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ABSTRACT

As an essential part of the urban infrastructure, underground utility tunnels have a long service life, complex
structural performance evolution and dynamic changes both inside and outside the tunnel. These combined fac-
tors result in a wide variety of disaster risks during the operation and maintenance phase, which make risk man-
agement and control particularly challenging. This work first reviews three common representative disaster
factors during the operation and maintenance period: settlement, earthquakes, and explosions. It summarizes
the causes of disasters, key technologies, and research methods. Then, it delves into the research on the intelligent
operation and maintenance architecture for utility tunnels. Additionally, it explores the data challenges, monitor-
ing technologies, and management platform architectures faced during the operation and maintenance process.
This work provides new research perspectives for the long-term, healthy, and sustainable development of utility
tunnels, which serve as the underground arteries of cities.
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1 Introduction

An underground utility tunnel is a public infrastructure built beneath cities that integrates most lifeline
systems, such as electricity, telecommunications, water supply and drainage, heating, and gas pipelines.
Compared with the traditional method of direct burial for pipelines, utility tunnels offer significant
comprehensive benefits. These tunnels enable efficient emergency repairs, maintenance, and upgrades of
various pipelines in the tunnel, which effectively prevent the “street zipper” phenomenon (where roads
are repeatedly dug up for repairs). As a result, utility tunnels represent a new type of municipal
infrastructure that the government aims to promote extensively in the future.

According to data from the China Urban Construction Statistics Yearbook, by the end of 2022, the total
length of underground utility tunnels in China had reached 7093.95 km, and 1638.46 additional kilometres
were constructed that year. The fixed asset investment for these projects was approximately 30.756 billion
yuan. In July of the same year, the “14th Five-Year National Urban Infrastructure Construction Plan” was
issued, which called for the development of a new layout for urban underground spaces. This plan
promotes the construction of utility tunnels based on functional needs and local conditions and solidifies
systematic municipal infrastructure development. As a result, the geological conditions for utility tunnel
construction have become more complex, and the challenges of construction and maintenance have
increased.

Moreover, utility tunnels have long service lives; the complexity of structural performance evolution and
dynamic changes in internal and external environments result in diverse risk factors during the operation and
maintenance phases, which makes risk management more challenging. Common disaster factors for utility
tunnels include structural settlement, explosions caused by pipeline leaks, and seismic responses, all of which
can endanger nearby buildings and facilities.

Currently, experts systematically implement control measures from multiple perspectives, including
material selection, structural design, construction techniques, and intelligent monitoring, to increase the
safety and durability of utility tunnels. In terms of material selection, high-performance composite
materials such as ultrahigh-performance concrete (UHPC) and engineered cementitious composites
(ECCs) [1,2] are utilized because of their exceptional crack resistance and impermeability. The strength
of these components can be further enhanced through reinforcement methods such as porous steel plates,
thereby reducing the risk associated with settlement or crack propagation. In construction, ground
treatment is crucial, particularly in soft soil areas. Foundation reinforcement techniques [3], such as piling
and grouting, can significantly improve the load-bearing capacity and stability of foundations, preventing
structural deformation. Advanced intelligent monitoring methods, in which stress and displacement
sensors are installed at key points in the tunnel to enable real-time monitoring of stress and deformation
data, are also employed. This continuous monitoring facilitates dynamic assessments of tunnel operational
status. Additionally, predictive models constructed with machine learning based on sensor data enable
rapid identification of structural health and potential risks, providing precise and efficient decision support
for maintenance management.

Analyses of such factors typically rely on theoretical research, model testing, and numerical simulations,
but each approach has limitations: traditional theoretical formulas cannot capture dynamic changes over
time, and numerical simulations often involve large-scale models with numerous elements, which makes
them time-consuming, resource-intensive, and difficult to converge.

Thus, there is an urgent need to explore new methods, such as combining machine learning, to quickly
obtain mechanical state data during the monitoring of utility tunnel components and develop accurate real-
time analyses for structural performance.

Fig. 1 illustrates the research framework of this work. First, it provides a comprehensive review of three
common disaster factors during the operation and maintenance phase (settlement, earthquakes, and
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explosions), summarizes their causes, key technologies, and research methods, and offers recommendations.
Next, it delves into the mechanisms of intelligent operation and maintenance for utility tunnels and analyses
the data challenges, monitoring technologies, and management platform architecture, including research on
digital twin-driven architectures. This work provides new theoretical foundations and research perspectives
for researchers who seek to explore practical operation and maintenance strategies for urban underground
utility tunnels.

2 Analysis of the Factors that Affect the Operation and Maintenance of Integrated Utility Tunnels

The research focus during the construction phase of utility corridors primarily revolves around
geotechnical body excavation [4], its interaction with the surrounding geological environment [5], the
mechanical equipment [6,7] in the excavation process and their impact on mechanical behaviour
simulation. While maintaining detailed research characteristics, the focus of utility tunnel studies has
gradually shifted towards the operational phase. Compared with the construction stage, the operational
phase of utility corridors is characterized by a longer service life, more complex structural performance
evolution, and dynamic changes in both internal and external environments, which lead to a wider range
of risk factors during operation and maintenance. Managing these operational risks has become more
challenging. The risks during the operational phase mainly stem from the structure of the utility tunnel,
pipeline leakage, and external environmental impacts. Fig. 2 shows a schematic of the multihazard
analysis for utility tunnels, which highlights representative disaster-inducing factors such as uneven
structural settlement, fire and explosion caused by pipelines, and seismic response. Fig. 2 also
summarizes and reviews the existing research methods and technologies.

2.1 Subsidence
During the long-term operation and maintenance of utility tunnels, significant internal and external

changes occur due to various factors, such as different hydrogeological conditions, structural material
properties, and surface loads, as shown in Fig. 3. These changes can disrupt the original stress
equilibrium and structurally damage the components or walls of the utility tunnel. Additional stresses
may develop in the superstructure, and increasing localized stress can result in uneven foundation
conditions. This issue may cause settlement or cracking in the utility tunnel and even structural failure or
collapse in severe cases, which can result in major safety incidents.

