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ABSTRACT

The remaining useful life prediction of rolling bearing is vital in safety and reliability guarantee. In engineering
scenarios, only a small amount of bearing performance degradation data can be obtained through accelerated life
testing. In the absence of lifetime data, the hidden long-term correlation between performance degradation data is
challenging to mine effectively, which is the main factor that restricts the prediction precision and engineering
application of the residual life prediction method. To address this problem, a novel method based on the mul-
ti-layer perception neural network and bidirectional long short-term memory network is proposed. Firstly, a non-
linear health indicator (HI) calculation method based on kernel principal component analysis (KPCA) and
exponential weighted moving average (EWMA) is designed. Then, using the raw vibration data and HI, a mul-
ti-layer perceptron (MLP) neural network is trained to further calculate the HI of the online bearing in real time.
Furthermore, The bidirectional long short-term memory model (BiLSTM) optimized by particle swarm optimi-
zation (PSO) is used to mine the time series features of HI and predict the remaining service life. Performance
verification experiments and comparative experiments are carried out on the XJTU-SY bearing open dataset. The
research results indicate that this method has an excellent ability to predict future HI and remaining life.
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1 Introduction

Remaining useful life (RUL), also known as Residual Life, refers to the left time before machinery loses
its operation capability based on current age and conditions, as well as past operation conditions [1].
Remaining useful life is usually defined as a conditional random variable specified in relative or absolute
time units, such as load cycles, flight hours, etc. The RUL for the current time can be calculated as:

lk ¼ inf lk : x lk þ tkð Þ � kjx0:kf g (1)
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where x lk þ tkð Þ represents the health status at future time lk þ tk , and x0:k represents the health status
observed at the previous time t0:k , k is a predetermined fault threshold.

One of the most important components of rotating equipment is the rolling bearing. Life prediction is
essential for early defect diagnosis and for quickly creating a maintenance schedule to prevent poor
performance and lower maintenance expenses. Thus, it is important to develop an efficient rolling bearing
life forecast system. The two primary life prediction approaches are data-driven and physical model-based
approaches. Physical model-based methods have limited generalizability and substantially depend on the
domain expertise of physical systems [2,3]. The life prediction process in data-driven approaches is based
on historical data modelling [4], which typically entails three steps: data collection, HI design, and life
expectancy [5]. It is acknowledged that HI design is an essential first step in evaluating rolling bearing
degradation [6]. Nowadays, a popular approach for designing HI is to combine several statistical features
(such as Principal Component Analysis, Local Linear Embedding, Local Preserving Projection, etc.) into
one HI through dimensionality reduction. By removing unnecessary elements, these techniques often
result in the collection of more thorough health data [7]. On the other hand, the deterioration index
creation approach based on artificial feature extraction mostly depends on empirical knowledge [8].
Consequently, in order to increase the residual life forecast method’s accuracy and offer technical
assistance for its engineering application, more research must be done, and an adaptive deterioration
index must be created [9].

After the HI design is completed, a life prediction method is needed to predict future HI and RUL. In
recent years, prediction methods based on artificial intelligence have been extensively studied for life
prediction, including artificial neural networks (ANN) and support vector machines (SVM) [10,11].
However, some results show that the shallow architectures of ANN and SVM limit their ability to learn
complex nonlinear relationships. In addition, the degradation process of rolling bearings often exhibits
highly nonlinear and non-stationary characteristics. Therefore, developing a more powerful rolling
bearing health prediction method is necessary. Deep learning is one of the most promising artificial
intelligence approaches and has recently been successfully applied to numerous tasks [12–14]. Deep
learning is built on a multi-layered structure called deep architecture, which significantly enhances its
capacity to learn complicated nonlinear correlations, in contrast to classic machine learning techniques
like ANN and SVM. Fault diagnosis has steadily benefited from the application of deep learning
techniques, including convolutional neural networks, stacked denoising autoencoders, and deep belief
networks (DBN). However, there are few deep-learning techniques available for life prediction. Among
the most often used deep learning models are long short-term memory networks (LSTM) [15,16]. The
LSTM model is well-suited for processing time series data. However, the LSTM model’s ability to
capture the temporal correlation of data is limited to a single direction, whether forward or backward. Bi-
directional LSTM (BiLSTM), a variant of the LSTM model, can access sequential data in both forward
and backward time directions, thus capturing hidden long-term dependencies effectively. It should
improve the accuracy of residual life prediction and provide technical support for the engineering
application of residual life prediction methods in engineering.

