transform the original one-dimensional time

domain vibration signal into a frequency domain signal, while VMD is used to decompose the original signal into

several inherent mode functions (IMFs) of di�erent scales. �e center frequency method also determines the number

of mode decompositions. �en, the data obtained by the two methods are fused into data containing the bearing fault

information of di�erent scales. Finally, the fused data are sent to the SE-TCN model for training. Experimental tests

are conducted to verify the performance of this method. �e �ndings reveal that an average accuracy of 98.39% can be

achieved when noise is added and can even reach 100% when the signal-to-noise ratio is 6 dB. When the load changes,

the accuracy of the model can reach 97.45%. �e proposed method has the characteristics of high accuracy and strong

generalization ability in bearing fault diagnosis. Furthermore, it can e�ectively overcome the e�ects of noise and variable

working conditions in actual industrial environments, thus providing some ideas for future practical applications of

bearing fault diagnosis.
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1 Introduction

�ehealth condition of rolling bearings inmechanical equipment directly a�ects their ability to operate

normally. However, in most industrial sites, these bearings face lengthy, continuous operations under high-

temperature and high-pressure conditions, making them prone to failure. �erefore, accurately diagnosing

rolling bearing problems is crucial to ensuring the reliability of manufacturing procedures [1].

Bearing health can be inferred from vibration signals. When the bearings fail, the signals will be

accompanied by corresponding pulse responses [2]. �erefore, e�ective fault diagnosis can be achieved by

analyzing these vibration signals [3]. Representative signal processing methods include short-time Fourier

transform [4], wavelet transform [5], and empirical mode decomposition (EMD) [6], among others. Su

et al. [7] proposed a hybrid �ltering technique based on the autocorrelation enhancement algorithm and

the best Morlet wavelet �lter. First, the vibration signal was �ltered by the band-pass �lter, a�er which the

�ltered signal was subjected to the autocorrelation augmentation algorithm. �eir results revealed that this

method can eliminate interference vibration signals from other sources and can be a highly e�ective tool
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for diagnosing bearing faults. Zhang et al. [8] proposed a time-frequency analysis method based on CWT

and multi-Q-factor Gabor wavelets to improve its ability to extract bearing fault information. �ey also

conducted numerical simulations to verify whether the method accurately identify fault information. Sun

et al. [9] used EMD and improved SDP image Chebyshev distance to achieve the fault diagnosis of bearings,

verifying the robustness of the method through testing. Wu et al. [10] proposed an integrated empirical

mode decomposition (EEMD) approach to address the aliasing problem in the EMD mode. Lei et al. [11]

suggested an EEMD-based fault diagnosis method, con�rming that the suggested method produced more

accurate diagnosis results than the EMD approach. However, the calculation amount of EEMD is large.

Torres et al. [12] proposed a complete empirical mode decomposition with adaptive noise (CEEMDAN)

and reported that its e�ect is superior to that of EEMD. Zhang et al. [13] proposed a novel bearing

fault diagnosis method combining CEEMDAN and improved TFP demodulation. �rough experiments,

they veri�ed the high computational e�ciency of the method. However, signal processing-based fault

diagnosis calls for specialized knowledge. Furthermore, its feature extraction ability is not strong, thus posing

certain limitations.

Deep learning technology has advanced quickly in recent years, and its potent feature extraction

capabilities have led to its broader use in bearing fault diagnosis. Zhang et al. [14] presented a deep learning-

based bearing fault diagnosis method called TICNN. �is method used the original signal directly as the

input, eliminating the pre-processing stage of the signal. �e results of their experiment indicated that

the proposed model showed excellent performance. Wang et al. [15] employed a deep CNN optimized by

the particle swarm optimization (PSO) algorithm to diagnose faults in rolling bearings. Furthermore, Han

et al. [16] suggested a model by combining CNN and support vector machine (SVM). �eir outcomes

demonstrated the model’s bene�ts, including high precision, good generalization ability, and less time

requirement. Habbouche et al. [17] used VMD to pull features out of the original data and then input the

processed data into 1D-CNN for fault diagnosis. �eir outcomes demonstrated that the fault mode could be

well identi�ed. Recurrent neural networks (RNNs), which have been widely used to diagnose bearing faults,

performwell in dealingwith tasks related to time series. To achieve fault classi�cation, Liu et al. [18] proposed

a method for diagnosing bearing faults using RNN based on the denoising autoencoder of a gated cycle unit

(GRU). �eir trial results demonstrated the good diagnostic e�ect of the suggested method. Sabir et al. [19]

�rst used WPD to extract features in the time-frequency domain from signals and then used these features

and long short-termmemory (LSTM) to classify bearing faults. �eir method’s accuracy in classifying faults

reached 96%. Similarly, Hao et al. [20] suggested an LSTM network-based end-to-endmethod, which would

enhance the performance of fault diagnostics by connecting several sensors’ spatiotemporal properties.

