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ABSTRACT

In this study, we assessed the impact of substituting natural fine aggregates with municipal solid waste incinera-
tion bottom ash (MSWI-BA) in steel fiber (SF)-reinforced concrete on its compressive properties post high-tem-
perature exposure. The concrete specimens incorporating MSWI-BA as the fine aggregate and SFs for
reinforcement underwent uniaxial compression tests after exposure to high temperatures. Through the tests,
we investigated the impact of high-temperature exposure on mechanical properties, such as mass loss rate,
stress-strain full curve, compressive strength, peak strain, elastic modulus, and so on, over different thermostatic
durations. The analysis revealed that with the increasing exposure temperature and durations, the mass loss rate
gradually increased; compressive strength initially increased and then decreased; peak strain significantly
increased; stress-strain curve flattened, and elasticity modulus monotonically decreased. Different thermostatic
durations led to distinct critical temperatures for the compressive strength (700°C for 1.0 and 1.5 h, and
500°C for 2 h). The concrete specimens exhibited an increasing compressive strength below the critical tempera-
ture, followed by a rapid decrease upon exceeding it. Based on the strain equivalence hypothesis and Weibull dis-
tribution theory, we derived expressions for the total damage variables and a uniaxial compression constitutive
model, which accurately reflected the changing macro mechanical properties of concrete under various exposure
temperatures and thermostatic durations. The concrete matrix microscopic morphology continuously deterio-
rated beyond 500°C, resulting in a loss of compressive strength. This degradation in the concrete microstructure
serves as the fundamental cause for the decline in its macroscopic mechanical properties.
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1 Introduction

Waste management is a pressing global environmental concern, with daily municipal solid waste
generated requiring effective control [1,2]. Currently, two primary methods, namely sanitary landfilling
and incineration, are employed to address these issues [3–5]. In the incineration process, the main solid
products are fly ash and bottom residue (municipal solid waste incineration bottom ash; MSWI-BA) [6–
8]. MSWI-BA can substitute certain fine natural aggregates in concrete, owing to similar physical
properties. This can minimize (i) domesticwaste disposal pressures, (ii) MSWI-BA landfilling issues, and
(iii) environmental pollution [9–11]. It further reduces the demand for sand and gravel extraction [12].
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This practice is consistent with the ideas of sustainable development and helps promote resource recycling
and environmental protection [13–15].

Studies on the use of MSWI-BA as a substitute for natural aggregates have gained significant interest in
recent years. Concrete mixed with MSWI-BA shows a slight decrease in mechanical properties compared to
traditional concrete, but meets usage requirements [16,17]. Moreover, the addition of MSWI-BA enhances
concrete durability by reducing coarse capillary porosity [6]. Li et al. [14] found that the chloride
permeability of eco-SCM deteriorates by adding MSWI-BA, however, with insufficient durability.
Thomas et al. [18] revealed that upon inducing freeze-thaw cycles, the frost and abrasion resistance of
mortars made with MSWI slag were comparable to or even higher than those made with natural
aggregates. To summarize, MSWI-BA-reinforced concrete meets engineering requirements for durability,
mechanical properties, and workability, offering advantages, such as reduced production costs, carbon
footprint, and energy consumption compared to ordinary concrete [13].

The resistance of concrete to extreme environmental conditions is a crucial aspect of durability analysis.
With the increasing complexity of engineering structures, it is crucial to study the mechanical properties of
concrete under events of fires and explosions [19–23]. Studies on MSWI-BA mixtures have indicated that its
incorporation can reduce the thermal conductivity of the concrete mix [24]. However, excessive amounts
(>6%) may lead to matrix cracking due to low activity and porosity, potentially affecting high-
temperature performance [25].

