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ABSTRACT

This study introduces an innovative “Big Model” strategy to enhance Bridge Structural Health Monitoring (SHM)
using a Convolutional Neural Network (CNN), time-frequency analysis, and fine element analysis. Leveraging
ensemble methods, collaborative learning, and distributed computing, the approach effectively manages the com-
plexity and scale of large-scale bridge data. The CNN employs transfer learning, fine-tuning, and continuous
monitoring to optimize models for adaptive and accurate structural health assessments, focusing on extracting
meaningful features through time-frequency analysis. By integrating Finite Element Analysis, time-frequency ana-
lysis, and CNNE, the strategy provides a comprehensive understanding of bridge health. Utilizing diverse sensor
data, sophisticated feature extraction, and advanced CNN architecture, the model is optimized through rigorous
preprocessing and hyperparameter tuning. This approach significantly enhances the ability to make accurate pre-
dictions, monitor structural health, and support proactive maintenance practices, thereby ensuring the safety and
longevity of critical infrastructure.
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1 Introduction

Structural Health Monitoring (SHM) plays a pivotal role in ensuring the safety and longevity of bridges
by providing real-time insights into their structural condition [1]. By continuously monitoring various
parameters such as vibrations, strain, and environmental factors, SHM enables early detection of potential
issues, facilitating timely maintenance and intervention. The significance lies in enhancing public safety,
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optimizing maintenance practices, and prolonging the lifespan of critical infrastructure [2]. However,
analyzing large-scale structural data poses challenges such as data complexity, integration of diverse sensor
outputs, and the need for advanced analytical methods. Handling vast datasets from numerous sensors
requires robust algorithms, computational resources, and expertise to extract meaningful patterns and make
informed decisions for optimal bridge management and resilience. The “Big Model” strategy, within the
context of bridge data analysis, involves deploying complex and highly sophisticated models, particularly
Convolutional Neural Networks (CNN) groups, to handle the intricacies of large and diverse datasets. This
approach aims to capture nuanced patterns and correlations within complex structural health monitoring
data from bridges. CNNs, renowned for their effectiveness in image and sequence analysis, are organized
into groups to collectively process various aspects of the data, such as vibration patterns, strain
measurements, and environmental influences. The “Big Model” strategy is relevant in addressing the
multifaceted challenges posed by the sheer volume and complexity of bridge data. The contribution of this
work represents in integrating Finite Element Analysis, time-frequency analysis, and Convolutional Neural
Networks to enhance Bridge Structural Health Monitoring. It utilizes comprehensive data from diverse
sensors, sophisticated feature extraction, and advanced CNN architecture, optimizing performance through
rigorous preprocessing and hyperparameter tuning. Also, this strategy enables the extraction of intricate
features, enhancing the model’s ability to make accurate predictions, monitor structural health, and
contribute to proactive maintenance practices for resilient and safe infrastructure.

2 Background

Existing methods for Structural Health Monitoring (SHM) encompass a range of techniques, from
traditional sensor-based approaches to advanced data-driven methodologies [3,4]. Traditional methods
include strain gauges, accelerometers, and visual inspections, providing valuable but often discrete and
localized information. Additionally, Finite Element Analysis (FEA) and model-based approaches offer
insights into structural behavior but may lack real-time adaptability. Traditional methods often handle
specific data types in isolation, making it challenging to integrate diverse sensor outputs. Traditional
methods may struggle to analyze large-scale datasets generated by numerous sensors. Traditional methods
may face challenges in identifying complex patterns indicative of structural degradation. Many traditional
methods are static and may not adapt well to evolving environmental or operational conditions. It notes
that while SHM can significantly enhance the lifespan of structures and improve public safety, technical
and environmental factors can impact the accuracy of SHM data [5]. Conventional techniques in structural
health monitoring (SHM) often exhibit specialization towards particular bridge designs or environmental
conditions. When focusing on the initial level of SHM assessment, which involves detection, the methods
described in existing literature typically fall into two main categories: data-driven approaches and model-
based approaches [6]. Data-driven methods operate by discerning damage-sensitive characteristics from
collected data without necessarily relying on a predefined physics-based system model [7,8]. Conversely,
model-based methods presuppose the existence of a system model, frequently numerical in nature (such as
finite-element-based models), which is frequently updated to align with the observed measurements [9].
For the detection phase, purely data-driven methods often demonstrate high efficiency. However, their lack
of direct physical interpretation can impede more advanced tasks within the SHM framework, such as
quantification and localization. Model-based techniques are better suited to address these advanced tasks,
leveraging the structural system model, but they often entail substantially higher computational demands,
posing challenges for real-time applications like diagnostics and control. Hybrid approaches represent a
middle ground, integrating finite element information into data-driven methodologies. This fusion aims to
produce damage indicators that harness the advantages of model-based features without necessitating
extensive model updating [10]. Moreover, data-driven methods can be further classified based on the signal
processing tools they utilize, as outlined in studies such as [11,12].
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However, these methods frequently encounter ill-posed challenges arising from environmental
disturbances inherent in outdoor civil structures, including light variations, distortion, weather conditions,
shading, and occlusion [13]. In response, the SHM community has increasingly turned to innovative
solutions leveraging computer vision and artificial intelligence (AI) techniques, which exhibit diminished
sensitivity to external disruptions and offer superior feature selection capabilities. Salehi et al. [14]
conducted an inclusive review of various Al methodologies used in structural engineering, highlighting a
recent shift towards Al-supported research emphasizing pattern recognition and machine learning-based
automated data-driven approaches. The authors critically examined the strengths and limitations of
diverse Al techniques within various structural engineering contexts. Ying et al. [15] conducted a
comprehensive review of machine learning (ML)-based SHM algorithms tailored for detecting damage in
steel pipes amidst varying environmental conditions. Building upon this, Feng et al. [16] contributed an
exhaustive literature review focusing on cutting-edge computer vision techniques utilizing vision-based
displacement sensors for SHM applications. The majority of these methods relied on template matching
algorithms to extract displacement time-histories from video and image data. Challenges associated with
extracting displacement information from both 2D and 3D measurements, and from diverse artificial or
natural targets, were thoroughly discussed, alongside considerations for real-time implementation and
preprocessing procedures. Also, Gomes et al. [17] offered an extensive examination of intelligent
computational tools available for damage detection and system identification, with specific emphasis on
composite structures. Addressing the latest advancements, Spencer et al. [18] provided insights into state-
of-the-art vision-based techniques for structural condition assessment, incorporating computer vision and
ML algorithms. Challenges pertaining to both static and dynamic measurement techniques were
deliberated upon, alongside envisaged future directions emphasizing automated decision-making
enhancements for SHM.