Some scholars have considered the physical information in bearing fault diagnosis to ensure that the results

generated by a model align with physical laws. Ni et al. [21] proposed a novel physical information residual

network (PIResNet) that provides a physically consistent solution for data. PIResNet has been shown to have

high accuracy in all its experimental tasks.

In recent years, many academics have transformed original signals into two-dimensional (2D) images,

using image manipulation technology to analyze and extract features. For instance, Zhang et al. [22]

transformed 1D time-frequency signals using continuouswavelet transform (CWT) into 2Dgrayscale images

and then sent the converted images to CNN for training. �e trial outcomes demonstrated that this method

performed well in variable working conditions. Zhou et al. [23] used the waveform image of screen capture

as 2D image inputs of CNN for real-time fault diagnosis and produced favorable outcomes. Yan et al. [24]

suggested a deep residual network andMarkov transition �eld (MTF) based fault diagnosismodel.�ey used

MTF to perform dimensionality conversion on the original vibration signal, a�er which they established

a neural network for fault diagnosis. Shen et al. [25] suggested a method based on the gram angle factory
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(GAF) and lightweight model E-ResNet13. In this method, they converted the original vibration signal into

a 2D GAF image using a gram angler �eld that they then fed into E-ResNet13 for training.

Some existing deep learning-based diagnostic methods perform well under certain speci�c conditions.

However, in actual working conditions, it is necessary to consider the impact of noise and load changes on

the signal. For these reasons, fault diagnosis models must be robust and highly practicable. At the same time,

using 2D for bearing fault diagnosis has some drawbacks. In particular, when performing dimensionality

conversion of signals, the correlation of 1D data may be destroyed, resulting in the omission of some fault

information [26]. Furthermore, using 2D feature maps for diagnosis usually requires large amounts of

computing resources and lacks practical feasibility. �us, the paper aimed to increase the precision and

e�ciency of diagnosing bearing faults in variable working conditions and strong noise using a multiscale

information fusion method based on fast Fourier transform (FFT) and variational mode decomposition

(VMD), as well as the SEnet (SE)-TCNnet (TCN) model for the fault diagnosis of rolling bearings. �e

innovations and main contributions of this article are as follows:

1. FFT is an excellent frequency domain analysismethod, but it only provides spectrum information and

cannot re�ect the signal change with time. In this paper, combined with VMD, the IMF with multiscale time

domain characteristics and the frequency domain components a�er FFT changes were reconstructed into

multi-channel data.�e new data, which served as an e�ective extension of the original data,more accurately

expressed the signal’s time-frequency domain features.

2. �is work improved the TCN model and increased the perception ability of the network by adding

the attention mechanism, enabling the model to obtain the weight relationship of each information channel

and more acutely capture the fault characteristics in the signals.

3. We conducted experimental veri�cation using the Paderborn University bearing dataset (PU) and

Case Western Reserve University (CWRU) bearing dataset, demonstrating the proposed method’s strong

noise resistance and domain adaptation capabilities.

2 �eMethod Proposed in�is Paper

2.1 TCNModel

Although CNN or RNN can be used for modeling time-series problems, both have the disadvantage of

processing time series. In particular, CNN is not good at capturing long-term dependencies in time series,

while RNN is prone to gradient vanishing or exploding problems. As a special CNN with a clever design,

TCN comprises causal convolution, dilated convolution, and residual block. It uses convolution to extract

features across time steps, enabling it to capture long-term dependencies while having the ability to perform

high-speed calculations. �erefore, TCN is more suitable for dealing with time series problems [27].