In this paper, for the problem of condition assessment and life prediction of rolling bearings, combined
with the vibration signals when the bearings are running, a health indicator construction method based on the
multilayer perceptron machine network and a residual life prediction method based on the multilayer
BiLSTM network optimized by particle swarm algorithm is proposed. The performance of the method is
verified using the XJTU-SY bearing test dataset, and the results show that the method is more effective
than other methods. Our main work can be summarized as follows:
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(1) AnMLP network is constructed by using raw vibration data and HI to achieve real-time automatic HI
calculation.

(2) A BiLSTM-based method for bearing life prediction is proposed. It captures the hidden long-term
correlation between sequential signals, achieving HI prediction and lifespan prediction.

(3) The proposed method is experimentally verified on the XJTU-SY bearing dataset and compared with
other prediction methods to verify its superiority.

The rest of this article is organized as follows. Section 2 introduces the basic theory of MLP and
BiLSTM. Section 3 presents the proposed life prediction method in detail. Section 4 shows the
experimental results, and Section 5 gives the conclusion.

2 Theoretical Introduction

2.1 Multilayer Perceptron (MLP)
Multilayer perceptron is a typical artificial neural network that can segment complex spaces and fit

strongly nonlinear data by combining multiple multilayer perceptrons [17]. It is the most common
structure in artificial neural networks, which has a great advantage in analyzing data sets with a large
number of continuous numerical descriptors. The MLP model structure is shown in Fig. 1.

In this model, the input values are connected to the hidden layer through the input layer. The hidden
layer accepts all inputs and performs the appropriate actions. The resulting data is fitted as input to the
next layer. These layers are completely connected. The calculation is as follows:

yi ¼ f uið Þ ¼ f
Xn
i¼1

wixi þ bi

 !
(2)

where xi represents the input vector of node i or the calculated value of previous layer, wi and bi represent
the coefficients learned at node i of the MLP model, and f ð�Þ represents a non-linear activation function
ReLU.

Figure 1: MLP model
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2.2 Long Short-Term Memory Networks (LSTM)
Long short-term memory networks (LSTM) are widely used in many related domains and are capable of

capturing the long-term correlation of temporal signals [18]. Nevertheless, a typical LSTM can only “listen”
to temporal dependencies in one direction, either backwards or forwards. In order to explore the bidirectional
dependency of time series data, LSTM is combined with a bidirectional recursive network structure to
construct a model.

Fig. 2 depicts a typical BiLSTM structure, including an input layer, hidden layer, and output layer. The
input layer of the network receives the time series signals, which are then extracted by the hidden layer. The
hidden layer also predicts future time series signals and outputs them through the output layer. Every hidden
layer, as seen in Fig. 2, consists of two common hidden layers that process the input both forwards and
backwards (the symbol represents the sum) in order to capture the features that exist before and after. The
following is a description of the hidden layer for forward processing output:

i
!

t ¼ r W
!

xixt þW
!

hi h
!

t�1 þ b
!

i

� �
f
!

t ¼ r W
!

xf xt þW
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hf h
!

t�1 þ b
!

f

� �
ĉ
!

t ¼ 4 W
!

xcxt þW
!

hc h
!

t�1 þ b
!

c

� �
c!t ¼ f

!
t � c!t�1 þ i

!
t � ĉ
!

t

o!t ¼ r W
!

xoxt þW
!

ho h
!

t�1 þ b
!

o

� �
h
!

t ¼ o!t � 4ð c!tÞ

8>>>>>>>>>>><
>>>>>>>>>>>:

(3)

Figure 2: BiLSTM model
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The output of each hidden layer of backward processing can be described as:
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8>>>>>>>>>>><
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(4)

where h
!

t and h
 

t represent the forward and backward outputs of neurons, i
!

t , f
!

t , o
!

t and i
 

t , f
 

t , o
 

t are the

forward and backward processing input gate, forgetting gate, and output gate, respectively. W
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ho represent the weight matrix for input

data and recursive data. b
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!

f , b
!
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!
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i, b
 

f , b
 

c, b
 

o represent forward and backward deviations, and
r represent the sigmoid and tanh activation functions, � represents Hadamard products.