Figure 1: Research on the operation and maintenance of utility tunnel systems
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Although considerable research has been conducted on the mechanical performance of underground
structures, much of this work has focused on tunnels, subways, and underground stations. In the literature
on utility tunnels, the main areas of study are seismic performance, impact of vehicle loads [8,9], and
structural damage assessment [10,11]. However, there is limited research on the mechanical performance
of utility tunnels under earth pressure. This performance is directly related to factors such as the depth of
the soil cover, soil properties, and ground disturbances. The performance can manifest in forms such as
horizontal displacement, vertical settlement, and ground tilting.

Current research on the settlement characteristics of underground structures can be divided into several
methods: empirical formulas, theoretical analysis, model testing, numerical simulation, and machine learning.
From a theoretical perspective, statistical and regression analysis based on monitoring data to establish ground
settlement calculation models is a practical and effective approach. For example, based on soil disturbances
caused by shield tunneling, Peck first proposed an empirical formula for lateral settlement, which did not
account for soil consolidation, drainage, and creep. Many scholars have expanded on this work, and the
formula is widely used to predict ground settlement in tunnel engineering [12].

Analytical methods are primarily based on consolidation theory and often incorporate viscoelastic–
plastic models. For example, Liu [13] developed a coupled consolidation–creep model based on the

Figure 2: Multihazard analysis of integrated utility tunnel systems

Figure 3: Integrated utility tunnel under the influence of multiple factors

444 SDHM, 2025, vol.19, no.3



Merchant rheological model and Terzaghi–Rendulic’s two-dimensional consolidation theory. This simplified
method for tunnel settlement calculation accounts for factors such as surface loads, soil properties, structural
self-weight, and train loads and reveals that long-term settlement in shield tunnels is related to the properties
of the underlying soil layers.

The construction of utility tunnels in areas with special soil conditions presents significant challenges. In
coastal regions, the foundation beneath utility tunnels often consists of soft soil, predominantly silty clay,
which is characterized by high compressibility, high sensitivity, low permeability, and uneven thickness
[14]. Soil replacement through filling is often not feasible. The varying foundation bearing capacity
directly affects the mechanical performance of utility tunnels. In some cases, metro tunnels must be
constructed below existing utility tunnels due to urban planning constraints. When the regional soil is
unstable and the soil parameters significantly vary, the settlement of utility tunnels is more affected by the
soil layers in which the tunnels are located [7].

International and domestic studies on the impact of nonuniform foundations on underground structures
have focused mostly on buried pipelines and culverts [15]. Although utility tunnel structures are similar to
buried pipelines, their structural stiffness, cross-sectional dimensions, and depth are significantly greater, and
the interactions between the structure and the surrounding strata differ accordingly.

Theoretical research on the longitudinal deformation of underground structures has focused on the
“beam–spring model” and equivalent continuum models [16]. In practical engineering, the longitudinal
structure of utility tunnels consists of both monolithic cast-in-place sections and prefabricated segmented
sections, which lead to varying longitudinal stiffness. Table 1 presents the current research on utility
tunnel deformation, which typically combines multiple methods to account for more complex ground
conditions and effectively reveals settlement patterns and their evolution mechanisms.

Table 1: Study on the deformation of utility tunnel structures

Citations Research problems Research objectives Research
methods

[17] Study on the dynamic response of a
shallow-buried utility tunnel under
vehicle loads.

Stability analysis and safety assessment
of the utility tunnel under vehicular
dynamic loads.

Theoretical
and
experimental.

[18] Failure envelope analysis of a
rectangular utility tunnel in clay areas
considering pipe-soil interactions.

Validate the rationality of the proposed
URPG’s limit resistance and failure
envelope empirical equations.

Theoretical
and
simulation.

[19] Mechanical analysis of a double-layer
presupport system crossing an existing
utility tunnel under a rich water–sand
layer.

Establish and validate the rationality of
the double-layer presupport system
(DLPS).

Theoretical
and
simulation.

[20] Influence of a dual-track subway
shield tunnel on the deformation
characteristics of an existing
comprehensive utility tunnel.

Study the safety impact of shield tunnel
construction on the settled deformation
of the existing utility tunnel.

Theoretical
and
simulation.

[21] Influence of groundwater on the
stress-deformation characteristics of a
comprehensive utility tunnel in coastal
areas.

Enhance the service life of the utility
tunnel structure.

Experimental
and
simulation.

(Continued)
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In recent years, the construction of utility tunnels has increased, and prefabricated buildings have been
widely adopted because of their efficiency, which aligns well with the demands of utility tunnel projects.
However, issues such as differential settlement at joints and frequent leakage are often observed, especially
due to the variability in foundation bearing capacity and the decrease in the elastic modulus of soft soil layers [23].

Advances in artificial intelligence (AI) have led to the increasing application of machine learning (ML)
algorithms in predicting tunnel-induced settlement, which account for multiple factors, such as
environmental, construction, and time-related parameters [24,25]. Unlike traditional methods, ML does
not require extensive geological parameter modelling or prior engineering experience. Instead, it utilizes
computer simulations or learns from a given dataset to discover the coupling relationships of specified
parameters. Pretrained models can quickly generate relevant data in real-world scenarios [26–28] and
effectively capture the complex, dynamic, and nonlinear relationships hidden in monitoring data [29].

The performance of these models highly depends on the data quantity, quality, and preprocessing
techniques. Researchers [30,31] have used various machine learning methods, such as backpropagation
neural networks (BPNNs, Fig. 4a), support vector machines (SVMs, Fig. 4b), and random forest (RF,
Fig. 4c), to predict the maximum ground surface settlement induced by tunnel boring. The results indicate
that the RF model, which has acceptable time costs, excels in predicting large, concealed settlements,
whereas SVMs are effective for preanalysis, where they balance the predictive accuracy and
computational cost. However, BPNNs tend to have higher computational costs and lower accuracy.
Table 2 provides a detailed overview of the application of AI methods in tunnel-induced ground
settlement. Although AI applications in tunnel structures have yielded considerable achievements, there is
an urgent need to expand research on performance analysis, especially for utility tunnels.