Martucci et al. [19] stated that SHM is crucial in civil, mechanical, and aerospace engineering for
identifying and assessing damage using modal parameters. They highlight the efficiency of output-only
techniques, or operational modal analysis (OMA), for large structures and propose automating OMA with
machine learning, specifically through a novel multi-stage clustering algorithm. This approach is tested on
a scaled masonry arch bridge model to detect and assess damage severity. While Civera et al. [20] stated
that the Extreme Function Theory (EFT) combined with Gaussian Process Regression (GPR) offers an
efficient, automated tool for mode shape-based damage detection in SHM. This method reduces false
positive errors and has been validated experimentally on the 1-40 bridge, showing its effectiveness for
monitoring large civil structures and infrastructures.

Ahmadi et al. [21] presented a novel algorithm based on square time-frequency distribution (TFD) for
detecting damage in concrete piers of railroad bridges. The algorithm, corroborated using a finite element
model of the Qotour railroad bridge, utilizes two new damage indices and extensive in sifu measurements
and lab tests. It accurately identifies damage severity, is noise-resistant, and only requires response signals,
eliminating the need for recording excitation forces or creating an analytical model, which is particularly
useful for complex bridge structures. Also, Ahmadi et al. [22] emphasized the importance of early damage
identification for preserving structures and preventing worsening conditions. They present a novel
algorithm for detecting damage in steel girders of bridge decks using Bemn-Jordan TFD and a proposed
damage index (C-Index). Evaluated on the College Bridge with 10 different damage scenarios, the
algorithm accurately identifies damage locations, showing its effectiveness in monitoring structural integrity.

Zha et al. [23] stated that vision-based structural health monitoring (SHM) using deep convolutional
neural networks (CNNs), specifically deep residual neural networks, has shown significant promise for
recognizing and evaluating structural damage post-natural disasters. Using transfer learning and a dataset
from the 2018 PEER Hub ImageNet Challenge, they tackled eight structural damage detection tasks,
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achieving classification accuracy between 63.1% and 99.4%, and secured third place overall. They noted that
improving training data precision could further enhance accuracy. While Gao et al. [24] stated that structural
health monitoring of bridges is crucial for post-earthquake recovery, and integrating machine learning
enhances damage detection. This study used time-series data from shake-table experiments on a two-span
bridge, converting it into images for convolutional neural network (CNN) analysis. CNN models trained
on Markov transition field encoded images from acceleration data achieved 100% accuracy during
training and over 94% in testing. Overall, the literature suggests that ML methods heavily rely on robust
feature extraction, often followed by the application of appropriate classifiers. Mantawy et al. [25]
proposed a deep neural network (DNN)-based SHM method for real-time crack detection and localization
using a small number of strain gauge sensors. By combining DNN with principal component analysis
(PCA), the method predicts the strain field from sparsely located sensors, confirmed through cyclic 4-
point bending tests on composite material specimens. The technique accurately predicted the strain field
for all specimens considered. While these techniques demonstrate efficacy in managing small anomaly
datasets, their applicability may be limited in the context of large-scale civil structures like buildings,
bridges, dams, pipelines, and wind turbines, where crack patterns tend to exhibit complex and irregular
characteristics [26].

