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ABSTRACT

Concrete materials and structures are extensively used in transformation infrastructure and they usually bear
cracks during their long-term operation. Detecting cracks using deep-learning algorithms like YOLOv3 (You
Only Look Once version 3) is a new trend to pursue intelligent detection of concrete surface cracks. YOLOv3 is
a typical deep-learning algorithm used for object detection. Owing to its generality, YOLOv3 lacks specific effi-
ciency and accuracy in identifying concrete surface cracks. An improved algorithm based on YOLOv3, specialized
in the rapid and accurate identification of concrete surface cracks is worthy of investigation. This study proposes a
tailored deep-learning algorithm, termed MDN-YOLOv3 (MDN: multi-dilated network), of which the MDN is
formulated based on three retrofit techniques, and it provides a new backbone network for YOLOv3. The three
specific retrofit techniques are briefed: (i) Depthwise separable convolution is utilized to reduce the size of the
backbone network; (ii) The dilated-down sampling structure is proposed and used in the backbone network to
achieve multi-scale feature fusion; and (iii) The convolutional block attention module is introduced to enhance
feature extraction ability. Results show that the proposed MDN-YOLOv3 is 97.2% smaller and 41.5% faster than
YOLOv3 in identifying concrete surface cracks, forming a lightweight & efficient YOLOv3 algorithm for intelli-
gently identifying concrete surface cracks.
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1 Introduction

Concrete materials and structures have been extensively used in transportation infrastructure, typically
highways and railways [1–3]. These materials and structures inevitably bear cracks during their long-term
operation [4–6]. Owing to the large-scale characteristic of transportation infrastructure, the distribution of
cracks in concrete materials and structures often exhibits divergence and dispersion [7,8]. The occurrence
of cracks may impair the integrity and performance of related infrastructural systems [9,10]. The rapid
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and accurate detection of cracks in concrete materials and structures becomes exceptionally crucial to the
safety of transformation infrastructure [11–13]. Therefore, it is of great significance to develop an
efficient technique to rapidly identify crack locations and patterns and evaluate the service performance of
concrete structures [14,15].

Crack identification currently mainly relies on conventional routine-based visual inspection [16].
Unfortunately, visual inspection-based condition assessment is time-consuming and depends on the
experience and knowledge of inspectors [17]. In general, visual inspection cannot authentically discover
abrupt and subtle cracks and may miss potential risks in concrete structures [18]. To address this issue,
computer vision-aided intelligent identification methods have become a research focus for the online
detection of surface cracks. Numerous image processing methods have been utilized to detect surface
defects or damage in structures. The main implementation methods can be divided into three categories,
namely, digital image processing (DIP), machine learning (ML), and deep learning (DL) methods.

DIP methods usually conduct edge detection or pattern recognition of images to identify cracks or
defects based on the abnormality of pixel points [19]. The locations of cracks or defects can be identified
with advanced 2D signal processing techniques such as various types of transformations [20,21] and
filtering methods [22]. In addition, DIP methods can identify the crack width when combined with the
Laplacian method [23]. Many environmental or artificial interfering factors such as lighting, background
layers, noise, and threshold setting may significantly impact the identified results [24–27]. However, ML
algorithms can detect cracks or defects with numerous applications in practice [28–32]. The algorithm
can accomplish crack identification and classification integrated with DIP methods, but the generality of
algorithms needs further expansion for low-resolution images with background and complex multi-
classification problems.

DL methods can effectively extract image characteristics with environmental interference and are
especially powerful in processing large-scale training datasets and multi-classification problems compared
with DIP and ML methods. Convolutional neural networks (CNNs), a notable method in DL, have
garnered widespread utilization in the realms of crack identification due to their superior multi-scale
feature extraction, noise resilience, and broad-spectrum recognition capacities [33–35]. Crack
identification currently encompasses both object detection [36–38] and semantic segmentation [39–42].
For example, an initial CNN can detect whether there are cracks in pictures, which is a dichotomous
classification problem [43]. However, an initial CNN cannot identify crack locations and is disabled to
take a further assessment of structures. To address this issue, a multi-layered image preprocessing strategy
has been proposed to locate cracks in concrete structures in the measured pictures [44,45]. The cracking
region is filled up with a large number of bounding boxes, which are not flexible enough to directly
determine the region of cracks [46]. Further, several two-stage identification methods, including regional-
based CNNs [47] and faster regional-based CNNs [48], were developed for object detection in images.
The crack region can be first identified and then classified based on the above two-stage methods.
Additionally, crack width can be identified based on improved mask-RCNN methods [49]. You Only
Look Once (YOLO) [50] was recently proposed to accomplish the one-stage identification of location and
classification of surface cracks or defects with applications in bridges [51] and pavement [52–54] or
tunnel engineering [55] and aircraft structures [56]. The architectures of models such as YOLOv3, other
single-stage and dual-stage detection networks, and semantic segmentation frameworks [14,40,41,45] are
notably intricate. These models, characterized by their voluminous parameter sets, mandate exhaustive
training processes. As a result, ensuring precise identification outcomes demands not only potent
computational prowess but also ample memory capacity [51]. A simple network structure is necessary to
improve computation speed and reduce memory consumption in order to implement the CNN algorithm
on mobile terminals or unmanned aerial vehicles. A series of YOLO-based networks with fewer training
coefficients, such as MobileNetv2-YOLOv3 (M2-YOLOv3) [57] and MobileNetv3-YOLOv3
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(M3-YOLOv3) [58], were proposed to achieve the purpose of real-time object detection in mobile terminals
[59,60]. These networks are more efficient and designed to detect hundreds of different objects; however,
there are only tens of concrete crack classes. Therefore, the YOLO algorithm still has room for
optimization in concrete crack identification.