Table 1 (continued)

Citations Research problems Research objectives Research
methods

[22] Analysis of uneven settlement and
cracking deformation in a utility
tunnel in sandy soil layers.

Reveal that the uneven settlement of
the foundation is the main cause of
cracking deformation, and provide
guidance for foundation treatment,
gallery repair, and hybrid
reinforcement.

Experimental
and
simulation.

Table 2: Application of AI methods in tunnel-induced ground settlement

Reference Technique Intput Output Performance

[32] CART Thirteen influencing factors
within three categories (tunnel
geometry, geological conditions,
and shield operation factors)

S RMSE (CART = 5.04,
RF = 3.07, GBRT = 2.71)

RF R2 (CART = 0.82, RF = 30.87,
GBRT = 0.93)

GBRT

[33] SOA-EN A total of 323 datasets including
torque, penetration rate, thrust,
cutterhead rotation speed, slurry
pressure, grouting pressure,

Smax MAE (SOA-EN = 1.0791,
SOA-RF = 0.3494,
SOA-XGBoost = 0.1817,
GSOA-XGBoost = 0.1329)

(Continued)
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Table 2 (continued)

Reference Technique Intput Output Performance

cover depth, and distance
between cutting face and
monitored section

SOA-RF R2 (SOA-EN = 0.5760,
SOA-RF = 0.9372,
SOA-XGBoost = 0.9618,
GSOA-XGBoost = 0.9729)

SOA-XGBoost MAPE (SOA-EN = 6.3849,
SOA-RF = 2.2118,
SOA-XGBoost = 1.1872,
GSOA-XGBoost = 0.9052)

GSOA-XGBoost VAF (SOA-EN = 73.37,
SOA-RF = 96.14,
SOA-XGBoost = 96.85,
GSOA-XGBoost = 97.66)

RMSE (SOA-EN = 1.4336,
SOA-RF = 0.5519,
SOA-XGBoost = 0.4305,
GSOA-XGBoost = 0.3621)

[34] TLCFAI Taking the tunnelling process of
10 303 rings of shield machine
data, relevant geological survey
data and tunnelling site
monitoring data in 13 shield
tunnel sections in Changzhou,
China

Smax R2 (0.977)

MAE (0.470)

RMSE (0.649)

[35] CNN-BiLSTM-
SA

The 583 settlement monitoring
data in the interval from Telixi
Road Intersection to Torch
Intersection of the Wanjiali
Road Power Shield Tunnel and
the corresponding engineering
geological parameters, spatial
parameters, and shield
parameters are used to construct
the dataset

Smax R2 (0.92)

MAE (0.88)

RMSE (1.06)

[36] SSA-SVR 73 data samples covering
ground conditions, construction
methods, and tunnel geometry
parameters from the Beijing
Subway Line 12 dataset

Smax R2 (0.877)

MAE (1.157)

[37] DT 1800 sets of construction data
including the geological
conditions, design parameters,
shield construction parameters,
and other parameters

S MAE (DT = 4.02, RF = 2.82,
XGBoost = 1.13)

RF RMSE (DT = 5.57, RF = 4.96,
XGBoost = 3.66)XGBoost

(Continued)
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Overall, theoretical research on the impact of nonuniform settlement on underground utility tunnels,
particularly those with rectangular cross-sections, remains insufficient. Three-dimensional finite element
models (FEMs) present significant challenges due to their large size, vast number of elements needed,
and associated computational demands, including time consumption, resource intensity, and convergence
difficulties. A key area of focus is how to efficiently determine the deformation and internal force
distribution across various sections of utility tunnels under nonuniform settlement by integrating
analytical solutions and machine learning techniques.

2.2 Earthquakes
Currently, both domestic and international researchers have focused largely on the seismic performance

of shield tunnels and other deeply buried structures. However, existing studies have shown that utility
tunnels, as shallowly buried structures, are more susceptible to seismic damage. Their deformation is
caused mainly by longitudinal nonuniform excitation from seismic waves, which leads to axial tension–
compression and flexural deformation, and lateral ground motion, which induces lateral bending, rotation,
side–way composite deformation, or warping deformation. Fig. 5 illustrates the typical failure modes of
utility tunnels under seismic conditions. During seismic events, the lateral stiffness of utility tunnels is
relatively high, and damage is often characterized by bending–shear failure. Cracks typically initiate at
the haunch edges, and bending failure is observed at joints, particularly in the lower parts of the wall
panels and areas near sections with varying cross-sections. Like other underground structures, utility
tunnels are prone to damage areas with nonuniform soil conditions or significant cross-sectional changes,

Table 2 (continued)

Reference Technique Intput Output Performance

[38] IPSO-BP 27 sets of data including the
jacking force, tunneling speed,
and grouting pressure from the
rectangular pipe jacking tunnel
on Willow Leaf Avenue

S R (0.98) MAE (1.07)

[39] RF 84 sets of data including tunnel
geometry, geological conditions,
and shield operational
parameters from the twin
tunnelling process in the
Hangzhou 6 project

S MAE (RF = 0.7, XGBoost = 0.7,
CatBoost = 0.7, MGGP = 0.7)

XGBoost MAPE (RF = 19, XGBoost = 23,
CatBoost = 22, MGGP = 23.16)

CatBoost RMSE (RF = 0.08,
XGBoost = 0.09,
CatBoost = 0.09, MGGP = 0.09)

MGGP R2 (RF = 0.81, XGBoost = 0.76,
CatBoost = 0.77, MGGP = 0.77)

[40] Kiging surrogate
model

1000 sets of data generated by a
parametric finite element (FE)
model

Sg, Pg,
Sd, Pd

ACC (95.69%)