3 Methodology

The proposed methodology employs a comprehensive approach for Bridge Structural Health
Monitoring (SHM) by integrating Finite Element Analysis (FEA), time-frequency analysis, and a
Convolutional Neural Network (CNN). Initial data collection encompasses information from diverse
bridge sensors, covering strain gauges, accelerometers, and other relevant instruments, capturing a range
of operational and environmental conditions. FEA is utilized to simulate structural behavior, extracting
critical features. Concurrently, time-frequency analysis techniques are applied to sensor data for capturing
time-varying characteristics. The integrated dataset, comprising both simulated and real-world responses,
is then processed by a CNN. This architecture, featuring multiple CNNs organized to focus on specific
aspects of the data, is trained on labeled datasets representing various health states. The trained model is
validated, and its performance assessed using metrics, providing insights into structure health. Continuous
monitoring, maintenance planning, and iterative improvements ensure the method’s adaptability to
evolving conditions and its effectiveness in enhancing bridge safety and longevity.

In optimizing the effectiveness of the proposed Big Model Strategy for Bridge Structural Health
Monitoring, several preprocessing steps and considerations were employed. Data normalization played a
crucial role in ensuring uniform scales across diverse sensor inputs, preventing biased learning. Feature
engineering encompassed the extraction of pertinent information from both Finite Element Analysis
(FEA) and time-frequency analyses, augmenting the dataset with meaningful features relevant to
structural health. Missing data points were addressed through careful imputation strategies, preserving
data integrity. Extensive hyperparameter tuning involved systematic adjustments to the CNN architecture,
with considerations for learning rates, filter sizes, and dropout rates. Regularization techniques, including
dropout layers, were implemented to mitigate overfitting risks, promoting better generalization to real-
world scenarios. Model architecture considerations were refined through iterative experimentation,
exploring various layer configurations and ensemble methods to optimize predictive accuracy. Learning
rate scheduling contributed to the stability of the training process, while cross-validation techniques
provided a comprehensive assessment of model generalization across diverse subsets of the dataset.
Interpretability analyses were incorporated to enhance collaboration with domain experts, fostering
transparency and trust in the model’s decision-making process. These meticulous preprocessing steps and
considerations collectively contributed to the model’s effectiveness in accurately predicting structural
health and anomalies in bridge structures.
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3.1 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNNs) are designed with a hierarchical and layered architecture that
has proven exceptionally effective in image-based data analysis. Consisting of convolutional layers that scan
input images with learnable filters, pooling layers for spatial dimension reduction, activation layers for
introducing non-linearities, and fully connected layers for global feature aggregation, CNNs excel in
capturing intricate patterns and hierarchical representations within images. Their applications in image-
based data analysis are diverse, encompassing image classification, object detection, and segmentation.
CNNs are extensively used for tasks such as facial recognition, medical image analysis, and artistic style
transfer. Their ability to automatically learn features and relationships in large datasets makes CNNs a
cornerstone in computer vision, contributing to advancements in various fields requiring sophisticated
image processing and pattern recognition capabilities. CNNs demonstrate remarkable suitability for
processing structural data, particularly in the context of Structural Health Monitoring (SHM), due to their
innate capacity to capture intricate patterns within large datasets. The hierarchical architecture of CNNs
aligns well with the hierarchical nature of structural features, allowing the model to automatically learn
and discern complex patterns indicative of structural health or degradation. In SHM applications, CNNs
can effectively process data from diverse sensors, such as accelerometers and strain gauges, capturing
both spatial and temporal dependencies in the structural response. This adaptability enables CNNs to
recognize subtle anomalies or variations within large datasets, making them well-suited for continuous
monitoring of structural integrity and early detection of potential issues. The ability to automatically
extract relevant features from raw structural data positions CNNs as powerful tools for enhancing the
accuracy and efficiency of structural analysis and health assessment.

3.2 Big Model Strategy

In the context of bridge structural health monitoring, the big model strategy concept entails employing a
sophisticated and comprehensive approach that integrates diverse data sources and advanced analytical
techniques. The term “Big Model” refers to a holistic framework that combines Finite Element Analysis
(FEA), time-frequency analysis, and CNN Groups to process and analyze complex datasets. This strategy
acknowledges the multifaceted nature of structural health information, leveraging FEA for accurate
simulations, time-frequency analysis for capturing dynamic behavior, and CNN Groups for deep
learning-based pattern recognition. By amalgamating these components, the Big Model strategy aims to
provide a robust and adaptable solution for continuous and accurate monitoring of bridge structures,
allowing for early anomaly detection, predictive maintenance planning, and improved overall structural
resilience. The key elements of the Big Model strategy for bridge structural health monitoring involve a
synergistic integration of multiple components, including the incorporation of a CNN Group, distributed
computing, and parallel processing to efficiently handle large-scale bridge data. The integration of
multiple CNNs into a group is fundamental to the strategy, enabling specialized neural networks to focus
on distinct aspects of the structural health data. Each CNN within the group can specialize in processing
features derived from Finite Element Analysis (FEA), time-frequency analysis, or other relevant sources,
collectively enhancing the model’s ability to discern complex patterns indicative of structural anomalies.
Distributed computing comes into play to address the computational demands posed by large-scale
bridge data. By distributing tasks across multiple computing nodes, the strategy ensures efficient
processing, accelerates analysis, and supports real-time monitoring. Additionally, parallel processing
further optimizes computational efficiency by concurrently handling multiple data streams or tasks,
reducing processing time. Together, these elements create a robust and scalable framework capable of
handling the intricacies of bridge structural health monitoring, allowing for timely and accurate
assessments of structural conditions.
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4 Detailed Description of the Arched Bridge