1) Causal convolution. When dealing with time series tasks, TCN requires the value of the T-moment

of the previous layer to rely only on the value of the T-moment of the next layer and the value before it. It

cannot use future information. �e formula is expressed as follows:

yt = k−1∑
i=0

ω(i)x(t−i) (1)

where k is the length of the convolution kernel, ω (i) is the weight of the convolution kernel at point i and

xt−i is the input at point t − i. �e key idea here is that the value of i cannot exceed t; so that the convolution

kernel can only cover t and the values before it to ensure causality.
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2) Dilated causal convolution. Causal convolution cannot prevent the model from capturing long-

distance dependencies when processing time series data. A larger number of layers must be stacked to

increase the receptive �eld and achieve good results, thus adding to the calculation costs. Dilated convolution

was introduced to solve this problem.�emethod involves inserting “voids” between the convolution kernel

elements to cover a larger input region without using additional parameters. Fig. 1 shows the structure of

the dilative causal convolution. For the sequence x ∈ R, the formula for the dilated causal convolution is as

follows:

yt = k−1∑
i=0

ω(i)x(t−d i) (2)

where d is the dilation rate.

Figure 1: Structure of the dilated causal convolution

3) Residual block. Residual chaining is a useful method for deep network training because it can

e�ectively mitigate gradient disappearance. TCN residual block contains weight normalization, ReLU

activated functions, dropout layers, and dilated causal convolution. Fig. 2 presents the TCN model.

Figure 2: TCN structure
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Weight normalization makes the gradient calculation more stable, thus speeding up the convergence of

training. Furthermore, dropout prevents over�tting and increases robustness.

2.2 Improved TCNModel

�e importance of each channel in the default input multi-channel data is equal in the dilated causal

convolution. In contrast, in the actual problem, di�erent channels have varying degrees of importance,

thus limiting the network’s ability to deal with complex data relationships. �is problem can be solved by

embedding the channel attention in TCN. �e primary function of the attention mechanism is to give

greater weight to important information and less weight to unimportant information, especially when

dealing with several types of information. �is step ensures that the key information of the task is selected.

Furthermore, embedded channel attention enables the TCN model to achieve spatial feature selection and

better discover hidden temporal correlation patterns, thus improving the TCN model’s series modeling

ability and generalization.

�e squeeze-and-excitation (SE) network [28] is a network module proposed in 2017. �e SE module

obtains channel weights by explicitly modeling the interdependencies between convolutional feature chan-

nels, which re�ect the degree of contribution to the task, and then reweighting the original data. Fig. 3 shows

the SE network (SEnet).

Figure 3: Structure of SEnet

SEnet consists of the Squeeze, Excitation, and Scale operations.

Squeeze operation: �is step compresses the data for each input channel. �rough global average

pooling, the data containing global information is compressed into a feature vector of 1 × 1 × C as follows:

Zc = Fsq (Xc) = 1

H ×W
H∑
i=1

W∑
j=1

xc (i , j) (3)

where Zc is the output a�er compression, Xc is the input, and xc (i , j) is the value of the element whose

coordinate is (i , j) in the c channel.

Excitation Operation: �e compressed feature vector Zc passes through two FC layers. �e FC layer

is activated by ReLU, and the second FC layer is activated by Sigmoid. �e learned channel correlation is

converted into a probability value of 0∼1 expressed as:

s = Fex (Zc ,W) = σ (g (Zc ,W)) = σ (W2δ (W1Zc)) (4)

where s is the output obtained a�er the excitation operation,W1 is the weight matrix with dimension (c/r) ×
c,W2 is the weight matrix of dimension c × (c/r), r is the reduction ratio, δ is the ReLU activation function,

and σ is the Sigmoid activation function.
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Scale operation: In this step, the resulting weight s is multiplied with the original input X to obtain the

�nal output X̃. �is is expressed as follows:

X̃ = Fscal e (Xc , sc) = Xc ⋅ sc (5)

�e framework of the SE network and TCN (SE-TCN) is shown in Fig. 4. �e SE-TCN block embeds

the SE attention in the residual block of TCN. �e whole model consists of three stacked SE-TCN blocks,

and the feature classi�cation is carried out by adaptive average pooling and linear layer. Finally, the results

are output.

Figure 4: SE-TCN structure

SE attention strengthens the processing of the relationship between the vibration signal channels and

further highlights key information.�e reduction ratio of the �rst SE-TCN block is 16, reducing the number

of parameters while ensuring good performance. �e reduction ratio of the latter two SE-TCN blocks is 8,

which captures global features more comprehensively, and the TCN residual block increases the processing

of context information concerning vibration signals.�e three SE-TCNblocks have a convolution kernel size

of 3, and the dilation rates are 1, 2, and 4. Without increasing the number of layers or kernel size to enhance

parameters, this structure can rapidly increase the receptive �eld. Table 1 shows the model parameter values.