To address this deficiency, this study proposes a lightweight YOLOv3, called MDN-YOLOv3, for
intelligently identifying the cracks of concrete structures using a self-built training set. The rest of this
paper is organized as follows. Section 2 briefly summarizes the structures and imperfections of
YOLOv3 in identifying cracks in concrete structures. Section 3 proposes the improved design methods of
the backbone network in MDN-YOLOv3. Section 4 compares the performance of the concrete crack
identification of MDN-YOLOv3 with existing algorithms. Section 5 compares the test results and the
accuracy of the method with existing models. Section 6 concludes and provides remarks on this study.

2 Inadequacies of YOLOv3 in Identifying Concrete Cracks

2.1 Overview
Fig. 1 illustrates the structure of YOLOv3, composed primarily of the Darknet-53 backbone and the

feature pyramid network (FPN). The main identification process of YOLOv3 can be described as follows:

(1) Input process: The size of input images is adjusted to 416 × 416 × 3 for the feature extraction process.

(2) Feature extraction process: First, the images with 416 × 416 × 3 pixels are input into the backbone
network of Darknet-53 [61] for feature extraction, and three effective feature layers with sizes of 13 × 13, 26
× 26, and 52 × 52 are output, as visualized in Fig. 2. The depth of the feature maps starts from the three
channels of the RGB image and expands through subsequent layers with 32, 64, 128, 256, 512, and
finally 1024 filters. Every layer is responsible for learning more complex features. Then, the three
effective feature layers are input into the FPN. Through a series of operations, including continuous
convolution operation, up-sampling, down-sampling, and feature fusion from the three effective feature
layers, the enhanced feature maps of FPN are output.

(3) Output process: The output feature maps of FPN are used to predict three bounding boxes in every
grid cell. The coordinate of the bounding box is shown in Fig. 3. Every bounding box predicts three key
parameters based on extracted and multi-scale features: (i) Coordinate the dataset of the rectangular box,
including horizontal coordinates tx and vertical coordinates ty of the centroid, width tw, and height th of
the bounding box; (ii) Classification of detected objects; (iii) Confidence of predicted results.

Figure 1: The structure of YOLOv3
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FPN

Type Filters Size Output

Convolutional 32 3×3 416×416

Convolutional 64 3×3/2 208×208

Convolutional 32 1×1

1× Convolutional 64 3×3

Residual 208×208

Convolutional 128 3×3/2 104×104

Convolutional 64 1×1

2× Convolutional 128 3×3

Residual 104×104

Convolutional 256 3×3/2 52×52

Convolutional 128 1×1

8× Convolutional 256 3×3

Residual 52×52

Convolutional 512 3×3/2 26×26

Convolutional 256 1×1

8× Convolutional 512 3×3

Residual 26×26

Convolutional 1024 3×3/2 13×13

Convolutional 512 1×1

4× Convolutional 1024 3×3

Residual 13×13
Convolutional

3×3

Conv2d
3×3

Convolutional
3×3

Conv2d
3×3

CBL

CBL

Concatenate

Convolutional
1×1

Up Samping

CBL

Concatenate

Convolutional
1×1

Up Samping
Convolutional

3×3

Predict1

Predict2

Conv2d
3×3

Predict3

Convolutional
1×1

Convolutional
3×3

Convolutional
1×1

Convolutional
3×3

Convolutional
1×1

Darknet53

CBL

Figure 2: Network details of YOLOv3. Convolutional k � k = conv2d k � k + Nonlinear

Figure 3: Anchor box to predict box process
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The loss function can be calculated as follows:
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where kcoord and knoobj are weight coefficients and remain unchanged in the loss function. Iobjij is the
responsible anchor box that has the highest intersection over union (IoU) with the ground-truth box,
which is actually used for predictions in the loss function. Inoobjij represents the complementary set of
responsible anchor boxes Iobjij . S is the size of grid cells, and B is the number of anchor boxes. Cj

i and Pj
i

are the confidence and probability of belonging to a specific category, respectively. The superscript
represents the prediction center of the corresponding parameters.