The study focuses on the arched bridge with suspended cross girders supported by a steel suspension
system, spanning 70 m with a width of 18 m and a height of 15 m. The bridge is made primarily of high-
strength structural steel, known for its durability and ability to withstand heavy loads. The deck is
composed of reinforced concrete, providing a stable surface for vehicles and pedestrians. The bridge
features multiple spans supported by steel trusses, which are interconnected by cross-bracing for
additional stability. The piers are made of reinforced concrete, anchored deep into the riverbed to ensure
structural integrity. To monitor its structural health and vibrations, triaxial accelerometers, foil strain
gauges, and linear variable differential transformers (LVDTs) were installed at strategic points, including
the arch apex, mid-span of the deck, hinges, and critical connections. The data acquisition system
comprises high-resolution multi-channel data loggers sampling up to 2000 Hz, powered by solar units
with battery backups, and employs wireless transmission for real-time monitoring. This high sampling
rate allows for accurate recording of the fast changes in structural behavior, ensuring comprehensive data
collection for analysis. Sensors were calibrated for accuracy and installed with industrial-grade adhesives
and mechanical fasteners to ensure reliable measurements, with data stored locally and periodically
uploaded to a cloud server for long-term analysis.

The mechanical characteristics of the materials used in the bridge are as follows: The arch is made of
high-strength steel with a Young’s modulus of 210,000 MPa, a density of 7850 kg/m?, an ultimate tensile
strength of 460 MPa, and a compressive strength of 250 MPa. The suspension elements and cross girders
are also constructed from this high-strength steel, ensuring consistent material properties throughout the
structure. The deck is made of reinforced concrete with a compressive strength of 40 MPa and a density
of 2400 kg/m?, reinforced by high-strength steel rebar with a Young’s modulus of 210,000 MPa, a yield
strength of 500 MPa, and an ultimate tensile strength of 600 MPa.

Damage Scenarios: Vibration measurements were taken at different intervals to observe various types
and levels of damage. The types of damage observed included minor cracks, material fatigue, and joint
loosening, which were categorized into three levels: minor, and severe. Minor damage involved small
cracks and negligible material degradation, while severe damage involved significant structural integrity
loss and large material fatigue. This comprehensive monitoring approach ensures detailed analysis of the
bridge’s structural health, supporting its long-term durability and safety. By continuously assessing, the
current condition of the bridge can be accurately predicted, enabling timely maintenance and repair
interventions to ensure its long-term durability and safety.

4.1 Finite Element Analysis (FEM)

Abaqus software is used for modeling structural elements of tied-arch bridge. Material properties and
section properties are assigned, and appropriate element types are selected for meshing, considering
factors like geometry and expected behavior. Meshing is performed with careful consideration of mesh
size, quality, and editing to achieve a balanced distribution. Assembly tools are used to connect multiple
parts. Loads, boundary conditions, and analysis setup are specified to simulate operating conditions.
Loading calculations have been done according to IRC codes which are used for bridge designing.
Hangers and bracing members are modeled as a truss member to transfer the axial force only, no bending
moments will not come for these members. Pined supports are applied at all end nodes of the arch at both
ends. The job is submitted for analysis, and the results are post-processed to extract relevant information
such as displacements, stresses, and strains. Fig. 1 shows the status of structural deformations and vertical
acceleration contour on the finite element model of the arch bridge. Spatial acceleration can provide
insights into how different regions of the bridge experience dynamic responses. The positive (red) and
negative (blue) values reveal the nature of the structural response to applied loads. Intermediate colors
show the gradual transition of values between the extreme’s nodes.
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Figure 1: Spatial accelerations (a) x-direction, (b) y-direction

Fig. 2 shows examples of the joint’s nonlinear dynamic time history for strain and stress in the x axis,
while Fig. 3 shows examples of the joint’s nonlinear dynamic time history for acceleration in the x and y axes.