Fibers can be incorporated within concrete to improve its refractory properties [26–28]. Steel fibers
(SFs) can significantly enhance the mechanical properties of concrete after exposure to high temperatures
[29–32]. Specifically, SF reinforcement in concrete has been shown to (i) improve residual shear strength
compared that of ordinary concrete [33]; (ii) prevent spalling and significantly improve the ductility and
cracking behavior after exposure to high temperatures [34]; and (iii) effectively increase the high-
temperature residual strength and improve the damage mode, while enhancing the toughness and fracture
energy [35]. Yang et al. [36] found that an appropriate BF volume content can reduce the damage degree
and failure mode of BFRC. However, the high-temperature performance of fiber-reinforced concrete still
requires systematic analysis to better understand the underlying mechanisms behind the performance
changes. Shen et al. [37,38] proposed a four-step multi-scale homogenization method to predict the SFRC
thermal conductivity evolution at high temperatures, while considering the effect of crack resistance
(cracks can occur due to high temperatures, water loss, and dehydration). Yu et al. [39] established a
constitutive model based on the Drucker Prager model [40], considering the coupled effect of high
temperature and high strain rate on concrete. In the abovementioned studies, experimental data was used
to establish simplified relationships, expressing thermal conductivity or strain rate as a function of
temperature to quantitatively determine its impact on concrete. Singh et al. [41] explored the use of
MSWI-BA in fiber-reinforced concrete and its impact on the mechanical properties.

In this study, we aimed to further investigate the effects of adding MSWI-BA in concrete, especially post
SF reinforcement. We constructed concrete specimens using MSWI-BA and SFs, and performed uniaxial
compression tests after exposing the specimens to high temperatures. The effect of varied heating
temperatures and thermostatic durations on the compressive strength, peak strain, and elastic modulus of
the specimens were analyzed. Additionally, microstructural changes in the specimens were observed via
scanning electron microscopy (SEM), revealing the strength degradation from both macroscopic and
microscopic perspectives. Using the experimental results, a constitutive model and total damage evolution
equation were established based on the strain equivalence principle to evaluate the damage evolution in
thermally damaged MSWI-BA-and SF-SF-reinforced concrete. This study can promote the widespread
application of MSWI-BA-and SF-reinforced concrete in engineering practice and the development of new
green concrete fields.
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2 Experimental Design

2.1 Materials
The cementitious materials employed in this study include ordinary silicate cement (PO 42.5) and class I

fly ash. Well-graded river sand with a fineness modulus of 2.61 was used as the fine aggregate, while the
coarse aggregate consisted of crushed stone with a particle size in the range of 5–20 mm. Additionally, a
polycarboxylic-acid-based high-efficiency water-reducing agent was incorporated to effectively lower the
water-cement ratio and enhance the compressive strength. Standard tap water, meeting national quality
standards, was used for mixing. To enhance the refractoriness of the concrete, copper-plated SFs were
selected for reinforcement (Fig. 1; Table 1). These fibers boast of high tensile strength and modulus of
elasticity, improving toughness, crack resistance, and fatigue resistance in concrete. Moreover, they
mitigate concrete spalling during exposure to high temperatures. The activated filler, MSWI-BA, was
sourced from the raw bottom ash of a waste incineration power plant in Wuhan, China. Post-processing
yielded fine particles with a maximum particle size of 5 mm (Fig. 2; Table 2).

2.2 Mixing Ratios
We explored various aspects of SF-reinforced concrete [42–44]. Based on the optimal SF volume

admixture range of 0.5%–1.5% for reinforcing concrete [45,46], we fixed the SF volume to 1.0% for our
test specimens. Preliminary tests were conducted to determine the optimum MSWI-BA content in
concrete and its impact on the compressive and flexural strength of the specimens over a range of
temperatures (Table 3).