The IoU can be calculated as follows:

IoU A;Bð Þ ¼ AreaA \ AreaB
AreaA [ AreaB

¼ AreaInter
AreaA þ AreaB � AreaInter

(2)

where IOU A;Bð Þ is the intersection over the union of the ground-truth boxes and anchor boxes.

The loss function serves to adjust the generated anchor box. It is primarily composed of three
components: the loss associated with the box’s coordinates, the confidence, and the category. By
minimizing this loss function, YOLOv3 can accurately pinpoint the location of objects in every output
image.

2.2 Inadequacies
YOLOv3 can detect multiple targets in a single forward pass, simultaneously predicting class scores and

bounding boxes, which streamlines the object detection process. As a result, YOLOv3 is efficient and has
found applications in various domains [50,61,62]. There are a series of CNNs used as the backbone
networks of YOLO with fewer training coefficients, such as MobileNetv2 and MobileNetv3; however,
the backbone networks in YOLO still do not meet the demand for swift crack identification with high
accuracy. This is because the CNNs serving as the backbone network of YOLO in concrete crack
identification are made for identifying hundreds of classes, whereas there are only tens of classes in
concrete cracks. Therefore, the series of universal YOLOv3 models are large in size and time-consuming
in identifying concrete cracks. In other words, the series of universal YOLOv3 models is relatively
complex and unsuitable for concrete crack identification [14,63,64]. To this end, a tailored deep-learning
algorithm termed MDN-YOLOv3 is proposed.
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3 MDN-YOLOv3

3.1 Retrofit Techniques

3.1.1 Depthwise Separable Convolution (DSC)
DSC was proposed by Sandler et al. [60], to improve the efficiency of a CNN [65]. Fig. 4 illustrates the

difference between DSC and standard convolution. The parameter Cstd of the standard convolution is
calculated as follows:

Cstd ¼ 3� 3� C1 � C2 (3)

where C1 is the number of input channels and C2 is the number of output channels of the structure, as shown
in Fig. 4a.

As shown in Fig. 4b, the parameter Cdpt of the depthwise convolution is calculated as follows:

Cdpt ¼ 3� 3� C1 þ 1� 1� C1 � C2 (4)

The ratio of standard convolution parameters to those of DSC is as follows:

Cdpt

Cstd
¼ 3� 3� C1 þ 1� 1� C1 � C2

3� 3� C1 � C2
¼ 1

C2
þ 1

9
(5)

As shown in Eq. (5), the parameter of DSC is 90% smaller compared with that of standard convolution.
Therefore, the use of DSC instead of standard convolution in YOLOv3 can effectively improve efficiency.

3.1.2 Multi-Scale Feature Fusion by Dilated-Down Sampling (DDS)
The diagram of DDS is shown in Fig. 5, which is the main component of the backbone network in MDN-

YOLOv3. As depicted in Fig. 5, a series of dilated convolution blocks are utilized in the network. There are
three steps for DDS blocks to extract features. First, dilated convolution blocks with a stride of two and
different dilation rates of one, two, and three are used to extract multi-scale features from the feature
maps. Second, the dilated convolution block is combined using the concatenate operation to fuse features
on different receptive scales. Finally, a 1 × 1 convolution layer is used to integrate every channel of the
feature maps. The output of DDS contains features of various receptive fields to describe concrete cracks.

3.1.3 Attention Module of CBAM
The attention module of the Convolutional Block Attention Module (CBAM) is introduced into the

backbone network, and the structure of this module is shown in Fig. 6. CBAM compresses feature maps
using max-pooling (MaxPool) along with average-pooling (AvgPool) for channel and spatial attention.