These structural responses are used for further analysis.
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Figure 2: Examples of the joint’s nonlinear dynamic time
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4.2 Time Frequency Analysis Based EMD Algorithm and Hilbert-Huang Transform

Empirical mode decomposition (EMD) is a data-adaptive multiresolution technique to decompose a
signal into physically meaningful components [27]. It can be used to analyze non-linear and
non-stationary signals by separating them into components at different resolutions and can be used to
perform time-frequency analysis while remaining in the time domain. The components are in the same
time scale as the original signal, which makes them easier to analyze. The EMD principle is to
decompose adaptively a given signal into IMFs extracted from the signal by means of the sifting process.
The name IMF is adapted because it represents the oscillation mode embedded in the data [28]. With this
definition, the IMF in each cycle, defined by the zero crossings of, involves only one mode of oscillation,
no complex riding waves are allowed. Thus, an IMF is not restricted to a narrow band signal, and it can
be both amplitude and frequency modulated. The EMD picks out the highest frequency oscillation that
remains in the signal. Thus, locally, each IMF contains lower frequency oscillations than the one
extracted just before. Also, the EMD does not use any pre-determined filter, it is a fully data driven
method. Since the EMD decomposition is based on the local characteristics time scale of the data, it is
applicable to nonlinear and nonstationary processes. Having obtained the IMFs using the EMD method,
one applies the Hilbert transform to each IMF component to obtain its amplitude and phase angle, which
are used to estimate the natural frequencies and damping ratios of a civil structure [27]. However, in this
study, the IF and IA of the separated of an amplitude modulation-frequency modulation (AM-FM) signal
IMFs are calculated using the discrete energy separation algorithm (DESA). Fig. 4 analysis technique
based on Empirical mode decomposition.

I DESA
Structural — Empirical I _I, IA
response mode - |— DESA I || CNN

DESA 1

Figure 4: Analysis technique based on Empirical mode decomposition

EMD is used as a multiband filtering to separate the signal components in the time domain and hence
reduce multicomponent demodulation to multicomponent one. DESA is used to track the IF and IA of a
monocomponent AM-FM signal. The Teager energy operator captures the nonlinearity in the signal and
is used to compute the time-frequency representation of the signal. Each of these steps is crucial in
extracting meaningful insights from large and complex datasets. The sifting process helps analysts and
researchers focus on the most pertinent information, thus enabling informed decision-making or further
research.

4.3 Hilbert-Huang Transform

Apply the Hilbert transform to each IMF obtained from the EMD process. This results in a complex-
valued signal for each IMF, forming the analytic signal. Having obtained the IMFs using the EMD
method, one applies the Hilbert transform to each IMF component. With this definition ¢;(¢) and H|c;(¢)]
form a complex conjugate pair, which defines an analytic signal z;(¢) [28]:

zi(t) = ai(t)exp(joi(?)) (1)



SDHM, 2024, vol.18, no.6 771

Amplitude and Phase: For each IMF, extract the amplitude a;(¢) and phase 0;(¢) from the complex
analytic signal:

ai(t) = \/ei(0)® + Hlei(t)] @)
_ Hlci(1)]
0;(t) = arctan (W) 3)

Instantaneous Frequency: Compute the instantaneous frequency w;(¢) as the derivative of the phase
with respect to time. Therefore, the instantaneous frequency w;(¢) can be given by:

Instantaneous Amplitude: The instantaneous amplitude a(¢) is the magnitude of the complex analytic
signal:

“4)

a(t) =1/> . at)’ (5)
Thus the original data can be expressed in the following form:

x() =Re S " aft)exp (j / wi(t)dt) 6)

where the residue r,,(¢) has been left out. Re {.} denotes the real part of a complex quantity. Eq. (6) enables us
to represent the amplitude and the instantaneous frequency, in a three-dimensional plot, in which the
amplitude is the height in the time-frequency plane. This time-frequency distribution is designated as the
Hilbert-Huang spectrum H(w, ?):

H(w, t) =Re Z;;l a;(t)exp (j/w,(t)dt) (7)

This process allows you to characterize the time-varying frequency and amplitude components present
in the original acceleration data. It’s a powerful approach for analyzing non-stationary signals.

wln] = di‘;}g”] ®)
A
)= ot ©

The terms w;(?) is instantaneous frequency, 0;(¢) is the phase with respect to time, a(?) is instantons
amplitude, a;(¢) is the magnitude of the complex analytic signal for the i-th component; ¢[n] is phase
used in the discrete form of instantaneous frequency; ([n] is the damping ratio in discrete form; A[n] is
magnitude in discrete form; A[n] is derivative of magnitude in discrete form.