Figure 1: MSWI-BA fine aggregates

Table 1: Copper-plated SF performance indicators

Length/mm Diameter/mm Tensile strength/MPa Density/(g·m−3)

13 0.18~0.23 ≥3000 7.80
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2.3 Specimen Preparation
To address the high water absorption of MSWI-BA, a pre-wetting process was implemented to ensure

water-cement ratio uniformity in the concrete specimens. The pre-wetting mixing procedure involved
soaking the MSWI-BA aggregates in water for 3 min. Subsequently, sand, MSWI-BA aggregate, gravel,
cement, and fly ash were weighed and poured into the vibrating mixer for dry mixing for 1 min.
Subsequently, the net water consumption was added gradually over a 2-min mixing process, incorporating
SFs. Each group produced three specimen cubes of dimensions 100 mm × 100 mm × 100 mm. These
specimens were demolded after 24 h and placed in a curing room at (20 ± 2)°C with over 95% humidity
for 28 d before conducting the high-temperature tests.

2.4 Thermal Exposure Test
After completing the curing process, the specimens were placed in a 60°C oven for 1 d to

facilitate drying and removal of excess water. Subsequently, high-temperature tests were performed using

Figure 2: Copper-plated SFs

Table 2: MSWI-BA physical properties

Bulk density/(kg/m3) Apparent density/(kg/m3) Water absorption/% Void rate/% Crushing index/%

1192 2430 10.5 41.2 31.1

Table 3: Concrete mixing ratios (kg/m3)

MSWI-BA dosage Water Cement Sand MSWI-BA Gravel Fly ash Steel fiber

0 195.0 436.0 558.0 0 1134.0 77.0 78.0

20 195.0 436.0 446.4 111.6 1134.0 77.0 78.0

40 195.0 436.0 334.8 223.2 1134.0 77.0 78.0
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a SX2-4-10N box resistance furnace, which has a maximum heating temperature of 800°C and a maximum
heating rate of 30°C/min. Currently, there exists no standard protocol for subjecting concrete specimens to
high temperatures. The following protocols have been employed in previous studies: Varona et al. [47] used
heating rates of 4.6–8.3°C/min and a dwell time of 75 min for cylindrical specimens with a diameter of
76.4 mm; Zhang et al. [48] used heating rates of 5–12.0°C/min and a dwell time of 180 min for cubic
specimens with a side length of 150.0 mm; and Li et al. [49] used a heating rate of 3.3°C/min and a
dwell time of 2 h for cylindrical specimens with a diameter of 140.0 mm. To achieve all target
temperatures within a reasonable timeframe while preventing specimen cracking due to excessive heat,
we set the heating rate to 5°C/min. We primarily focused on the effect of high-temperature exposure time
on the degree of concrete damage. Therefore, upon reaching the target temperature, we maintained the
temperature for 1.0, 1.5, and 2.0 h. Subsequently, the furnace was switched off and the samples were
naturally cooled to room temperature within the furnace (the cooling rate was not controlled). The
specimens were tested within 24 h after the heating and cooling process. All specimens were weighed
using an electronic weighing scale with a range of 0–20 kg and an accuracy of 0.1 g before and after
heating to determine weight loss due to thermal exposure (Table 4; Fig. 3).

Table 4: Concrete specimen experimental test designs and compressive strength

Number T/°C H/h fT/GPa Number T/°C H/h fT/GPa

T25 25 0 48.1 T500-H1.5 500 1.5 48.9

T300-H1 300 1 51.8 T500-H2 500 2 43.2

T300-H1.5 300 1.5 56.6 T700-H1 700 1 42.3

T300-H2 300 2 61.4 T700-H1.5 700 1.5 35.5

T500-H1 500 1 53.2 T700-H2 700 2 29.4

Figure 3: Concrete specimen heating process
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2.5 Mechanical Performance Test
The compressive strength tests were conducted on a universal testing machine with a loading rate of

0.5 MPa/s (Fig. 4). To measure the axial strain during compression, strain gauges (length = 50 mm) were
affixed axially onto the cubic specimen surface. A high-speed static data acquisition instrument was used
to collect strain data, and the acquired force and deformation data were utilized to construct the stress-
strain curves.

Here, fT represents the cube compressive strength of the concrete specimens after high-temperature
exposure; T is the heating temperature; and H is the thermostatic duration.

3 Results and Analysis

3.1 Multiscale Analysis

3.1.1 Surface Morphology
We analyzed the evolving appearance of the concrete specimens exposed to various temperatures (Fig. 5).