Note: Mean asolute error (MAE); Correlation coefficient (R); Determination coefficient (R2); Root mean square error (RMSE); Percentage of accuracy
(ACC); Variance account for (VAF); Maximum value of the ground settlement (Sg); Psition of the maximum ground settlement (Pg); Maximum
horizontal displacement of the diaphragm wall; Position of the maximum horizontal displacement of the diaphragm wall (Pd); Surface settlement
(S); Maximum surface settlement (Smax); Classification and regression trees (CART); Gradient boosting regression trees (GBRT); Convolutional
neural network (CNN); Bidirectional long short-term memory (BiLSTM); Self-attention (SA); Salp swarm algorithm (SSA); Support vector
regression (SVR); Decision tree (DT); Random forest (RF); Extreme gradient boosting (XGBoost); Improved particle swarm optimization (IPSO);
Categorical boosting (CatBoost); Multigene genetic programming (MGGP).
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which lead to large-scale concrete spalling, through-cracks, misaligned or opened joints, and shear fractures
caused by ground liquefaction or uplift [41]. Utility tunnels serve as critical urban infrastructures and house
various municipal pipelines. When subjected to deformation during seismic events, acceleration-induced
movements in the tunnel structure can easily trigger secondary disasters.

The key factors that affect seismic damage to utility tunnels include the constraint effect between the soil
and tunnel structure, cross-sectional shape and cross-sectional dimensions. Research in this area typically

Figure 4: Schematic diagram of various machine learning methods: (a) backpropagation neural network
(BPNN); (b) support vector machine (SVM); (c) random forest (RF)

Figure 5: Classic failure modes of integrated utility tunnels under seismic effects
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utilizes four methods: prototype observation, theoretical analysis, model testing, and numerical simulation.
In situ monitoring methods involve onsite inspections of underground structures to observe their operational
conditions, acquire the dynamic characteristics of utility tunnels in real time during seismic events, and
enable rapid earthquake reporting and response. Currently, strong-motion observation stations are
deployed in free-field areas and across various building structures to monitor seismic activity. The
structural type of strong-motion stations significantly impacts the recorded seismic motion under different
site conditions and greatly varies with the natural vibration period and volume of the structure [42].

In simplified seismic design methods for underground structures, researchers commonly use the seismic
coefficient method [43] (Fig. 6), free-field deformation method [44] (Fig. 7), response acceleration method
[45] (Fig. 8), response acceleration method [46] (Fig. 9), and underground structure pushover method [47]
(Fig. 10) for the seismic analysis of underground cross-sections. These methods provide convenient
calculations and analyses, but they struggle to capture the variations in the dynamic properties of the soil
and critical structural details such as tunnel joints. Additionally, they cannot accurately describe the
nonlinear response of components that transition from continuous to discrete behaviour under strong
seismic action [48].

Figure 6: Seismic coefficient method

Figure 7: Free-field deformation method
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Table 3 presents research on the seismic response of utility tunnels. Utility tunnels are complex
segmented, long-line structures. Although model testing is an effective approach to study the seismic
damage response of utility tunnels, the fabrication and assembly of models require significant engineering
effort. Furthermore, replicating the actual dynamic response of utility tunnels under seismic conditions is
limited by the testing environment. However, with the advancement of various numerical simulation
software, these limitations have been effectively mitigated. This progress has facilitated interdisciplinary
research in areas such as joint structures, heterogeneous soil layers, soil–structure interactions, and
seismic-induced soil failure in relation to utility tunnels.

Figure 8: Response displacement method

Figure 9: Response acceleration method
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Table 3: Research on the seismic response of utility tunnels

Citation Research question Research findings Methodology

[49,50] Seismic response of a utility tunnel
considering joint influence.

Appropriate joint connections can
reduce peak strains and bending
moments.

Shake table
tests.

[51] Seismic performance of prefabricated
structures on a loess foundation.

Seismic response mechanism of
soil-structure systems is revealed.

Shake table
tests.

[52] Seismic response analysis of irregular
cross joints.

Significant strain concentration at
T-shaped cross-joints.

Experiments,
simulations.

[53,54] Seismic response between a utility
tunnel and surrounding soil.

Response mechanism between the
utility tunnel and surrounding soil is
revealed.

Experiments,
simulations.

[55] Seismic performance of prefabricated
corrugated steel utility tunnels.

Revealing the seismic performance of
prefabricated corrugated steel utility
tunnels.

Shake table
tests.

[56] Seismic performance assessment of
utility tunnels and internal pipeline
systems.

Determining the optimal seismic
intensity measures.

Numerical
simulations.

[57] Stress deformation and uplift response
of comprehensive pipe gallery in
liquefied sites.

Near-tunnel soil is more susceptible to
liquefaction than far-field soil.

Experiments,
simulations.

Figure 10: Underground structure pushover method
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With the rapid development of prefabricated utility tunnels, the trend is shifting towards multichamber
designs, larger structural space scales, and more complex local node constructions, which pose greater
demands. These tunnels must simulate the deformation and failure mechanisms of vulnerable areas at a
microscopic scale while ensuring the balance and coordination of the stress–strain relationships of the
macro- and micro-models to enable smooth energy transitions. For abnormally large cross-section tunnels
situated in weak soil layers, full lightweight concrete prefabricated utility tunnels have demonstrated
excellent seismic performance [58,59], and prefabricated seismic solutions [60] can constitute a viable
strategy. In the longitudinal seismic analysis of multichamber prefabricated tunnels with asymmetrical
cross-sections, the shell–spring model, which incorporates the effects of prestressed steel strands [61],
compensates for the shortcomings of the traditional beam–spring model [62] in reflecting the shear
characteristics and internal force distribution of the structure across the cross-section.

In conclusion, although there has been extensive research on seismic damage to utility tunnels, the rapid
urbanization process presents new challenges. Utility tunnels are increasingly being constructed near existing
buildings or bridge foundations. The seismic response of complex interaction systems that involve building
cluster–soil–utility tunnel structures remains underexplored. Additionally, when finite element models of
foundation soil are established, the assumption of homogeneous soil layers is often unrealistic. Existing
longitudinal seismic analyses of underground utility tunnel structures, which are mostly based on beam–

spring models, must be further refined to more accurately reflect real-world conditions. To adapt to
complex and unfavourable site conditions, further research is necessary on the dynamic coupling
mechanism of strong earthquakes and the catastrophic mechanism that affects long-line utility tunnel
structures.