4.4 Discussion and Results Analysis

Figs. 5 and 6 in the study show the Intrinsic Mode Functions (IMFs) derived from the vibration
measurements. IMFs are obtained using the Empirical Mode Decomposition (EMD) method, which
decomposes the vibration signals into a set of functions that represent the inherent oscillatory modes of
the bridge. In Fig. 5, there are 9 plots, each representing an IMF component over time in seconds. The
IMFs seem to be capturing different frequency components within the vibration signal, which is typical in
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EMD analysis. This figure is a baseline measurement, which suggests that this is the reference state of the
structure under normal conditions or before any damage has occurred. Fig. 6 also shows 9 plots of IMFs
over time in seconds. The appearance of the IMFs suggests more prominent fluctuations, especially in the
last plot (IMF9), which could indicate changes in the structural conditions, such as the presence of
damage or alterations in the dynamic properties of the structure. The amplitude of the fluctuations in the
Fig. 6 seems larger, especially in the lower order IMFs (e.g., IMF9). This might be a sign of increased
vibration levels, possibly due to damage or changes in the structural integrity. The patterns in the Fig. 5
are relatively uniform, whereas the Fig. 6 shows more variability. In structural health monitoring, changes
in pattern or amplitude can signify changes in the physical state of the structure. The comparison suggests
that there might be significant differences between the baseline and current conditions, indicating
potential changes in the structural health of the bridge. However, to draw conclusive insights regarding
the structural health, engineers would usually conduct further analyses involving more comprehensive
data, potentially including other types of sensors and longer monitoring periods, to confirm any findings
suggested by the IMF comparisons.
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Figure 5: The IMFs component of vibration measurement of baseline of bridge condition

Figs. 7 and & depict the instantaneous frequency content of Intrinsic Mode Functions (IMFs) derived
from vibration data of a bridge, analyzed using Hilbert-Huang Transform (HHT). This type of analysis is
crucial in structural health monitoring to identify changes in the structural characteristics of the bridge
over time, which can be indicative of damage or deterioration. The Figure of baseline condition shows
the frequencies are relatively stable over time, with only a few fluctuations. This stability suggests no
significant structural changes or damages at the time of this measurement. The lower frequency content
in some IMFs could be related to the fundamental structural frequencies of the bridge, and their stability
is a sign of structural health [29]. The Figure of the current bridge condition compared to the baseline
condition, shows that there are noticeable differences in the frequency content, with more fluctuations
and some IMFs showing larger variations in frequency over time. The presence of these fluctuations and
the change in frequency content could suggest potential structural changes or damage. For example,
increases in frequency might indicate a loss of mass or stiffness in certain bridge components. The lower
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IMFs, which generally represent the dominant structural frequencies, seem to have more variability, which is
particularly concerning from a structural health monitoring perspective. Also, the range of frequencies
present in the current condition may have shifted or broadened compared to the baseline. A broader
range could mean that new vibration modes are being excited due to changes in the structure. Also, the
current condition plots show potential anomalies or sudden changes in frequency, especially at specific
time intervals. These could correspond to events or defects affecting the bridge. In the context of
structural health monitoring, comparing these figures allows engineers to detect changes in the structural
behavior of the bridge over time. The variations in frequency content between the baseline and current
conditions can be analyzed further to diagnose potential damages or to decide on maintenance actions.
It’s important to consider that while some variability is expected due to environmental factors (like
temperature and wind), significant deviations from the baseline can be a sign of structural issues that
need to be addressed.
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Figure 6: The IMFs component of vibration measurement of current bridge condition

5 CNN Architecture

The machine learning (ML) in bridge health monitoring revolutionizes condition assessments by
enabling accurate predictions and proactive maintenance strategies [30]. ML algorithms excel in anomaly
detection, recognizing patterns, and predicting structural degradation [24]. This technology provides real-
time monitoring capabilities, adaptability to dynamic conditions, and the ability to process data from
diverse sensor networks. Regression analysis and ensemble learning enhance accuracy, while continuous
learning ensures models remain relevant over time. ML-driven decision support facilitates prioritized
maintenance, resource allocation, and long-term structural health planning. Overall, the ML in bridge
health monitoring marks a transformative shift towards more adaptive, accurate, and predictive
assessments, contributing to the resilience and safety of bridge infrastructure.

5.1 Convolutional Neural Network (CNN)

A CNN is a type of feed-forward neural network (FFNN), stands out as a cornerstone algorithm in the
realm of deep learning. Based on the convolution kernel sliding operation characteristics, combined with the
improved neural network algorithm, it can effectively understand and capture images. This makes it great for
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detecting things like cracks in images and it is currently the most commonly used image-based crack
detection method [31,32]. A standard CNN architecture comprises essential components such as

convolutional layers, pooling layers, activation functions, and fully connected layers, as depicted in Fig. 9.
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Figure 9: The architecture of a standard CNN

5.1.1 Convolution Layers

The convolutional layer serves as the heart of the CNN, playing a vital role in extracting features from
input data. By applying a convolution operation with a pre-defined kernel, the layer can detect intricate
details like image contours, and produce the corresponding feature map. Through this process, multiple
input feature maps are combined, eventually leading to an output representation that covers the learned
features. The output is expressed as the following:

=S (X ok ) (19)

where M; represents a set of input feature maps, and each output feature map is augmented with an additive
bias b. The input feature maps undergo convolution with distinct kernels tailored for each output feature map.