Figure 4: The difference between DSC and standard convolution

382 SDHM, 2024, vol.18, no.4



3.1.4 Optimization of the Predictive Layer of the Backbone Module with a K-Means Cluster
The classification of the anchor box is a key parameter in YOLOv3. To verify the best configuration of

the anchor box in concrete crack detection, the K-means clustering algorithm is used to cluster the dataset of
the concrete crack. The dataset of the concrete crack in this study contains 6066 figures with seven categories,
including no crack, hole, mesh crack, oblique crack, transverse crack, vertical crack, and irregular crack.
Average IoU is an index used to reflect the effect of clustering between anchors and real target boxes. For
the dataset of crack detection in this study, the relationship between the average IoU and the clustering
number K is shown in Fig. 7. The clustering number K = 4 is chosen because the average IoU has not
changed significantly with the increase in clusters when K > 4 and the point after the great slope can be
regarded as the optimal point. The K-means clustering results of the training set are shown in Fig. 8. The
position of the four hollow marks is the center of the corresponding cluster, including (47, 137), (128,
133), (136, 89), and (137, 43). Thus, the anchor boxes of the MDN-YOLOv3 method are (47, 137), (128,
133), (136, 89), and (137, 43) for the concrete crack detection, while those in YOLOv3 are (35, 137),
(51, 137), (83, 135), (109, 135) (136, 78), (136, 132), (136, 100), (137, 36), and (137, 54). In addition,
the predictive layers of MDN-YOLOv3 are 8-fold and 16-fold downsampling layers, while the predictive
layers are 8, 16, and 32-fold in YOLOv3. The optimization of the anchor configuration simplifies the
prediction layer of the backbone module from three scales to two scales, resulting in higher efficiency
compared with M3-YOLOv3.

3.2 Structure of MDN-YOLOv3
Combining the superiority of DSC and DDS and the attention mechanism of CBAM, the multi-dilated

network (MDN) is proposed. MDN is used as the backbone network of YOLOv3, which can be called MDN-
YOLOv3. Furthermore, the number of effective feature layers is streamlined from three to two. The whole
structure of the MDN-YOLOv3 is shown in Figs. 9 and 10. The main structures can be divided into three
modules: an MDN backbone, an FPN, and a prediction module.

Figure 5: Block of the DDS

Figure 6: The CBAM in bottleneck
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The MDN serves as the backbone network for extracting multi-scale features. Specifically, crosswise
MDN structures are added between bottleneck modules to extract and fuse multi-scale features from input
images. In addition, the CBAM attention mechanism is introduced to enhance feature extraction ability.
The output matrix dimensions of the effective feature layers in the MDN backbone are 1/16 and 1/8 of
the original image size, resulting in feature maps of 52 � 52 and 26 � 26 pixels being output. These
output feature maps can be used for prediction (see Fig. 9a). The resulting output data are a matrix with
eleven rows and one column that includes four coordinate parameters, six classification parameters, and
one confidence parameter.

4 Splicing Concrete-Crack Dataset (SCCD)

The existing crack datasets of concrete structures often focus on a single crack or several adjacent cracks.
These crack patterns tend to be somewhat repetitive and are not suitable for identifying intricate patterns in
real-world situations. To address this limitation, we develop a new dataset named the SCCD to capture more
diverse and complex crack patterns. Overall, 6066 figures are collected and divided into seven categories: no
crack, hole, mesh crack, oblique crack, transverse crack, vertical crack, and irregular crack, as shown in

Figure 7: Clustering result of concrete-crack dataset

Figure 8: Clustering results of nine ground-truth boxes. (a) YOLOv3 (b) SciYOLOv3
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Figs. 11a–11g. Moreover, every nine images are spliced as a new image to increase the complexity of crack
patterns, as shown in Fig. 11h. Various types of crack models can be generated randomly at different
locations in splicing images with variable backgrounds. The new 674 general splicing images are further
divided into two parts: 500 images are used as the training set and 174 images are used as the test set.

Figure 10: Network details of MDN-YOLOv3

Figure 9: (a) The structure of MDN-YOLOv3. (b) The structure of the bottleneck
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5 Superiorities of MDN-YOLOv3

5.1 Training Environment
This experiment is conducted on a Windows 10 system using PyTorch. The parameter settings for the

training experiments on this platform are presented in Table 1.

5.2 Training Parameters
When the MDN-YOLOv3 is trained, the learning rate is set to 0.001 and kept constant throughout the

training process. The epoch, batch size, and weight decay numbers are set to 50, 4, and 0.0005, respectively.

5.3 Evaluate Indicators
The recall rate [66] and prediction rate [67] are calculated to evaluate the identification results of the

MDN-YOLOv3. The definitions of these two parameters are

Recall ¼ TP

TP þ FN
(6)

Figure 11: Concrete surface detect dataset. (a) no crack, (b) hole, (c) mesh crack, (d) oblique crack, (e)
transverse crack, (f) vertical crack, (g) irregular crack, (h) splicing picture

Table 1: Experimental platform configuration

Attribute Value

Operating system Windows 10

CPU Intel(R) Xeon(R) Gold 5222 CPU @ 3.80 GHz 3.79 GHz

GPU NVIDIA Quadro P2200

RAM 64.0 GB

Programming environment Anaconda3

CUDA10.2

Python3.6

PyTorch
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Precision ¼ TP

TP þ FP
(7)

where TP represents the number of positive samples with a correct prediction, FP represents the number of
wrong predictions, and FN represents the number of positive samples with a failed prediction.