3 The Proposed Method

In this paper, a bi-directional long-term and short-term memory network based on HI is proposed
for rolling bearing health prediction. As shown in Fig. 3, this method can be implemented in the
following steps:

Step 1: Design experiments to obtain bearing vibration data. XJTU-SY bearing data set is selected in this
paper to provide the real degradation data for the whole service life of the bearing under different working
conditions.

Step 2: Health indicator construction. The rolling bearing degradation process is adequately described
by fusing statistical features taken from observed signals using the KPCA-EWMA approach.

KPCA-EWMA fuses statistical features extracted from measured signals to describe the degradation
process of rolling bearings effectively.

Step 3: Calculation of health indicators. By establishing the MLP network model, the common hidden
features of different bearing original vibration signals are mined, and the HI of online bearing is calculated
automatically.

Step 4: Life prediction. The PSO algorithm optimizes the BiLSTM network model of online bearing,
and the remaining bearing service life is obtained by the iterative prediction method.

3.1 Health Indicator Design
As indicated in Table 1, many features are extracted using time-domain (TD), frequency-domain

(FD), and time-frequency domain (TFD) techniques in order to create a thorough description of
the rolling bearings’ degrading characteristics. Time-domain features are represented by TD1 through
TD16, frequency-domain features by FD1 through FD16, maximum value, root mean square error, and
signal-to-noise ratio (RMS) of the second frequency band signal obtained by three-layer wavelet
packet transform, respectively, and inherent energy of the first component after VMD decomposition
by TFD1~TFD3. Selecting so many statistical features to provide a more comprehensive description of
the bearing degradation process is beneficial in avoiding the influence of manual experience on HI
construction.
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Figure 3: Prognosis procedures of the proposed method
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However, these features have characteristics such as different ranges, high dimensionality, and high
nonlinearity. As a result, a suitable technique must be created to extract the most important data from
these original traits. KPCA is a simple and efficient technique for reducing nonlinear dimensionality. It
involves two steps to complete:

(1) Projecting the initial features onto a new high-dimensional feature space using nonlinear kernel
functions.

(2) Principal components are extracted from a high-dimensional feature space using linear PCA
techniques.

The first principal component was selected as HI to characterise the degradation process. Although HI
maintains global monotonicity, it typically contains a large number of local random fluctuations, which may
interfere with the life prediction of rolling bearings. As a result, using certain technologies to improve HI
is meaningful.

Table 1: Feature indexes and expressions

TD
�x ¼ 1
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XN
i¼1
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For smoothing online bearing HI, the EWMA approach based on historical data time series smoothing is
adopted. The following is how its mechanism is explained:

ft ¼ a pt þ bpt�1 þ b2pt�2 þ � � � þ bt�1p1
	 


(5)

where a represents the smoothing parameter ranging from 0 and 1, and the value of b is ð1� aÞ; pt stands for
the current observation, ft stands for its estimated value, which is the value of modified HI at time t;
pt�1, pt�2, � � � , p1 are the historical observations. EWMA can eliminate short-term fluctuations, maintain
long-term trends accurately, and effectively capture abrupt changes. As a result, EWMA is an appropriate
method to change HI. In addition, the simplified calculation formula for reducing the computational
demand of EWMA can be expressed as follows:

ft ¼ apt þ ð1� aÞft�1 (6)

3.2 Calculation of Health Indicators
On this basis, an MLP model is constructed to calculate HI. The MLP model can automatically extract

representative features from the original vibration signal without the need for manual feature extraction. the
framework of the HI calculation method based on the MLP model is shown in Fig. 4. The proposed method
consists of three stages: (1) Extract HI for training rolling bearings, as mentioned in the previous section. (2)
Train the MLP model. Train the MLP model using the original vibration signal as input and HI value as the
target output. Typical characteristics are captured from the input original vibration signal through two full
connection layers and the ReLU activation function. Then, the fully connected layer is utilized as the
regression layer to generate predictive output (HI label). (3) Calculate and test the HI value of rolling
bearings. After the training process is completed, the online vibration signal of the test bearing can be
input into the learned MLP model. The MLP model determines the current HI value by directly capturing
typical festures from the original vibration signal.

Figure 4: Framework of the MLP-based HI estimation method
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3.3 Life Prediction
In this section, the BiLSTM model is employed to predict the future HI of rolling bearings, and the

model parameters are optimized through PSO.