5.1.2 Gradients in the Convolution Layers

The pooling layer works by either selecting the maximum or average value within a neighborhood,
effectively downsampling the feature map or reducing its spatial size. Meanwhile, the activation function
layer utilizes functions to process the input data. The widely used activation functions, such as the ReLU
function and its variants, help introduce non-linearity into the network. In this process, each feature map j
undergoes a similar computation as in the convolutional layer, alongside a corresponding map calculated
in the pooling layer.

o = B (f () owp (5)) (11)

where up(-) denotes operation that up-sample the data, where each pixel in the input is replicated horizontally
and vertically n times in the output if the subsampling layer reduces the data by a factor of n. The down-
sampling layer 1 + 1 directly follows the convolution layer 1 for computation of calculate sensitivity, the
units in layer I + 1 are connected to the relevant units in the current layer 1, and these connections are
assigned weights defined at layer 1 + 1. In this context, the weights at a down-sampling layer map are
represented as f3, and the previous result scaled by f is computed to achieve f. The gradients with respect
to the bias b; and kernel weight ké. are expressed as follows:

g—,i =D s <5Jl'>w (12)
= (), 60, 03
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where (p’ 1), is the patch in x/~! multiplied by kj; through element wise process to compute the element at
(u, v) in the output map x’ in the convolutional layer

5.1.3 Sub-Sampling Layers
At a subsampling layer, down-sampled versions of the input maps are generated.

3 = f (Bidown (1) + ) (14)
where down(-) represents a sub-sampling process.

5.1.4 Gradients in the Sub-Sampling Layers
Convolutional layers encase the subsampling layers both above and below. Parameters that can be
learned, such as bias parameters f and b, require updating.

g—f]. =D s <5Jl'>w (15)
§—§= D (5.zl'°d§)w (16)

5.1.5 Learning Combinations of Feature Maps
Let a;; denotes the weight that connects output map j and input map i. The output map j can be defined as:

= (S0 k) + ) (17)
Expose to the constraints:

Y ay=Tland0 <oy <1, (18)
The soft max derivative process can be defined as:

gi]j = Okt — 0Lk (19)

While the error derivative regarding o; and c¢; is specified as:

OE  OE o'
— == oo (X« k! 20
aOCl' 8“1 a(xl, ; ( © ( i * l))uv ( )
Here, the inputs u, &' denotes the sensitivity map concerning an output map. To compute the error

gradients of the network with respect to the underlying weights ¢;, a chain rule is applied:

OE aock
8c, Zaak dc; (60(, Zaak ) @D

5.1.6 Enforcing Sparse Combinations

The weights distribution o; is subjected to wsparseness constraints for a given map by including a
regularization penalty term (o) into the final error function. The regularization penalty () can be
derivative as:

Q)
8cc,~

= Asign(o;) (22)
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The study provides examples to elucidate convolution and pooling processes, with illustrations in
Figs. 10 and 11 showing the convolution process. Specifically, the study employs average pooling as
demonstrated.
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Figure 10: The input data is 7 x 7 x 3 dataset, where 7 x 7 represents width and height (pixels), and
3 represents B R G color channels
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Figure 11: Max and average pooling operation in the CNN algorithm

In the fully connected layer, each neuron is linked to every neuron in the preceding layer. Activated
neurons in the trained CNN model contribute to scoring the category of the predicted image. The selected
loss function, typically cross-entropy loss, computes the training loss. Subsequently, weights are updated
using the backpropagation (BP) algorithm and gradient descent. Stochastic gradient descent stands out as
the most favored method for implementing gradient descent, due to its widespread adoption.

5.2 Training and Optimization

The damage scenarios used for training the CNN are derived from vibration measurements collected at
various intervals, each interval representing a specific condition of the bridge. These datasets are
systematically partitioned into training, testing, and validation sets to ensure comprehensive model
development and evaluation. The training process for the CNN in bridge health monitoring adopts a
comprehensive approach. It commences with transfer learning, utilizing pre-trained models for associated
tasks, and then fine-tunes them on the task-specific bridge health dataset. Data augmentation techniques
improve generalization, while optimization algorithms minimize the loss function, including
regularization approaches to avoid overfitting. Ensemble training coordinates multiple CNN modules to
collectively contribute to overall predictive capabilities. Cross-validation evaluates generalization
performance, and nonstop monitoring and updating mechanisms adapt the models to evolving bridge
health patterns. This holistic training process confirms a CNN group is optimized for adaptive, accurate,
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and robust structural health assessments. Strategies for handling challenges in bridge monitoring include
resampling techniques to handle class imbalance, synthetic data generation for minority class
representation, weighted loss functions to adjust for address prevalence, ensemble approaches for
anomaly detection and noise reduction to recognize and treat outliers, hard data quality checks,
considerate feature engineering, adaptive learning for continuous adaptation, regularization techniques to
avoid overfitting, and expert consultation for nuanced problem-solving. These strategies collectively
improve the model’s robustness, accuracy, and reliability in monitoring and evaluating the bridges health.
This approach allows the CNN to effectively learn and predict the current condition of the bridge based
on the vibration data.