Initially, at ambient temperature, the specimens exhibited rough and uneven surfaces, characterized by a brittle
and friable texture, with numerous unevenly distributed surface pores. This can be attributed to the reaction
between metallic aluminum (Al) in IBA and concrete, leading to the generation and escape of hydrogen
(H), which results in the expansion and cracking of the hardened cement paste. Upon exposure to elevated
temperatures, the color of the specimens gradually darkened and surface pores and cracks became more
pronounced. Although at 300°C, the surfaces displayed no evident cracks, at 500°C, the cracking
significantly increased, accompanied by brownish-red traces of oxidized SFs. Further, at 700°C, the
brownish-red traces intensified and crack width increased with the intersection of smaller cracks. These
observations highlighted 500°C as a critical temperature threshold for surface damage in the concrete
specimens. Beyond this point, increasing the temperature noticeably enhanced surface damage.

3.1.2 Microscopic Analysis
The SEM images of the specimens at room temperature revealed the cement matrix to be flat and dense,

with SFs uniformly covered by hydration products, forming a strong bond (Fig. 6a). Some residual cement
particles were observed on the matrix surface due to the high porosity of MSWI-BA. These particles were
drawn into the pores with water, hindering complete participation in the hydration reaction. Additionally,

Figure 4: Compressive strength test setup
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matrix holes and microcracks occurred due to Al-induced H generation inMSWI-BA. At 300°C, the specimens
exhibited a high-temperature strengthening effect, with secondary hydration of cement particles generating
additional C–S–H gels and forming a denser matrix structure. This resulted in a macroscopic increase in the
concrete strength compared to ambient conditions (Fig. 6b). At 500°C, distinct cracks emerged in the
cement matrix, impacting its densification (Fig. 6c). Concurrently, a decrease in the hydration products on
the SF surfaces weakened their adhesion to the matrix, resulting in a lower macroscopic strength compared
to that at 300°C. Upon exposure to 700°C, the cement matrix displayed significant looseness, characterized
by numerous cracks and pores, and experienced a notable reduction in C–S–H gel content (Fig. 6d). These
factors collectively contributed to a sharp decrease in the specimen strength.

Figure 5: Surface morphological changes in the concrete specimens over 1.5 h of high-temperature
exposure: (a) 25°C, (b) 300°C, (c) 500°C, and (d) 700°C

Figure 6: SEM images of concrete specimens after 1.5 h of high-temperature exposure: (a) 25°C, (b) 300°C,
(c) 500°C, and (d) 700°C
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3.2 Mass Loss
The concrete specimen mass loss rate, m, after high-temperature exposure can be expressed as

m ¼ m0 � m1

m0
� 100%; (1)

where m0 and m1 are the specimen masses (kg) at room temperature and after high-temperature exposure,
respectively.

The mass loss rate showed an ascending trend corresponding to higher temperatures (Fig. 7). It primarily
resulted from cement matrix moisture evaporation, C–S–H gel dehydration, and cement paste cracking and
peeling. Furthermore, the gradual increase in mass loss with prolonged exposure can be attributed to the low
thermal conductivity of concrete, leading to non-uniform heating from the outer to inner layers at elevated
temperatures. With increasing thermostatic durations at high temperatures, internal hydration products in the
specimens fully decompose, further accelerating the mass loss rate.

3.3 Analysis of Mechanical Test Results

3.3.1 Stress-Strain Relationship
The uniaxial compressive stress-strain curves for the concrete specimens after different thermostatic

durations were roughly divided into four stages (Fig. 8): compaction, elastic, yield, and destruction. Each
of these stages is discussed below in detail:

� Compaction: The curve in this stage exhibited gradual growth. The significance of the compaction-
density stage increased with the increasing temperature (Fig. 8). This can be attributed to the
occurrence of pores within the initially compacted concrete specimens after high-temperature
exposure due to the gradual loosening of the internal structure.