2.3 Explosion
The construction of utility tunnels has provided a convenient new method for transporting gas and

reducing environmental corrosion and damage to pipelines and cables. These tunnels can accommodate
two or more types of urban engineering pipelines [63,64], which makes them important solutions for
addressing various pipeline and facility layout issues. However, they also introduce new risks.

The natural gas compartments inside utility tunnels contain supporting infrastructure such as concrete
brackets, fire extinguishing boxes, and metal wire frames, which make the analysis of flame
characteristics more complex than that for traditional gas pipelines [65,66]. Additionally, the fire source is
not fixed and can spread along internal cables, which can result in varied temperature distributions and
smoke diffusion [67,68]. Current research on the blast resistance of utility tunnels focuses mainly on
internal and external explosions, where internal explosions are typically caused by gas leaks. These gas
leaks are due primarily to factors such as natural corrosion and stress-induced perforations in gas
pipelines. This process involves strong dynamic changes, which include multiple complex chemical
reactions. When gas leaks occur, smoke rapidly spreads along the tunnel compartments, accumulates, and
forms explosive premixed gas. The resulting high-temperature, high-pressure shock waves can affect
adjacent compartments in underground utility tunnels and nearby surface structures.

Fig. 11 illustrates the effects of internal explosions in utility tunnels. Stress waves generated by
explosions propagate as compression waves (P-waves) and shear waves (S-waves), transmit to the
surrounding tunnel structure, and can severely affect the ground layers and endanger neighbouring
underground structures. Additionally, when explosive stress waves reach the surface, Love (Q) waves,
Rayleigh (R) waves, and travelling body waves (P-waves and S-waves) can further impact the stability of
nearby surface buildings.
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Table 4 summarizes the research on utility tunnel explosions, which can be divided into studies on the
performance of utility tunnels under explosive loads, studies on gas diffusion, and studies on fire behaviour
and detection. Gas diffusion theory [69] is well developed, where the Gaussian model [70] is widely applied
in open environments. For gas diffusion in confined spaces [71], experimental or numerical simulations are
more common. Experimental studies are typically conducted in shock tubes or narrow underground tunnels.
The use of numerical software such as OpenFOAM [72], FLACS [73–75], LS-DYNA [76], and FLUENT
[77] has effectively mitigated the high-risk and high-cost nature of explosion experiments, which enables the
study of multicomponent hydrogen-containing gas leaks in confined spaces [78,79]. Hydrogen, as a new
energy carrier, poses significant explosion risks and hydrogen embrittlement concerns. During
transportation, the confined space of the gas compartment of a utility tunnel increases the explosion risk
compared with aboveground or buried pipelines. Research [80], which is based on a three-dimensional
numerical model, has examined the diffusion behaviour of methane and hydrogen in utility tunnels and
revealed that hydrogen has a higher diffusion rate and a higher concentration than methane does.
Moreover, the nonlinear characteristics of fire risk prediction in cases of leaks in a tunnel are significant,
and algorithms such as artificial neural networks [81] can effectively improve the prediction accuracy.

Figure 11: Schematic diagram of explosions in utility tunnels

Table 4: Research on explosions in utility tunnels

Research classification Research problems Research methods

Explosion loads under
accidental/harsh
conditions

Gas explosion overpressure in utility tunnels [82] Numerical simulation

Dynamic response under natural gas explosion
[76,83]

Numerical simulation

Gas diffusion Accident ventilation [84] Model experiments

Diffusion behaviour of methane and hydrogen
inside galleries [80]

Experiments

Influence of hydrogen gas leakage diffusion [85] Fluent simulation

Influencing factors Model experiments
(Continued)
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Reducing the energy wave released during an explosion is the key factor in explosion suppression. For
explosion mitigation techniques and methods, various chemical suppressants [91] are commonly used.
Considering the one-time use of chemical suppressants, the use of reusable porous adsorption materials
has emerged as a novel physical explosion suppression measure. Experimental studies [92] have
investigated the flame propagation and dynamic pressure distribution under the suppression of porous
media and have shown that this material has a certain explosion suppression effect when it is used as a
utility tunnel lining. Considerable research has been conducted on explosion suppression, which involves
various porous metal materials, such as metal foams [93], metal meshes [94], and steel wool [95]. These
studies offer insights into the sidewall materials of utility tunnels and their effects on the propagation of
explosion waves and flames.

In conclusion, although significant progress has been made in studying the explosion performance of
utility tunnels based on their structural characteristics, research must be expanded on the overpressure and
temperature change patterns during gas explosions. The reasons are the complex structure of gas
compartments in underground utility tunnels and insufficient understanding of internal energy changes
during deflagration. Furthermore, there are no clear design parameters for porous structures and no
comprehensive evaluation standards for engineering applicability and explosion suppression effectiveness,
so many issues have not been addressed.

3 Intelligent Operation and Maintenance Architecture

In the past, underground infrastructure operation and maintenance relied primarily on manual
inspections with relevant standards and regulations to provide damage identification results and state
assessment ratings. However, digitalization, automation, and intelligent systems have become inevitable
in the transformation of traditional industries. Intelligent systems differ from automation by leveraging
advanced technologies such as machine learning, deep learning, knowledge graphs, and computer vision.
These systems emphasize adaptive learning and autonomous decision-making.

Smart utility tunnels support the development of new productive forces by integrating traditional utility
tunnels with modern information and communication technologies (ICTs). Using technologies such as the
Internet of Things (IoT), 5G, artificial intelligence (AI), and big data, various smart tunnel cloud
platforms have emerged and fostered the intelligent and digital transformation of utility tunnel systems.