Table 1: SE-TCN model parameter table

Model Parameter Describe Value

SE-TCN

n Number of SE-TCN blocks 4

r Reduction ratio of three

SE-TCN blocks

16/8/8

Kernel size Size of convolutional kernel 3

Stride Stride of convolution 1

Padding Size of convolution padding 2/4/8

d Dilation rate of three SE-TCN

blocks

1/2/4

Dropout Probability of discarding

neurons

0.2

(Continued)
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Table 1 (continued)

Model Parameter Describe Value

Whole

Lr Learning rate 0.0003

Optim Model optimizer Adam

Batch Number of samples in each

batch

32

Epoch Number of training rounds 40

2.3 Data Processing

2.3.1 Data Source

�e CWRU-bearing dataset used for experiments is available to the public. �e experimental platform

of the CWRU dataset consisted of a motor, torque sensor, coupling, and load motor.�e acceleration sensor

on the motor base is used to collect vibration signals from the bearings. �e data used in the experiment

came from the SKF6205 deep groove ball bearing at the driving end, with a sampling frequency of 12 KHZ.

�e fault in the dataset is the use of EDM technology to set faults for bearings.�e faults are 0.007, 0.014, and

0.021 inches in size. �e fault location includes the inner ring, outer ring, and rolling element, and a total

of 9 types of faults were obtained. �e dataset also included data under 0~3 hp working conditions. In this

experiment, signals collected under three working conditions of 0~2 hp were selected.

2.3.2 Data Enhancement

Given that the dataset had inadequate data, the sliding window overlapping sampling approach

enhanced the data, e�ectively reducing over�tting. �e sliding window and step sizes were 1024 and 512,

respectively.�e diagram of overlapping sampling is shown in Fig. 5.�ree datasets were obtained using this

sliding window to extract data for the three 0~2 hp working conditions, symbolized by A, B, and C in that

order. Every load contained 2330 data samples. All three datasets contained nine types of fault and healthy

samples, with a total of 10 types of sample data.�e ten types of samples were labeled from 0 to 9 and divided

in a ratio of 7:2:1. Table 2 shows the distribution of the sample.

Figure 5: Overlapping sampling
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Table 2:Distribution of samples

Location Normal Inner Outer Rolling Data set Number

Size – 7 14 21 7 14 21 7 14 21

Label 0 1 2 3 4 5 6 7 8 9

A

233 233 233 233 233 233 233 233 233 233 Train set 1631

233 233 233 233 233 233 233 233 233 233 Valid set 466

233 233 233 233 233 233 233 233 233 233 Test set 233

B

233 233 233 233 233 233 233 233 233 233 Train set 1631

233 233 233 233 233 233 233 233 233 233 Valid set 466

233 233 233 233 233 233 233 233 233 233 Test set 233

C

233 233 233 233 233 233 233 233 233 233 Train set 1631

233 233 233 233 233 233 233 233 233 233 Valid set 466

233 233 233 233 233 233 233 233 233 233 Test set 233

2.3.3 Information Fusions

In essence, a bearing’s failure signal is a cyclic stationary signal containing a certain periodicity [29].

Bearing failure can alter the vibration signal’s speci�c frequency components, and in this case, FFT is an

excellent method to deal with these signals. �e natural and fault characteristic frequencies of bearings

can be e�ciently identi�ed with FFT. �ese frequency components are an important basis for bearing

fault diagnosis.

However, a single-frequency domain processing method cannot capture the fault characteristics com-

prehensively, and FFT can only provide the spectrum information of signals at a certain moment, making

it unable to re�ect how signals change over time. �us, VMD is introduced to solve this issue. VMD is a

non-recursive adaptive signal processing technique [30] that extracts the inherent oscillation pattern from

the complicated signal, thus breaking the signal down into a series of IMFs with di�erent central frequencies.

Various components can represent time domain information in di�erent frequency intervals.