� Elastic: The curve exhibited a linear rise in this phase with an evident critical slope value (Fig. 8).
Below 500°C, temperatures on the higher end promoted a secondary hydration reaction inside the
specimens, repairing defects in the cement matrix, which results in a curve slope similar to that at
room temperature. However, exposure to temperatures exceeding 500°C induced the
decomposition of cementitious materials, gradually expanding the internal cracks in the specimens,

Figure 7: Mass loss rate of concrete specimens after high-temperature exposure
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which manifested as a curve slope decrease. Comparing Figs. 8a–8c revealed that the curve slope for a
fixed temperature decreased with prolonged exposure. This can be attributed to the increased severity
of internal damage in the concrete specimens with longer exposures to a constant high temperature.

� Yield: The curve slope gradually decreased, eventually reaching peak stress. High temperatures
resulted in increased internal pores and cracks in the specimens, generating internal tensile stresses
and reducing adhesion between the aggregates and cement matrix. During this phase, SFs play a
crucial role in bridging the aggregates and limiting crack development, enhancing the specimen
ductility.

Destruction: The curve experienced an abrupt drop and the concrete specimens rapidly deteriorated.
Below 500°C, concrete specimen dehydration resulted in brittleness, and the strain corresponding to the
peak stress was minimal. However, above 500°C, the heat loosened the internal structure, significantly
increasing the strain corresponding to the peak stress and slowing the curve declining rate.

3.3.2 Compressive Strength
The stress-strain curves of the concrete specimens after high-temperature exposure featured a peak,

where the vertical coordinate corresponds to the cubic compressive strength, fT, of the concrete specimens.

Compared to previous studies [50,51], exposing the specimens to a temperature of 300°C evaporated the
free water inside the concrete specimens (Fig. 9). This process increased the contact area of the cement
matrix, promoted specimen hydration, and enhanced S–C–H gel generation, resulting in a denser internal
structure. Notably, the MSWI-BA aggregates did not reach the expansion temperature, contributing to the
increase in the compressive strength of the concrete specimens with prolonged thermostatic durations at
high temperatures. The impact of maintaining the specimens at fixed high temperatures becomes
multifaceted. The internal water evaporation in the specimens promotes the formation of its internal
structure, further tightening the cement paste body and connecting it securely to the SFs, thereby
enhancing the overall specimen strength. On the other hand, the lack of coordination of the thermal
expansion coefficients of the MSWI-BA aggregate and cement paste generates internal tensile stresses,
resulting in crack formation at their interface. The interplay of these two factors results in a diametrically
opposite change in compressive strength with increasing thermostatic time. For thermostatic exposure
times of 1.0 and 1.5 h at 500°C, the strengthening effect of heat on concrete specimens outweighed the
deterioration effect, manifesting as a slight increase in the compressive strength compared to that at
300°C. As the thermostatic duration was further increased, the strengthening effect, and hence, the
compressive strength decreased after 2 h at a constant temperature. At 700°C, the matrix and C–S–H gel

Figure 8: Stress-strain curves for concrete specimens maintained at 25°C, 300°C, 500°C, and 700°C for (a)
1.0, (b) 1.5, and (c) 2.0 h
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attached to the SFs decomposed significantly, reducing its role in bridging the aggregate and inhibiting crack
development. The expansion and deformation of the MSWI-BA aggregate further contributed to cracking
within the concrete. Therefore, such high temperatures have a more deteriorative impact, resulting in a
sharp decrease in specimen strength.

The concrete specimens exhibited a critical temperature for compressive strength for different
thermostatic durations. The critical temperature after 1.0 and 1.5 h was 700°C, and after 2 h was 500°C.
Below (above) the critical temperature, the compressive strength increased (rapidly declined). Based on
the experimental data, the relationship between compressive strength, exposure temperature, and
thermostatic durations was fitted to obtain a correlation coefficient of 0.9629 for the following equation:

fT ¼ 46:34þ 0:057T þ 4:21H � 3:5� 10�5T2 þ 5:34H2 � 0:05TH ; (2)

where T is the exposure temperature (°C) and H is the thermostatic duration.