Fig. 12 illustrates the architecture of an intelligent utility tunnel operation and maintenance system.
The system consists of a perception layer, a transmission layer, a data layer, a service layer, and an

Table 4 (continued)

Research classification Research problems Research methods

Influence of construction methods and material
characteristics on fire behaviour [86]

Effects of different structural parameters such as
reinforcement arrangement and wall thickness [87]

Numerical simulation

Fire detection Temperature distribution and fire spread Numerical simulation
[68], experiment
[88,89]

Tunnel fire source and temperature prediction [90] Artificial intelligence
algorithms
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application layer. High-dimensional spatial structural data and damage characteristics are extracted via
sensors installed on the tunnel body (such as displacement metres and gas alarm detectors) or mounted
on drones (such as microcameras, laser scanners, and infrared thermal imagers). Data are transmitted
via protocols such as HTTP or dedicated fibre optic networks. By integrating IoT technology and big
data analysis, the system facilitates data recognition, organization, learning, and prediction. Finally,
AR/VR/MR devices are used to present the data and enable real-time monitoring, model management,
emergency management, etc. This approach establishes a comprehensive intelligent operation and
maintenance system for utility tunnels.

3.1 Perception Layer
The intelligent operation and maintenance (O&M) architecture must be designed on the basis of the

specific purpose and characteristics of a utility tunnel. For example, in power tunnels, compared with
traditional cable installations, more monitoring devices such as gas sensors and cable surface temperature
sensors must be deployed. By researching system hardware and software architectures, system function
design, and feature point tracking algorithms, functionalities such as inspection route planning, equipment
location prompts, and gesture-based data recall for devices can be implemented to monitor the operational
status of equipment and cables in real time.

The sensing layer encompasses various detection technologies. During utility tunnel O&M, problems
such as leakage, segment misalignment, and segment deformation may occur. Traditional hazard
monitoring techniques involve instruments such as strain gauges, load sensors, inclinometers, and
accelerometers to measure strain, load, pressure, deformation, tilt, and vibration. However, these methods
suffer from low monitoring efficiency, slow response times, and inaccurate measurement points [96]. New
monitoring technologies with features such as fast data acquisition, wide monitoring coverage, and high

Figure 12: Construction of intelligent operation and maintenance systems
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precision, including 3D laser scanning monitoring technology (3D LSMT), optical fibre sensing technology
(OFST), and photogrammetry, have emerged [97].

Table 5 categorizes various monitoring and sensing technologies, which integrate multiple methods that
assist in evaluating decision-making tasks. These methods include the use of geodetic data from the Global
Positioning System (GPS), Interferometric Synthetic Aperture Radar (InSAR), and strain sensors to invert
the cumulative shallow surface strain in utility tunnels [98], multipoint fibre optic methane remote
sensing technology based on pseudodifferential detection [99], and quantum gravity gradient sensors for
underground tunnel detection [100].

Multisensor information fusion technology achieves the intelligence of the entire sensor system through
multilevel and multidimensional complementary optimization of different sensors. These methods can be
categorized into three levels: data layer fusion processing, feature layer fusion processing, and decision
layer fusion processing [110]. The focus is on how to make advanced decisions based on application
requirements, while the challenges lie in the technical barriers faced by the underlying algorithms. Ding
et al. [111] proposed a data fusion method that uses rotation and strain gauge measurements to estimate
the deformation of shield tunnel segments, which has been successfully deployed in practical projects.
Zhang et al. [112] employed Dempster-Shafer (D-S) evidence theory to integrate multisensor data,

Table 5: Various monitoring and sensing technologies

Name Technical principle Application

Fibre optic grating
automated
monitoring

Measures strain in monitoring
inclinometers to obtain displacement

Cable force measurement [101], landslide
early warning [102], surface [103]
potential settlement monitoring

Photoelectric dual-
directional
displacement
metre

Projection of a laser spot onto the
imaging surface of a two-dimensional
image sensor

Enabling vertical and horizontal
monitoring of wall tops

Distributed optical
fibre automated
monitoring

Using light as a carrier and optical fibres
as a medium, external signals are sensed
and transmitted

Monitoring excavation displacement
[104] and infrastructure health [105]

3D laser scanner Measures distance with lasers, scans
target bodies directly, and collects three-
dimensional coordinate information

Tunnel model reconstruction [106],
assessment of geometric discontinuity
representation [107]

Interferometric
synthetic aperture
radar (InSAR)

Utilizes two SAR antennas with
interferometric imaging capability to
obtain single-view complex images and
surface elevation information to
reconstruct a digital elevation model
(DEM) of the ground surface

Calculation of cumulative strain on
shallow ground [98]

Study of multifeature surface deformation
in mining areas [108]

Ground
penetrating radar
(GPR)

Emits electromagnetic waves, reflects at
interfaces of media layers, and processes
received signals to compose B-Scan
images

Detection and location of underground
pipelines [109]
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achieving time-varying predictions and probability warnings for tunnel fault classification based on
collaborative multisensor data fusion.

Currently, most inspection systems within underground cable tunnels utilize track-based and wheeled
robots. While these systems provide advantages in terms of stability and safety, they also present
drawbacks, including high costs and sensitivity to terrain variations. The introduction of simultaneous
localization and mapping [113] (SLAM) technology, which is equipped with various sensor systems, such
as vision, laser, and ultrasonic sensors, holds promise for achieving high-precision and robust localization
and mapping capabilities across diverse complex scenarios.

3.2 Transmission and Data Layers
The network transmission layer provides a data transmission channel that supports data exchange and

communication among various nodes in a utility tunnel. The arrangement of the sensor nodes determines
the monitoring coverage of the utility tunnel. Both the reception and transmission of monitoring
information consume energy. An effective solution to achieve low-power consumption in monitoring data
transmission is wireless sensor network technology [114]. The transmission layer stores front-end
embedded data, sensor device data, and back-end data in the database during operations and maintenance.
Owing to the internal and external influences on the utility tunnel structure, monitoring data from various
parts of the tunnel often exhibit multilayered changes, which reflect the underlying mechanical
transformation characteristics. Extracting the information hidden behind the vast amount of data to
empower utility tunnel management is challenging and requires robust data processing and analysis
capabilities. Big data technology excels at handling and preprocessing large amounts of operational data,
supports the training of machine learning models, and revitalizes utility tunnel management. This
technology helps address previous challenges in accurately identifying structural damage due to
incomplete data coverage and insensitivity to dynamic characteristics.