The BiLSTM model consists of H hidden layers and K units in each hidden layer and includes training
and testing steps. In the training steps, the history HI values of the bearing are utilized to construct the
training dataset. The construction of the training dataset adopts sliding time window technology. The
sliding time window technology process is shown in Fig. 5, which uses a fixed length time window to
sample HI values continuously. Then, the training dataset can be formed as fXt; ytgTt¼1, where
Xt ¼ ½ht, htþ1, � � � , htþw� is the i-th training sample vector, where ht represents the HI value of the training
rolling bearing at time t, and w is the length of the time window. yt ¼ htþwþ1 is the corresponding label.
Train BiLSTM by minimizing the mean square error (MSE) function, which can be represented as:

MSE ¼ 1

T

XT
t¼1

yt � ŷtð Þ2 (7)

where yt and ŷt are actual labels and predicted labels. T represents the total number of training samples. In
order to quickly converge the training process, the BiLSTM model is equipped with an Adam optimizer.

4 Experimental Verification

4.1 Data Set
The XJTU-SY rolling bearing dataset is a set of vibration state signals for the entire life cycle of

rolling bearings [19]. The sampling interval is set to 1 minute, with each sampling lasting 1.28 s, and
each sample contains 32,768 data points. The horizontal vibration signals are employed in this study as
they contain more useful information. The dataset includes 15 sets of bearing data, which were obtained
under three different operating conditions. Table 2 shows the total number of samples and failure
locations for all bearings. When training MLP, the following four bearings are selected as the training set:
bearings 1_2, 1_4, 3_2, and 3_3. When training BiLSTM, the data of the health stage and the initial
degradation stage of the remaining bearings are used as the training set, and the data of the degradation
stage is utilized as the test set.

4.2 HI Design
According to the expression in Table 1, 36 statistical features are extracted from the time domain,

frequency domain, and time-frequency domain to constitute the original feature set. Then, the KPCA is
applied to combine these features, and the first principal component after fusion is used as a HI to

Figure 5: Processing method for sliding time windows illustrated
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describe the degradation process of bearing. It is worth noting that the Gaussian kernel function is employed
as the kernel function, the kernel radius is chosen as 0.01, and the number of principal components to retain is
set to 3. Then, EWMAwas employed to further modify HI, with a smoothing parameter selection of 1/50.
Fig. 6 shows the raw vibration data and health indicators of bearings 1_2 and 3_2 used to construct the HI. HI
is relatively stable in the initial phase, starts to decline in the intermediate stage, and rises rapidly towards the
end of the bearing’s service life. The results show that the HI can effectively capture the degradation trend,
and the actual degradation process of the rolling bearing is described. The HI of bearing 3_2 fluctuates
repeatedly in the rapid rise stage. Still, the deterioration process of bearing is irreversible and should not
have a downward trend, which reflects the limitations of artificial feature extraction.

4.3 MLP Model
An MLP model was constructed for the HI calculation of online rolling bearings. The structure of the

MLP model greatly affects the performance of the network. The 2560 central data points from the
original vibration signal of the bearing are employed as input to the MLP model. The HI calculated by
KPCA-EWMA is selected as the training label of the MLP model. The ReLU activation function is used
between fully connected layers. During training, the MSE function is used as the loss function of MLP.
The optimal model parameters are obtained after 50 epochs using the Adagrad optimizer.

To effectively evaluate HI and screen suitable network hyperparameters, an effective evaluation method
is needed. However, most existing methods directly assess HI itself. Since the performance degradation of
rolling bearings is a stochastic process, HI can be divided into trend indicators and residual parts to better
measure the degradation of rolling bearings. Therefore, a rolling bearing HI evaluation criterion that
integrates trend and robustness is proposed, which can be expressed as:

Table 2: Working environment and fault situation of bearings

Operating condition Speed/
(r/min)

Radial
force/(kN)

Bearing dataset Fault element

1 2100 12 Bearing1_1 Outer race

Bearing1_2 Outer race

Bearing1_3 Outer race

Bearing1_4 Cage

Bearing1_5 Inner race and outer race

2 2250 11 Bearing2_1 Inner race

Bearing2_2 Outer race

Bearing2_3 Cage

Bearing2_4 Outer race

Bearing2_5 Outer race

3 2400 10 Bearing3_1 Outer race

Bearing3_2 Inner race, ball, cage and outer race

Bearing3_3 Inner race

Bearing3_4 Inner race

Bearing3_5 Outer race
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Y ðtkÞ ¼ YT ðtkÞ þ XRðtkÞ