Using Eq. (2), the comparison of the predicted and actual compressive strength values revealed an error
rate within 10%, with a mean ratio of 1.0014 and variance of 0.0312 (Fig. 10). This indicated the
effectiveness of the fitted function in predicting the compressive strength of the concrete specimens after
high-temperature exposure.

3.3.3 Peak Strain
The stress-strain curves of the concrete specimens after high-temperature exposure featured a peak strain

(εT). To better grasp the impact of exposure temperatures and thermostatic durations, we calculated the ratio
of the peak strain after high-temperature exposure (εT) to that at room temperature (ε25), considering the latter
as a benchmark. The general trend depicted an increase in this ratio with the rising exposure temperature and
thermostatic duration (Fig. 11). High temperatures below 500°C induced gradual pore water evaporation and
increased pressure within the concrete specimens, resulting in microcrack formation. Simultaneously, the
water vapors enhanced contact with unhydrated materials in the concrete, triggering secondary hydration
and generating gels that filled the pores. This consequently increased the strain within the concrete
specimens gradually. However, above 500°C, the peak strain experienced a rapid increase. The SEM
results (Fig. 6) combined with analysis, suggested that higher temperatures led to the (i) gradual

Figure 9: Effect of high-temperature exposure on concrete specimen compressive strength
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decomposition of the cementitious materials, and (ii) mismatch in thermal expansion coefficients of the
MSWI-BA aggregate and cement paste, exacerbating crack damage in the specimens. Particularly at
700°C, significant decomposition of the cementitious material attached to SFs reduced the mechanical
bonding force between them, causing cement paste spalling on the SF surface and further increasing the
peak strain.

The relationship between peak strain, exposure temperature, and thermostatic duration was obtained by
fitting the prediction to the experimental data. We obtained a correlation coefficient of 0.9929 for the
following equation:

eT=e25 ¼ 1:32þ 0:0015T � 0:93H þ 9:09� 10�6T2 þ 0:81H2: (3)

Figure 10: Comparison of predicted and tested values of compressive strength of concrete specimens

Figure 11: Effect of high-temperature exposure on concrete specimen peak strain
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The peak strain predictions obtained using Eq. (3) were compared with the test values (Fig. 12); the error
rate was found to be within 10%, with a mean ratio value of 1.0027 and a variance of 0.0374. This indicated
that the fitted function could effectively predict the peak strain of the concrete specimens after high-
temperature exposure.

3.3.4 Elasticity Modulus
The elastic modulus, Vε, of the concrete specimens decreased consistently with the rising exposure

temperature (Fig. 13). Compared to the room temperature state, the concrete specimens exposed to
300°C, 500°C, and 700°C for thermostatic durations of 1.0, 1.5, and 2.0 h experienced reductions in
elastic modulus by 40.39%, 64.34%, and 81.53%, 50.92%, 74.85%, and 85.29%, 53.59%, 80.27%, and
89.56%, respectively. These results underscored the substantial impact of high-temperature exposure on
the elastic modulus of the concrete specimens, with higher temperatures and prolonged exposure
durations resulting in a diminished ability of concrete to resist deformation.

Figure 12: Comparison of predicted and tested values of peak strain

Figure 13: Elasticity modulus of concrete specimens after high-temperature exposure

516 SDHM, 2024, vol.18, no.4



We then established the relationship between the elasticity modulus, exposure temperature, and
thermostatic durations by fitting the predictions to the experimental data. We obtain a correlation
coefficient of 0.9915 for the following equation:

Ve ¼ 4:78� 0:01T þ 0:22H þ 4:81� 10�6T2 � 0:24H2 � 6:89� 10�5TH : (4)

The comparison of the predicted and experimental Vε values obtained using Eq. (4) demonstrated an
error rate within 20%, with a mean ratio value of 1.0154 and variance of 0.0841 (Fig. 14). This suggested
that the fitted function could effectively predict Vε for the concrete specimens after high-temperature
exposure.