In using VMD to decompose a vibration signal f into k �nite bandwidth modes, the constraint

expression is as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min
{uk},{ωk}

{ K∑
k=1
∥∂t [(δ (t) + j

π t
) ∗ uk (t)] e− jωk t ∥ 2

2
}

s.t
K∑
k=1

uk = f

(6)

where k is the number of decomposition modes, {uk} is the k-th mode component a�er decomposition,{ωk} is the center frequency of the k-th mode a�er decomposition, δ (t) is the Dirac function, ∂ (t) is the
gradient operation, and ∗ is the convolution operation. Introducing the Lagrangian operator λ to obtain an

augmented Lagrangian expression:

L ({uk} , {ωk} , λ) = α K∑
k=1

∥∂t [(δ (t) + j

πt
) ∗ uk (t)] e− jωk t ∥ 2

2
+ ∥ f (t) − K∑

k=1

uk (t) ∥ 2

2

+ ⟨λ (t) , f (t) − K∑
k=1

uk (t)⟩ (7)
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where α is the penalty factor. �e modal component uk and center frequency ωk are iteratively solved using

the following alternating direction multiplier method:

ûn+1
k (ω) =

f̂ (ω) − ∑
i≠k

û i (ω) + λ̂(ω)
2

1 + 2α (ω − ωk)2 (8)

ωn+1
k =

∞∫
0

ω ∣ûn+1
k (ω)∣2 dω

∞∫
0

∣ûn+1
k
(ω)∣2 dω

(9)

where ω is the frequency, and n represents the number of iterations.

Taking the �rst normal sample as an example, the signal was decomposed via FFT and VMD. �e

resulting frequency-domain signal and the IMFs stacked into a new multi-channel data (Fig. 6) are called

information fusion data (IFD). �ese data containing multiscale time-frequency domain information can

fully re�ect the bearing fault characteristics. �is method formed all samples from the above datasets into a

new dataset.

Figure 6: Information fusions of the data

In the above VMD, the number of mode decomposition k was determined using the center frequency

approach. �rough program decomposition, the penalty factor (alpha) in the program was set to 2000, thus

avoiding the phenomenon of mode mixing. �e noise tolerance (tau) was set to 0, and the initialization

method (init) was set to 1. All center frequencies were initialized uniformly. �e tolerance of convergence

(tol) was set to 1 × 10-7. In addition, the value of k was set to 2, 3, 4, 5, 6, and 7, and the center frequencies of

each modal component with di�erent decomposition numbers were obtained. Table 3 shows the results.

�e center frequencies were observed based on di�erent k-value conditions. From K = 4 onwards,

modes with similar center frequencies appeared, indicating over-decomposition. �us, the number of

mode decomposition K was selected as 4. �is choice avoids unnecessary over-decomposition, reduces

computational complexity, and improves e�ciency.
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Table 3: Center frequencies of the di�erent modes

K IMF0 IMF1 IMF2 IMF3 IMF4 IMF5 IMF6

2 0.01410 0.16729 – – – – –

3 0.01174 0.17470 0.08680 – – – –

4 0.01173 0.08680 0.17470 0.40503 – – –

5 0.01091 0.08720 0.17480 0.05742 0.40549 – –

6 0.01091 0.08720 0.17478 0.05742 0.25183 0.40582 –

7 0.01087 0.08708 0.05713 0.17491 0.11090 0.25491 0.40595

2.4 General Framework of the Proposed Method Suggested in�is Paper

Fig. 7 shows the framework of the proposed fault diagnosismethod. First, signals were captured through

overlapping sampling. �en, the intercepted signal was processed by FFT and VMD, a�er which the newly

generated data were stacked. Next, the IFD was separated into training, validation, and test sets. Finally, the

generated dataset was sent to the SE-TCN model for training. �e data were successfully passed through

three SE-TCN blocks with di�erent dilation rates during training. Layer by layer, the network’s receptive

�eld increased, and the network captured features of di�erent time scales at varying levels. �e output

feature matrix of the network is then passed through the So�max to obtain the probability distribution

of classi�cation.

Figure 7: Overall structure of fault diagnosis method

3 Experiments and Analysis

3.1 Model Training

�e Python version used in this paper is 3.8. During model training, the mini-batch value was set to 32,

and the epoch value was set to 40. �e training automatically stopped when the preset round was reached.

�e cross-entropy loss function and Adam optimization algorithm were used to update model parameters.

�e learning rate was set to 0.0003. Five experiments were repeated to exclude the potential impact of chance

on the outcomes.