Supported by advanced sensing technologies, a wide range of data can be collected and recorded
throughout the tunnel’s entire lifecycle, providing a foundation for deep learning models. High-quality
datasets are crucial for ensuring effective model training. However, geospatial data, which are obtained
primarily through geological exploration and geophysical methods (e.g., resistivity, seismic reflection, and
gravity surveys), are inherently discrete. Additionally, the varied acquisition frequencies of sensors result
in imbalances between geospatial and other monitoring data, impacting the construction and utilization of
operational datasets. Table 6 outlines the data preprocessing methods used for tunnel monitoring and
analysis, which support subsequent analyses and decision-making.

Table 6: Data preprocessing methods for tunnel monitoring and analysis

Data processing Technique Performance

Data alignment DTW-Kmedoids [115] RI (0.737)

FMI (0.587)

TunGPR [116] Recall (0.8468)

Precision (0.8534)

mAP (0.7399)

F1 (0.8501)

Missing value imputation GCN-LSTM [117] Accuracy (0.9986)

Precision (0.9986)
(Continued)
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Recent advancements in computer vision [126], machine learning [127,128], and deep learning
methods in the field of underground utility tunnel health monitoring and damage detection include
improved backpropagation algorithms for crack detection on tunnel walls in complex environments
[127], multi-instance learning-driven anomaly detection for personnel monitoring in video surveillance
systems [129], anomaly detection in utility tunnels based on image processing and multi-instance
learning [130], and intelligent control of tunnel temperature and humidity environments via an LSTM-
RNN architecture [131].

Fig. 13 shows an example of the use of big data analysis techniques for performance prediction in utility
tunnels. When constructing models, the highly nonlinear and high-dimensional nature of the data requires
maximum fitting to achieve predetermined performance indicators. On the basis of the measured
responses, regression neural networks are used for intelligent inversion to help researchers identify
optimal parameters and understand soil properties, groundwater conditions, and seismic impacts. Then,
the model predicts the monitoring data over a certain period; if the results exceed the warning threshold,
the relevant units are promptly notified to take action.

Although the aforementioned technologies have various applications, the complexity of utility tunnel
systems presents certain challenges. Issues such as the difficulty of training data collection, the need for
high responsiveness in security scenarios, and limitations of hardware resources must be addressed. To

Table 6 (continued)

Data processing Technique Performance

Recall (0.9986)

F1 score (0.9986)

FCMI [118] ACC (0.9568)

F1 (0.9688)

AUG (0.9882)

Kappa (0.9063)

MCC (0.9118)

MCCB [119] MAE (1.02)

RMSE (2.05)

R2 (0.9276)

Noise filtering SGS and WTD [120] /

EMD-T-FSS [121] SNR (4.62)

2D f-k domain filter [122] /

Feature extraction Multimodal image sensor [123] /

2D-DFT [124] /

DDM [125] SNR (0.279)

RMS (0.0096)
Note: Rand index (RI); Fowlkes-mallows index (FMI); mean average precision (mAP); Percentage of accuracy (ACC); Signal-to-noise ratio (SNR);
Root mean square (RMS); Matthews correlation coefficient (MCC); Cohen’s kappa (Kappa); Dynamic time warping (DTW); Gaussian process
regression (GPR); Graph convolutional network (GCN); Long short-term memory (LSTM); Feature conditional mutual information (FCMI);
Savitzky–Golay smoothing (SGS); Wavelet Transform Denoising (WTD); Empirical mode decomposition (EMD); Time-frequency spectrum
smoothing (T-FSS); 2D discrete Fourier transform (2D-DFT); Dynamic discrimination method (DDM).
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optimize relevant algorithms and technologies, mitigating issues such as overfitting, large model sizes, and
response delays is essential.

Integrating technologies such as data fusion and integration, intelligent monitoring and diagnostics, data
mining and analysis, distributed computing and edge computing, and deep learning is crucial for overcoming
the complexity and diversity of data in utility tunnels. By addressing these challenges, we can revitalize the
comprehensive monitoring and precise management of utility tunnel operations. This approach will promote
the safe and stable operation of these systems and provide robust support for the sustainable development of
urban infrastructure.

3.3 Service and Application Layer
After a utility tunnel has been put into operation, the BIM model (building information modelling),

which has accumulated data during the construction phase, can output a 3D model that includes the
structural components and internal facilities. By aggregating BIM model data, utility tunnel operational
data, and third-party data and utilizing big data techniques for filtering, analysis, and mining,
relationships can be modelled to establish an interactive mechanism [132]. This process helps formulate
intelligent control strategies, creates a knowledge base of trigger conditions and response measures [133]
and ultimately builds a new framework for smart utility tunnels [134]. This approach can reduce the
labour intensity of operations and maintenance personnel, decrease maintenance costs, and improve the
emergency response to accidents and disasters.

BIM modelling focuses primarily on the design and management of the overall building project, but it
does not attribute mechanical properties to structural components, which limits the breadth and depth of its
application in operation and maintenance platforms. Moreover, numerical simulation software such as
Abaqus, Ansys, Plaxis, and FLAC 3D emphasize the analysis of the mechanical behaviour and stress
distribution of structures, decompose the structure into numerous small elements and predict its responses

Figure 13: Utility tunnel performance prediction driven by big data
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to different loads based on mechanical principles and mathematical models. However, developing refined
models for complex structures via these methods is challenging and time-consuming.

Therefore, advancing the integration of BIM digital models with finite element models will facilitate the
digital, refined, and substantive analysis of structures to increase the ability to interact and exchange
information among systems. This integration enables a more comprehensive understanding of the design
and mechanical performance of structures in the context of utility tunnels.