Vcorr Y tkð Þ;T tkð Þð Þ ¼
PK
k¼1

Y tkð Þ � ~Y
	 


T tkð Þ � ~T
	 
����

����ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1

Y tkð Þ � ~Y
	 
2 PK

k¼1
T tkð Þ � ~T
	 
2s

Vrob Y tkð Þð Þ ¼ exp
�std XR tkð Þð Þ

mean Y t1ð Þ � Y tKð Þj j
� �

V ¼ x1Vcorr Y tkð Þ; T tkð Þð Þ þ x2Vrob Y tkð Þð Þ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(8)

The HI curve is decomposed into the trend part YT ðtkÞ and residual part XRðtkÞ, k is the length of the time
series, Y ðtkÞ is the HI. Vcorr Y tkð Þ; T tkð Þð Þ is the trend value, ~Y and ~T are the mean values of health index
Y ðtkÞ and time vector T tkð Þ, Vrob Y tkð Þð Þ is the robustness value, Y t1ð Þ and Y tKð Þ are the starting and
ending values of the HI Y tkð Þ. x1 and x2 are two weight coefficients greater than zero and with a sum of
1. According to the effect of HI on the prediction of remaining life, the trend and robustness of HI were
weighted by 0.5 and 0.5.

Taking bearing 1 as an example, experimental verification of HI and MLP model construction was
carried out. The comparison of HI constructed by KPCA-EWMA and HI constructed by MLP models
with different parameters are shown in Table 3 and Fig. 7. The results indicate that the HI constructed by
the MLP model has signifcant advantages in trend and robustness, and the HI score of the MLP model is
the highest when using the 2560-160-16-1 parameter. Therefore, the model trained with this parameter is
employed to carry out subsequent calculations.

Using the remaining 11 bearing vibration data as the online data, each sampled vibration data is
sequentially input into the trained MLP model and then smoothed by EWMA to obtain the following
results. As shown in Table 4, all bearings have high HI scores, which fully reflects the effectiveness of

Figure 6: Raw vibration data and HI of bearings 1_2 and 3_2
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the model. Fig. 8 shows the HI results of the three bearings under condition 1. f It can be seen that HI is
relatively stable in the healthy state of the bearings and gradually increases after degradation begins,
showing a monotonic upward trend overall, effectively capturing its degradation trend.

Table 3: Evaluation indicators for different methods

Method Trendliness Robustness Indicators

KPCA-EWMA 0.375 0.967 0.671

MLP model 2560-1600-16-1 0.266 0.975 0.620

2560-1280-80-1 0.677 0.933 0.805

2560-160-16-1 0.693 0.935 0.814

Figure 7: Evaluation indicators for different methods

Table 4: Evaluation indicators for test set bearings

Bearing Trendliness Robustness Indicators

1_1 0.995 0.966 0.980

1_3 0.992 0.955 0.974

1_5 0.693 0.935 0.814

2_1 0.592 0.888 0.740

2_2 0.878 0.972 0.925

2_3 0.997 0.963 0.980
(Continued)
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4.4 BiLSTM Model
A BILSTM model for predicting future HI has been established. In order to comprehensively evaluate

the performance of the proposed method, three metrics are adopted, including normalized mean square error
(NMSE), root mean square error (RMSE), and maximum absolute error (MaxAE), defined as follows:

NMSE ¼
PT
t¼1

yt � ŷtð Þ2

PT
t¼1

ŷ2t

(9)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T � 1

XT
t¼1

yt � ŷtð Þ2
vuut (10)

MaxAE ¼ maxð yt � ŷtj j (11)

where ŷt and yt represent actual and predicted values, respectively.

4.4.1 PSO Optimization Hyperparameter
Taking bearing 1_1 as an example, 80% of its HI is used as training data, and the last 20% is used as

testing data. The results processed by sliding time window technology are used as training and testing
sets. During training, the MSE function is used as the loss function of BiLSTM. The optimal model
parameters are obtained after 50 epochs using the Adam optimizer.