Bi-GRU, GoogLeNet, and TCN were used as contrast models to demonstrate the proposed model’s

superiority. At the same time, IFD+SE-TCN, VMD+SE-TCN, and FFT+SE-TCN were used for comparative

experiments to verify the e�ectiveness of the proposed multiscale information fusion method. Fig. 8 shows

the performance of each model running once on dataset C. In contrast, Table 4 shows the accuracy of

each method a�er training on three datasets to determine the performance di�erences of each method

more intuitively.
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As shown in Table 4, in the model performance comparative experiment, the accuracy of SE-TCN on

three datasets, A, B, and C, reached 100%, which is higher than that of Bi-GRU and GoogLeNet. �ese

results indicate that SE-TCN can classify bearing faults accurately. �e accuracy of SE-TCN is 0.1% higher

than that of TCN on dataset B, demonstrating that, by introducing an attention mechanism, the model can

focus more on key features when processing information fusion sequences, thus leading to improved model

performance. In the comparative experiment of di�erent pretreatment methods, the accuracy of IFD+SE-
TCN is higher than that of VMD+SE-TCN and FFT+SE-TCN, indicating the superiority of the multiscale

information fusion pretreatment method.

Figure 8: Training results of each method
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Table 4: Average training accuracy of each method

Model Dataset A Dataset B Dataset C

IFD+SE-TCN 100% 100% 100%

VMD+SE-TCN 90.42% 83.04% 89.04%

FFT+SE-TCN 99.54% 99.82% 99.90%

IFD+Bi-GRU 99.24% 99.08% 99.62%

IFD+GoogLeNet 96.02% 96.46% 98.00%

IFD+TCN 100% 99.90% 100%

3.2 Performance Analysis under Di�erent Noise Conditions

Table 4 shows that all methods have excellent accuracy when noise interference is absent. However,

some weak fault features will be di�cult to extract under actual working conditions, which are accompanied

by noise.�is section discusses the accuracy of the proposedmethod under noisy conditions. In this section,

only dataset C was used for training. White noise was introduced to the vibration signal to generate signals

with di�erent SNRs. �e SNR formula is expressed as follows:

SNR (dB) = 10 × log10 (Ps i gnalPnoisc
) (10)

where Ps i gnal is the signal power, and Pnoisc is the noise power. As shown in the formula, the smaller the SNR,

the greater the impact on the original signal. Fig. 9 shows themodel accuracy under di�erent SNR conditions.

Figure 9: Recognition accuracy under di�erent noise conditions

Fig. 9 shows that when SNR = −8 dB and only one of the FFT and VMD methods are used to process

data, the accuracies of the SE-TCN model only reached 64.76% and 84.88%, respectively. �ese results
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indicate that signals cannot be distinguished accurately when noise components are present in the original

signals. �e multiscale information fusion method still achieved an accuracy rate of 94.06% when SNR =−8 dB and up to 100% when SNR = 6 dB. Hence, the data fusion method can greatly reduce the in�uence

of signals from noise. �e accuracies of di�erent models obtained using the same dataset IFD di�er greatly

under the interference of noise. Comparatively speaking, SE-TCN has a much higher accuracy rate than

Bi-GRU and GoogLeNet.

�e suggestedmethod can achieve greater accuracy under di�erent SNR situations than othermethods.

�is is because the pre-processing of themultiscale data fusionmethod contains rich features such that when

combined with the powerful sequence processing ability of SE-TCN, the suggested method shows a strong

antinoise ability.

3.3 Performance Analysis under Variable Load Conditions

�e working loads of rotating machinery change during actual operations. When the load changes, the

vibration response of bearings will also change, which means that the model must have a strong capacity for

generalization to cope with various loads.

�is set of experiments tested the adaptability of the proposed method under di�erent loads. In this

experiment, analyzed using datasets A, B, and C, one of the datasets was trained �rst, and the best model was

saved, a�er which it was tested separately with the other two datasets. In Fig. 10, A→B indicates that dataset

A is taken as the test set and dataset B as the training set.

Figure 10: Identi�cation accuracies under variable load conditions

Fig. 10 shows that, among the diagnosis methods, the IFD+SE-TCN method has the highest average

accuracy of 97.45%, while those of IFD+Bi-GRU and IFD+GoogLeNet are 90.58% and 90.25%, respectively.