Fig. 14 illustrates the conversion principle between the BIM model and structural analysis model, where
an intermediate file in the Industry Foundation Classes (IFC) format acts as the “bridge.” The parameters and
attributes of the BIM model are extracted and subsequently converted into the language of mechanical
models. There have been several applications, such as the development of BIM-ABAQUS data
conversion interfaces [135] and the analysis of ground settlement via BIM-ANSYS-FLAC3D data
conversion [136].

In addition to the identification of structural damage and deformation, 3D reconstruction [137] can be
used to describe the topological relationships and similarities of large-span structural components of utility
tunnels via computer vision and deep learning. Information from various data sources, such as laser scanning,
drone imagery, and satellite images, can be integrated for visualization, analysis, and simulation. However,
obtaining high-quality point clouds is often challenging since they tend to have specific applicability and may
not be transferable to other structures.

In summary, although simulation software can provide model conversion based on the IFC standard,
differences in data file types imply that BIM applications often remain in a unidirectional transfer mode.
The databases and corresponding plugins across platforms are not universally compatible, and there is no
interoperability among multiple platforms. Therefore, a complete model conversion system is necessary to
efficiently translate BIM models across different software platforms. Moreover, the efficiency and
accuracy of intelligent agents in solving complex control equations must be improved.

3.4 Future Development
In construction maintenance, technologies such as new surveying, identification sensing, collaborative

computing, full-element representation, and simulation modelling have rapidly advanced, have been driven
by the Fourth Industrial Revolution, and are converging into a collective force for digital twin applications.
There is growing interest in the digital twin-driven management of underground 3D spatial information

Figure 14: Principles of the BIM and structural analysis model conversion
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infrastructure and disaster response services, which has led to the proposal of a unified paradigm for
multisource data fusion in urban disaster digital twins [138] This process has facilitated the development
of digital twin-driven intelligent decision-making platforms [139] and enhanced capabilities in managing
and responding to urban infrastructure needs such as utility tunnels.

Fig. 15 illustrates the construction of a digital twin. As a key technology for “virtual-physical
integration” in operation and maintenance, digital twins and cyber-physical systems can be applied to
utility tunnel systems. With the concept of a digital twin, dynamic virtual models of physical structures
are created to replicate the attributes of real-world entities. These models capture sensory data related to
environmental conditions and structural responses and feed this information back to the model layer in
real time. Finally, based on intelligent algorithms, the system enables autonomous decision-making for
tasks such as structural performance evaluation [140–142], disaster scenario simulations [143], and
vulnerability analyses for disaster prevention [144].

With respect to research on technologies and intelligent systems for data monitoring in utility tunnels,
experts and scholars have made innovative advancements in several areas. These advancements include the
development of early warning systems based on various intelligent technologies [145], safety monitoring
systems for utility tunnels via data fusion analysis [146], intelligent inspection robots [147,148], and
smart surveillance devices [149]. These studies focused on planning, seismic design, structural design,
and fire risk analysis and achieved a series of breakthroughs and outcomes. These innovations have
provided multiple solutions for the safe operation and maintenance of smart utility tunnels.

The exploration of an integrated information management platform for utility tunnels is currently in a
critical phase of development. Intelligent operation and maintenance platforms built on monitoring
systems have reached a mature stage in systematically studying the monitoring of pipelines and
equipment in utility tunnels and the operational environment. However, there is a significant lack of
research regarding the analysis of real-time operational data, particularly in predicting the dynamic
responses of the utility tunnel structure and its interaction with surrounding geological conditions. Fig. 16
outlines the construction and development framework for utility tunnels and highlights future trends
towards “multi-pipeline shared chamber design,” “lightweight auxiliary systems,” “cross-sectional
compact optimization,” and “functional integration optimization.” These advancements aim to enhance
the service performance of utility tunnels by utilizing new materials and promoting the intelligence of
auxiliary facilities. This approach is expected to address previous challenges, such as high operational
costs, frequent accidents, data silos, and a low level of system intelligence. Ultimately, it will strengthen
urban resilience and open new chapters in construction planning and operational management.

Figure 15: Construction of a digital twin
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4 Conclusion

This work reviewed the existing research methods and technologies related to three representative
disaster factors (settlement, fire and explosion, earthquakes) during the operation and maintenance phases
of utility tunnels. It also clarified the current status of utility tunnel operation and maintenance
frameworks and highlighted areas where their application is lacking. The following points are proposed
for future research reference:

(1) As emerging infrastructures, utility tunnels have been widely studied in areas such as planning,
seismic design, structural design, and fire risk analysis. However, with the trend towards multichamber
designs, larger structural spaces, and increasingly complex local node configurations, future research can
focus on the following directions:

Interaction response characteristics of systems that involve “surface buildings (clusters)—soil—tunnel
structures (clusters)”.

The catastrophic mechanism for complex nodes, such as intersecting utility tunnels, considers the
dynamic coupling effects between structures and surrounding environmental media.

A comprehensive evaluation of the engineering applicability of new materials for utility tunnels and
their effectiveness in explosion suppression was performed.

(2) Based on the initial data model and relying on theoretical computational methods for underground
structures, future research should aim to combine the structure with the surrounding soil layers and
incorporate BIM information models and simulation software. The goal is to develop modelling methods
that accurately reflect the actual conditions of utility tunnels, which include the development of
collaborative and shared utility tunnel engineering coupling models, to form a complete model conversion
system.

(3) Although innovations in digital inspection technologies, personnel tracking, and environmental
monitoring within tunnels are important, a key focus should be on enhancing the ability for automatic
monitoring and comprehensive sensing in utility tunnels. Effectively integrating long-term uncertain

Figure 16: Utility tunnel construction and development
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monitoring data and using intelligent algorithms to extract the underlying mechanical properties are essential.
By combining this approach with whole-life-cycle safety management, researchers can predict structural
parameters such as deformation and acceleration. The creation of an intelligent operation and
maintenance system that organically integrates physical laws with data paradigms will be a critical area
for developing new technologies to evaluate the safety of utility tunnel structures.
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