4 Statistical Constitutive Damage Model

4.1 Model Establishment
Based on Lemaitre’s equivalent strain hypothesis [52], the constitutive damage relationship for concrete

specimens under high-temperature conditions can be expressed as

r ¼ E0 1� Dð Þe; (5)

D ¼ DT þ DS � DTDS; (6)

where σ is the stress; ε is the strain; E0 is the elasticity modulus of the concrete specimen before high-
temperature exposure; D is the total damage to the specimen; DT is the damage at a given high
temperature T; DS is the load damage; and DTDS is the coupling phase. The high-temperature damage can
be defined as [53]

DT ¼ 1� ET

E25
; (7)

where E25 and ET are the elasticity moduli of concrete specimens at room temperature and a given high
temperature T, respectively. The elasticity modulus can be computed as [54]

Figure 14: Comparison of predicted and tested values of modulus of elasticity of concrete specimens
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E ¼ r2 � r1
e2 � e1

(8)

where σ1 and σ2 (ε1 and ε2) are the 20% and 80% peak stress (peak strain) values, respectively.

When concrete specimens are subjected to loading, the strength of their microelements conforms to the
Weibull probability distribution [55]. The loading damage, DS, can be defined as the ratio of the number of
damaged microelements, Nf, to the total number of microelements, Nf, and can be expressed as

DS ¼ Nf

Nt
¼ 1� exp � e

a

� �mh i
(9)

where m and a are the Weibull distribution parameters. By combining Eqs. (6)–(9), the total damage of the
concrete specimens after high-temperature exposure can be expressed as

D ¼ 1� ET

E25
exp � e

a

� �mh i
: (10)

Substituting Eq. (10) into Eq. (5) yields the constitutive damage relationship for the concrete specimens
after high-temperature exposure as

r ¼ ET eexp � e
a

� �mh i
: (11)

The parameters m and a in Eq. (11) can be determined from the stress-strain curve peaks. The peaks
represent the following boundary conditions: σ = σc, ε = εc, and dσ/dε = 0, where σc and εc are the peak
stress and strain, respectively. By solving the simultaneous equations, we obtain

dr
de

����
e¼ec

¼ ETexp
� e

að Þm½ � 1� m
ec
a

� �mh i
¼ 0; (12)

rc ¼ ET ecexp � e
a

� �mh i
: (13)

Combining Eqs. (12) and (13) yields m and a as

m ¼ 1

ln
ETec
rc

; (14)

a ¼ ec

ln
ET ec
rc

� �ln
ET ec
rc

: (15)

4.2 Damage Model Verification
By computing the stress-strain curves for the concrete specimens after exposure to different

temperatures, the m and a values were obtained (Table 5). The values of these parameters reflect the
influence of the different exposure temperatures on the degree of damage to the concrete specimens. By
substituting these values in Eq. (11), we obtained the model-predicted stress-strain curves. The
experimental stress-strain curves for the concrete specimens after high-temperature exposure
demonstrated a good agreement with the constitutive model predictions (Fig. 15).
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4.3 Total Damage Evolution Characteristics
This study established a high-temperature damage model based on the Weibull distribution, which

introduced load (DS) and high-temperature (DT) damage to intuitively reflect the initial damage to the
concrete specimens due to high temperatures. With increasing strain, the total damage (D) to the concrete
exhibited an exponential trend, approaching a value of 1 (Fig. 16). This phenomenon indicated that the
concrete specimens experienced an evolutionary process from initial damage at high temperatures to
gradual damage under compressive loads. For a thermostatic duration of 1 h, the initial degree of damage
increased from 0.401 to 0.815 as the exposure temperature increased from 300°C to 700°C, suggesting
significant damage to the concrete specimens. SEM analysis further indicated that (i) water evaporation
within the specimens due to high temperatures; (ii) gradual decomposition of gelatinous materials, and
(iii) inconsistent thermal expansion coefficients between the MSWI-BA aggregate and cement paste,
resulted in the gradual expansion of internal cracks and increased initial damage. For a given exposure
temperature, the initial degree of damage to the concrete specimens also increased with the increasing
thermostatic durations. For example, at 500°C, as the thermostatic durations were increased from 1 to
2 h, the initial degree of damage increased from 0.643 to 0.803. This indicated that longer thermostatic
durations enhanced the severity of the damage caused by high temperatures to the concrete specimens.