Generally, these twomodels’ accuracy rates are lower than 90% (or even less than 80% inmost cases) among

six groups of experiments with di�erent loads switching between each other. �e average accuracy of SE-

TCN, being about 7% higher than that of the other two models, can be attributed to the special structure of

the dilated causal convolution and residual connection in the model, which can greatly expand the receptive
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�eld. Such expansion allows it to determine the common characteristics of di�erent load signals well and

e�ciently perform the task of cross-domain self-adaptation under di�erent working conditions.

In addition, even though the accuracy of TCN without SE attention mechanism reached 96.15%, when

its load changes (A→C and C→A), the accuracy becomes far lower than that of A→B, B→A, B→C, C→B

because the load gap between A and C is large. �erefore, accuracy decreases when signi�cant variations in

load occur. Adding the SE attentionmechanismnot only solves the problembut also improves overall average

accuracy by 1.3%.�e average accuracies of VMD+SE-TCN and FFT+SE-TCN using only one preprocessing

method are 49.29% and 97.06%, which are both lower than that of IFD+SE-TCN. �e method using only

VMD to process data almost lost its fault diagnosis ability under variable load conditions.

Compared to Figs. 9 and 10, FFT+SE-TCN performs well in the variable load experiments but poorly

in the case of noise interference, while IFD+TCN performs well in the case of noise but poorly in the case

of variable load. Hence, the multiscale information fusion method combining FFT and VMD can lessen the

impact of noise on the model, and adding the SE attention can enhance the adaptive capability of the model.

Finally, this paper veri�ed the comprehensive ability of the model by adding 0, 2, and 6 dB noise to

each of the three datasets and then conducting variable load experiments that are more in line with actual

industrial production environments. Table 5 shows the accuracies of di�erent methods under varying load

conditions and SNRs. As shown in the table, the IFD+SE-TCN method has the best performance among all

the methods, achieving high accuracy under the three SNRs, thus proving its highly stable characteristic. It

also alleviates the problem of decreased accuracy caused by excessive load changes.

Table 5: Accuracies under di�erent load conditions and SNRs

Model SNR A→B A→C B→A B→C C→A C→B

IFD+SE-TCN 0 dB 93.32% 92.54% 94.56% 96.38% 90.86% 98.46%

2 dB 95.94% 94.48% 95.64% 97.62% 92.72% 100.00%

6 dB 98.08% 93.32% 93.62% 96.46% 92.82% 100.00%

VMD+SE-TCN 0 dB 47.14% 50.24% 49.52% 46.12% 53.88% 45.10%

2 dB 50.58% 45.76% 52.32% 43.26% 57.30% 44.42%

6 dB 51.04% 42.38% 51.74% 43.34% 55.94% 49.68%

FFT+SE-TCN 0 dB 88.70% 88.96% 92.46% 94.06% 97.12% 95.92%

2 dB 93.54% 91.76% 93.66% 94.48% 97.12% 98.18%

6 dB 92.24% 94.06% 94.44% 94.76% 98.80% 96.72%

IFD+Bi-GRU 0 dB 81.98% 75.96% 82.24% 84.42% 79.60% 86.70%

2 dB 83.62% 78.08% 83.34% 87.92% 80.94% 89.22%

6 dB 87.00% 85.20% 86.22% 91.12% 76.10% 90.60%

IFD+GoogLeNet 0 dB 83.42% 80.48% 73.62% 79.86% 70.64% 81.12%

2 dB 87.12% 86.38% 75.00% 82.82% 75.98% 86.76%

6 dB 87.02% 87.98% 77.48% 82.90% 79.16% 90.64%

IFD+TCN 0 dB 90.78% 85.38% 88.34% 92.18% 80.70% 94.32%

2 dB 92.88% 87.20% 89.24% 91.82% 84.32% 96.56%

6 dB 96.84% 89.70% 91.66% 93.96% 90.24% 99.52%

Next, noise with a larger SNR range was added to the data, and then used the IFD+SE-TCN method

for variable load experiments.�e results in Table 6 indicate that, although the accuracy may decrease as the

in�uence of noise increases, the overall accuracy of the proposed method is still relatively high.�is �nding
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reveals that the IFD+SE-TCNmethod can still accurately diagnose fault under variable operating conditions,

even with high SNRs.