The number of hidden layers H, and the unit K in each hidden layer have a significant impact on the
model performance. In this paper, these two essential hyperparameters are optimized by the bird swarm
algorithm. The bird swarm particles can be set to 10, iterations to 50, hidden layers to 3, and the number

Table 4 (continued)

Bearing Trendliness Robustness Indicators

2_4 0.996 0.965 0.981

2_5 0.844 0.968 0.906

3_1 0.313 0.910 0.612

3_4 −0.002 0.933 0.465

3_5 0.999 0.985 0.992

Figure 8: HI results of the remaining three bearings under condition 1
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of hidden layers to [1, 100] to predict the bearing directly. Table 5 compares BiLSTM and PSO-optimized
models with different H and K values. Table 5 shows that when the H and K values are different, the
performance of BiLSTM will vary. Obviously, the PSO optimized BiLSTMmodel has the best performance.

The size of the sliding window is another important factor that affects the performance of the model. In
this article, the window size is set to 5. The comparison between the actual HI of bearing 1_1 and the one-step
expected HI is shown in Fig. 9. The projected HI is very similar to the actual HI. The experimental details and
fitting errors for all tested bearings are shown in Table 6. The largest error is the MaxAE of bearing 3_4,
which is only 0.3473. The results indicate that the model has significant advantage in capturing long-term
correlations hidden in time series signals and mining bearing degradation trends, demonstrating the
effectiveness and reliability of the proposed health prediction method.

Table 5: Performance of the proposed method with different architectures

Model structure MaxAE RMSE NMSE

5-20-40-10-1 0.0707 0.0081 0.0019

5-10-20-10-1 0.0453 0.0044 0.0005

5-20-10-5-1 0.1137 0.0129 0.0049

5-50-10-26-1 (PSO) 0.0438 0.0013 0.0005

Figure 9: The comparison between single step predicted HI and actual HI of bearings 1_1

Table 6: The MaxAE, RMSE, and NMSE values for all predicted HI

Bearing Training data Testing data Model structure (PSO) MaxAE RMSE NMSE

1_1 95 25 50-10-26 0.0438 0.0013 0.0005

1_3 120 36 24-41-5 0.0860 0.0009 0.0005

1_5 42 8 1-100-97 0.0604 0.0164 0.0008

2_1 468 20 50-14-45 0.0340 0.0003 0.0003
(Continued)

378 SDHM, 2025, vol.19, no.2



4.4.2 Life Prediction
The bearing test data is input into the PSO optimization model for iterative prediction until the predictes

HI reached the fault threshold. The number of steps in iteration is the remaining life, and the predicted result
is shown in Fig. 10. The results indicate that the predicted RUL almost coincides with the actual RUL, and
and over time, the predicted ULL becomes closer to the actual RUL.

Table 6 (continued)

Bearing Training data Testing data Model structure (PSO) MaxAE RMSE NMSE

2_2 120 40 17-50-50 0.0826 0.0019 0.0007

2_3 482 50 70-16-100 0.1109 0.0083 0.0008

2_4 32 8 21-59-54 0.0208 0.0118 0.0004

2_5 286 50 62-12-65 0.3226 0.0252 0.0035

3_1 2486 50 66-30-88 0.3196 0.0175 0.0127

3_4 1462 50 30-100-90 0.3473 0.0200 0.0092

3_5 62 50 75-55-89 0.2670 0.0175 0.0027

Figure 10: Partial life prediction results: (a) Bearing1_1 (b) Bearing 1_3 (c) Bearing 2_3 (d) Bearing 3_5
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Comparative Experiment 1:

In order to verify the effectiveness of the health indicators constructed by the proposed MLP model for
bearing life prediction, the artificial indicators constructed by downscaling and fusing statistical features
through KPCA-EWMA are used as the bearing health indicators, and the training set is also built by the
sliding time window method to train the BiLSTM network model, and the PSO algorithm is used to
optimize the structure of the model, and then the residual life prediction results are compared with the
above methods were compared. The RUL prediction results of the two methods are shown in Fig. 11.
From the figure, it can be seen that the remaining life results predicted by the MLP method at different
time points are more accurate, while the artificial indicator method shows a larger deviation. In addition,
by calculating the RMSE of the remaining life prediction results of the two methods, the RMSE of the
manual indicator method is 2.1023, which is much higher than the 0.0556 generated by the MLP method,
further proving that the health indicators generated by the MLP network have a positive impact on the
accuracy of life prediction. The neural network architecture of the MLP model has strong feature learning
and nonlinear mapping capabilities, which better capture the dynamic changes during the degradation
process of bearing. The generated health indicators can more accurately describe the current health status
of the bearing and are more effective.