Table 1 provides detailed settings for a convolution layer, where C1 denotes the first convolutional layer
comprising six feature maps. Each feature map neuron has an 8 x 8 connection size to the input matrix,
resulting in feature maps sized 148 x 148 matrices. There are a total of four filters, each with 8 x 8 unit
parameter weights and a bias parameter, amounting to (8 x 8 + 1) x 4 = 260 tuned parameters. With
one kernel between the input and the first convolutional layer C1, the total connections amount to
260 x (148 x 148) = 5,695,040. A sub-sampling layer S1, having (1 + 1) x 2 = 4 tuned
parameters and (4 x 4 + 1) x 2 x (64 x 64) = 139,264 connections, follows this, along with similar
architectures for the subsequent layers, C2 and S2, as depicted in Table 1. Essential parameters for CNN
training are outlined in Table 2. Fig. 12 illustrates the training performance using supervised mode, while
Algorithm 1 delineates the training and evaluation procedures conducted using MATLAB software.

Table 1: Detailed settings of the convolution layers

Layer Kernel size Number of parameters Number of connection
C1 8x 8 148 5,695,040

S1 4x 8 4 260

2 8x 8 // /

S2 4 x 4 // /

Table 2: CNN key parameters

Training time Gauge Training rate Attenuation factor
60 sec 12 1074 1076

—Train
——Validation
— Test

Best

-
S,
N

Mean Squared Error (mse)

0 20 40 60 80 100
100 Epochs

Figure 12: CNN training performance
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Algorithm 1: Training, and Testing of Proposed CNN

1: input: W: Network parameter matrix weight w;; and bias b,

2: output: score of CNN trained model on the structure images for crack detection
3: let f be the feature set 3d matrix

4: for i in the dataset do

5: let f; be the feature set matrix of sample 1
6: for j ini do

7: Vi < vectorize,

8: append V; to f;

9: append f; to f

10: frains Trests lpains liest <— the split feature set and prediction into train subset and test subset
11: M — CNN (f44in, Lirain)

12: score «<— evaluation (1,, L.y, M)

13: return score

14:  end for

15: end for

Figs. 13 and 14 provide a comparison between CNN-predicted data and FEM results for the nonlinear
dynamic time history of joint acceleration in the x and y axes, as well as stress and strain in the x axis. As
depicted in the figures, the CNN demonstrates significantly improved prediction quality for this case
study, showing its effectiveness in accurately modeling the structural behavior.
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Figure 13: A comparison between CNN and FEM results of joint’s nonlinear dynamic time history for
(a) strain and (b) stress in the x axis
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Figure 14: A comparison between CNN and FEM results of the joint’s nonlinear dynamic time history for
acceleration in (a) x axis and (b) y axis

6 Conclusion

This study provides a comprehensive analysis of the vibrational characteristics of the bridge by
comparing baseline and current conditions using Intrinsic Mode Functions (IMFs) and CNN. The
comparison reveals significant changes in the vibrational patterns, indicating potential structural issues.
Specifically, there is an increase in amplitude variability across several IMFs, particularly in IMF4 to
IMF9. In the baseline condition (Fig. 5), IMF4, IMF5, and IMF6 have peak values of around 0.05,
whereas, in the current condition (Fig. 6), these IMFs show an increase in amplitude variability, with
peak values of around 0.1. Similarly, IMF7 and IMFS in the baseline condition have peak values around
0.02, but in the current condition, they increase to approximately 0.05. IMF9 shows a substantial change
from peak values of 0.002 in the baseline to around 0.08 in the current condition. These changes suggest
that the bridge has experienced structural modifications that could indicate damage or deterioration, such
as material fatigue, joint loosening, or other structural degradations. The quantitative differences in the
IMFs’ amplitudes highlight the need for further inspection and possible maintenance to address these
changes.

The effectiveness of the CNN model is demonstrated by a significant decrease in the mean squared error
(MSE) from 1072 to 10* over 100 epochs, as shown in Fig. 12. Figs. 13 and 14 compare CNN and Finite
Element Method (FEM) results for strain, stress in the x axis, and acceleration, showing close alignment and
validating the CNN’s accuracy in predicting the bridge’s structural response under dynamic loading
conditions. This quantitative validation supports CNN’s utility in practical structural health monitoring
applications, ensuring the bridge’s long-term safety and functionality.

The findings underscore the importance of continuous monitoring and predictive modeling to ensure the
bridge’s safety and longevity. By analyzing the vibration data at various intervals, we can accurately predict
the current condition of the bridge and implement timely interventions to maintain its structural integrity. The
observed changes in vibrational characteristics, particularly the increased amplitudes in IMFs4 through 9,
indicate potential structural issues that require immediate attention to prevent further degradation. This
study contributes to the field of structural health monitoring by demonstrating the effective use of CNNs
for predicting bridge conditions based on high-frequency vibration measurements. It highlights the value
of using Intrinsic Mode Functions (IMFs) to analyze vibrational characteristics and sets a precedent for
proactive maintenance strategies, ensuring the long-term durability and safety of critical infrastructure.
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