Table 5: Uniaxial constitutive damage model parameters

Number E0 σc εc m a R2

T25 4521.378 48.1 0.014 3.456 0.020 0.9956

T300-H1 2694.675 51.8 0.022 6.615 0.030 0.9887

T300-H1.5 2218.817 55.6 0.031 5.106 0.043 0.9842

T300-H2 2097.953 61.4 0.038 3.809 0.054 0.9719

T500-H1 1612.297 53.2 0.040 5.079 0.055 0.9890

T500-H1.5 1137.441 48.9 0.052 5.439 0.071 0.9887

T500-H2 892.250 43.2 0.058 5.773 0.078 0.9444

T700-H1 834.600 42.3 0.067 3.536 0.096 0.9992

T700-H1.5 664.843 35.5 0.072 3.338 0.103 0.9966

T700-H2 472.475 29.4 0.081 3.861 0.114 0.9995

Figure 15: Experimental vs. predicted stress-strain curves for concrete specimens after high-temperature
exposure for (a) 1.0, (b) 1.5, and (c) 2.0 h
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5 Conclusion

In this study, we prepared concrete specimens with a 1% SF volume fraction and a 20% MSWI-BA fine
aggregate replacement rate, and analyzed their performance at high temperatures (300°C–700°C) compared
to room temperature for different thermostatic durations (1–2 h) using an electric resistance furnace. We
further conducted uniaxial compression tests after high-temperature treatment. Based on our observations
and analysis of the test results, the following conclusions were drawn:

� Below 500°C, the concrete surfaces do not show any obvious cracks; the microscopic matrix remains
compact; and the macroscopic compressive strength increases. Above 500°C, the surfaces exhibited a
significant number of cracks, with brownish-red traces of SFs oxidized due to the high temperature.
The microscopic matrix becomes dispersed and its bonds with the SFs deteriorate, substantially
decreasing the macroscopic compressive strength of the specimens.

� The mass loss rate of the concrete specimens gradually increases with the increasing exposure
temperature and thermostatic duration. Below 500°C, it depends on the internal free water
evaporation; above 500°C, it depends on the decomposition and loss of internal structure.

� With the increase of the exposure temperature and thermostatic duration, the stress-strain curve of the
concrete specimens gradually smoothen. The compressive strength demonstrates a general trend of an
initial increase and a subsequent decrease, with a rapid increase in peak strain and a decrease in elastic
modulus.

� For different thermostatic durations, the critical temperature for the concrete specimens varies (700°C
for 1.0 and 1.5 h, and 500°C for 2 h).

� Combining the strain equivalence hypothesis and Weibull distribution theory, a fitting model and total
damage expression considering the coupling effect of temperature and compressive load were
proposed, which can accurately reflect the influence of high temperatures on the macroscopic
mechanical properties of MSWI-BA-and SF-reinforced concrete specimens.

Overall, our research results provide technical support for the performance evaluation of MSWI-BA-and
SF-reinforced concrete after high-temperature exposure, aiding its potential application in engineering
practice and the development of new green concrete fields. It is worth noting that the current research is
limited to the effects of temperature and thermostatic durations, which is not enough to systematically
understand the mechanical behavior of the composite concrete under high temperatures. Future works
must focus on the influence of fiber content, fiber type, and MSWI-BA replacement rate on the tensile,
bending, and compressive properties of the composite concrete over a wider temperature range.

Figure 16: Relationship of total specimen damage, D, with the applied strain, ε, after high-temperature
exposure for (a) 1.0, (b) 1.5, and (c) 2.0 h
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