Comparative Experiment 2:

In this section, to demonstrate the superiority of the proposed method, the predicted results of the
proposed method were compared with the results of five published studies, including the CNN-BiLSTM
network of [20], TCN-RSA of [21], RBM-BiLSTM of [22], CNN-SRU of [23] and Bayesian of [24].
Each of these studies selected a portion of the bearings in the dataset as the training set and another
portion as the test set, which is slightly different from the proposed method. In this method, the data of
each bearing at the beginning of the normal state and degradation stage are used as the training set, and
the data that rapidly degradates to the fault stage is used as the testing set. Among them, Cheng et al.
build a CNN model to calculate the health indicator value of the bearing, and then use the health
indicator to make a BiLSTM model for future health indicators and remaining life prediction. Cao et al.
build a temporal convolutional network with a self-attention mechanism to obtain the feature
contributions of different moments during the degradation of bearings, and then achieve the remaining
life prediction. Hou et al. construct health metrics through an unsupervised learning approach and then
obtain the remaining life expectancy through a difference-based target label generation method. Yao et al.
combine an improved one-dimensional convolutional neural network and a simple regression unit to

Figure 11: Comparison of bearing 1_1 (a) KPCA-EWMA (b) MLP
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predict the remaining life of bearings. Gao et al. fuse time-domain features to establish health indicators and
then build a Bayesian model for the prediction of the remaining life of bearings. The performance
comparison between the proposed method and five published studies on bearing life prediction based on
the XJTU-SY dataset is detailed in Table 7 and Fig. 12.

From the table, it can be seen that although the prediction errors for bearings 2_4 and 3_5 are slightly
higher than those of the CNN-BiLSTM method and the TCN-RSA method, the proposed method obtains
smaller prediction errors for all the other bearings, indicating that the proposed method has stable
prediction performance for bearings under different operating conditions and fault types. The results of
Fig. 12 indicated that compared with other methods, the proposed method can obtain smaller RMSE
values and more accurate remaining life prediction results in all bearings, with better accuracy
and robustness.

Table 7: RMSE comparison with different methods

RMSE Proposed approach CNN-BiLSTM TCN-RSA RBM-BiLSTM CNN-SRU Bayesian

Bearing 1_1 0.0556 – – 2.62 – 4.8843

Bearing 1_3 0.3093 – – – – –

Bearing 1_5 0 1.27 – – – –

Bearing 2_1 0.7158 – – 3.56 – –

Bearing 2_2 0.3859 – – – – –

Bearing 2_3 0.4855 – – – – –

Bearing 2_4 1.1304 0.63 – – 0.1699 –

Bearing 2_5 0.6738 12.97 – – – –

Bearing 3_1 0.7009 – – 5.27 – –

Bearing 3_4 0.7753 9.18 – – – –

Bearing 3_5 0.1573 11.24 0.0659 – – –

1_1 1_3 1_5 2_1 2_2 2_3 2_4 2_5 3_1 3_4 3_5
0

5

10

R
M

SE

 Proposed approach
 CNN-BiLSTM
 TCN-RSA
 RBM-BiLSTM
 CNN-SRU
 Bayesian

Bearing

Figure 12: Comparison between the proposed approach and other literature results
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5 Conclusion

In this paper, a bearing life prediction method based on the MLP and BILSTM network model is
proposed. The MLP model is trained by raw bearing vibration data and HI constructed by the KPCA-
EWMA method. The common hidden features of the original vibration signals of different bearings and
the mapping relationship between HI can be effectively explored by this model. Then a rolling bearing HI
prediction model based on particle swarm optimization of BiLSTM is established and experimentally
validated on the XJTU-SY bearing dataset through experiments and comparisons, the following
conclusions have been drawn:

(1) The MLP network is constructed by using raw vibration data and HI to achieve real-time automatic
HI calculation. The model has generality and robustness and can be used immediately for similar other
bearings.

(2) A bearing life prediction method based on BiLSTM is proposed, which is based on real-time HI of
test bearings and can effectively capture the hidden long-term correlation between bearing time series state
signals, achieving accurate prediction of HI and remaining life.

(3) During the training process, only a small number of bearing data samples are used to complete the
model training, providing an effective technical solution for predicting the remaining life of bearings under
conditions such as a small number of data samples, multiple operating conditions, and multiple types of
faults. As a further research direction, it is worth studying how to determine the initial degradation point
and fault threshold of different types of bearings, as well as how to predict the effective life of bearings
that degrade too quickly after the initial degradation point.
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