Table 6: Experimental results of variable operating conditions with a broader SNR range

SNR A→B A→C B→A B→C C→A C→B

IFD+SE-TCN
−6 dB 85.22% 85.40% 87.00% 90.14% 86.54% 91.74%−2 dB 90.48% 91.74% 92.98% 95.48% 89.32% 95.40%

0 dB 93.32% 92.54% 94.56% 96.38% 90.86% 98.46%

2 dB 95.94% 94.48% 95.64% 97.62% 92.72% 100%

6 dB 98.08% 93.32% 93.62% 96.46% 92.82% 100%

3.4 Performance Analysis of Models under Variable Operating Conditions Using the PU Bearing Dataset

In this section, variable condition experiments were conducted using the PU-bearing dataset to demon-

strate the generalization of the proposed method further. In this public dataset, the PU-data acquisition

platform consists of (1) an electric motor, (2) a torque measurement sha�, (3) a bearing testing module, (4) a

�ywheel, and (5) a loadmotor.�e tested bearing was a rolling bearing model 6203.�e sampling frequency

of the accelerometer is 64 kHz. �e damaged areas included the inner ring, outer ring, and inner outer ring

composite. �e same dataset creation method described above is used to process the PU-bearing dataset.

�e data included three operating conditions, as shown in Table 7.

Table 7:Dataset created based on the Paderborn bearing data

Location Normal Inner Outer Composite Number

Label 0 1 2 3

A2 498 498 498 498 1992

B2 498 498 498 498 1992

C2 498 498 498 498 1992

Table 8 shows that, even a�er changing the dataset, the IFD+SE-TCNmodel still has strong adaptability

to changing operating conditions with an accuracy of 92.01%.�is result indicates that the proposedmethod

is almost una�ected by changes in data sources and can adapt to di�erent practical environments while

retaining its strong generalization ability.

Table 8: Accuracy of conducting variable condition experiments using the Paderborn bearing dataset

A2-B2 A2-C2 B2-A2 B2-C2 C2-A2 C2-B2 AVG

IFD+SE-TCN 91.80% 98.78% 84.12% 84.12% 99.02% 94.20% 92.01%

VMD+SE-TCN 62.58% 78.60% 63.50% 65.68% 85.76% 60.70% 69.47%

FFT+SE-TCN 83.08% 95.04% 90.60% 86.94% 98.40% 86.98% 90.17%

IFD+BI-GRU 80.00% 89.94% 77.56% 73.60% 92.34% 82.44% 82.65%

IFD+GoogLeNet 82.14% 80.32% 81.70% 80.08% 87.12% 87.14% 83.08%

IFD+TCN 89.84% 99.02% 85.88% 81.28% 98.00% 94.52% 91.42%
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4 Conclusions

�is paper aims to explore the actual working conditions of rolling bearings. �e working conditions

of rolling bearings are complex, varied, and changeable. In situations where noise interference is present, the

vibration signals’ fault features are di�cult to extract, and the accuracy of the classi�cation model is low.

A rolling bearing fault diagnostic method based on FFT-VMD multiscale information fusion and SE-TCN

model was thus proposed. Combining the preprocessing methods of FFT and VMD obtained the original

signal’s frequency domain component and the inherent mode function with di�erent center frequencies.

�en, the new data containing more fault signatures were obtained. Finally, the new data were inputted into

the SE-TCN for fault diagnosis. �e following conclusions were drawn:

(1) Compared with a single processing method, the proposed FFT-VMD data preprocessing method

retains the correlation between di�erent time intervals of signals and rich fault characteristics. It can

e�ectively identify and reduce random �uctuations and non-target signal components in the data, as proven

by an antinoise experiment. When SNR = −8 dB, the accuracies of the other control experiments are low,

while that of the SE-TCN method can reach 94.06%.

(2) Comparing the performance of di�erent models, SE-TCN has a higher accuracy than Bi-GRU and

GoogLeNet in experiments involving antinoise interference and variable operating conditions. �e �ndings

demonstrate that the suggestedmodel can learn the prominent trends of the data and adapt tomajor changes

in the data. �e �ndings also demonstrate the proposed model’s strong generalization ability.

(3) Adding an SE module to the TCN can promote the e�ective fusion of features at di�erent scales.

Based on di�erent inputs, the attention weight can be adjusted dynamically to capture global and local data

patterns better and enhance adaptability to various complex scenes.

�is method has excellent accuracy under variable operating conditions, noise interference, and a

combination of both. In practice, obtaining bearing fault samples can be di�cult. �us, in future research,

we will continue to improve the model to adapt to conditions involving small sample sizes.
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