In addition, two indexes, the mean average precision (mAP) at an IoU threshold of 0.5 and the frames per
second (FPS), are calculated to quantitatively evaluate the calculation accuracy and speed of the network,
respectively. The definition of mAP can be expressed as

mAP ¼
P
i2N

APi

N
(8)

APi ¼
Z 1

0
Pi Rið ÞdRi (9)

where APi is the average accuracy of the i-th crack pattern. Generally, a higher AP value shows better
classification results for a model.

The FPS represents the identification speed and can be expressed as

FPS ¼ Nimage

Time
(10)

where Nimage is the number of images detected, and Time is the sum time of the detected images.

5.4 Comparison with Existing Typical Models
Table 2 displays the structures utilized in every model. Fig. 12 illustrates the P–R curves of six concrete

cracks for various models, and their AP is calculated using Eq. (9) and summarized in Table 3. The highest
AP among all of the compared models is observed for the hole, irregular crack, oblique crack, and transverse
crack of MDN-YOLOv3; however, the mesh crack’s AP is slightly lower than that of YOLOv3 and M3-
YOLOv3, while the vertical crack’s AP is a bit lower than that of YOLOv3, as shown in Table 3. The
mAP of the models is determined by calculating the respective APs, as depicted in Fig. 13. While MDN-
YOLOv3 and YOLOv3 have the highest mAP values, M2-YOLOv3 has the lowest value among them all.

Table 4 summarizes the evolution indicators of mAP and FPS. The MDN-YOLOv3 has a mAP of
70.96%, which is almost identical to YOLOv3’s 71.27%. This value is significantly higher than that of
M2-YOLOv3 and M3-YOLOv3. In addition, the FPS of MDN-YOLOv3 is 40.73 (f/s), making it faster
by 41.5%, 8.25%, and 1.92% compared with YOLOv3, M2-YOLOv3, and M3-YOLOv3, respectively.
Moreover, the model size of MDN-YOLOv3 is only 6.92 (MB), which makes it smaller by significant

Table 2: Comparison of model structures used in every model

Structure YOLOv3 M2-YOLOv3 M3-YOLOv3 MDN-YOLOv3

Backbone Darknet-53 MobileNetv2 MobileNetv3 MDN

Bottleneck N/A √ √ √

DSC N/A √ √ √

Attention mechanism N/A N/A √ (SE) √ (CBAM)

DDS N/A N/A N/A √
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margins of 97.2%, 27.8%, and 57.7% when compared with the YOLOv3, M2-YOLOv3, and M3-
YOLOv3 models, respectively.

Figure 12: P–R curves of six concrete cracks for different models: (a) YOLOv3, (b) M2-YOLOv3, (c) M3-
YOLOv3, (d) MDN-YOLOv3

Table 3: AP for every crack type identified by the models

Crack type AP (%)

YOLOv3 M2-YOLOv3 M3-YOLOv3 MDN-YOLOv3

Hole 79.02 80.03 79.47 84.24

Irregular crack 29.95 21.23 21.74 37.63

Mesh crack 59.59 40.54 48.14 42.67

Oblique crack 83.51 79.71 75.90 85.43

Transverse crack 88.43 72.88 87.05 89.65

Vertical crack 87.13 76.15 82.62 86.12
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To illustrate every model’s performance vividly, a bubble diagram has been made in Fig. 14 where the
bubble size represents every model’s size, the abscissa shows the mAP, and the ordinate represents the
corresponding FPS. As shown in Fig. 14, the bubble of MDN-YOLOv3 is the smallest and is located in
the top right of the diagram. In other words, the MDN-YOLOv3 has the smallest model size and the
fastest identification speed. Furthermore, the recognition accuracy of MDN-YOLOv3 is near that of M3-
YOLOv3 and better than that of other comparison models.

In addition, the cracks in the test set are detected and classified with corresponding confidence, as shown
in Fig. 15. The location and category of the cracks are clearly identified using the improved MDN-
YOLOv3 method.

Figure 13: AP and mAP value comparison of different models

Table 4: Evaluate indicators of identification of the models

Evaluate indicators YOLOv3 M2-YOLOv3 M3-YOLOv3 MDN- YOLOv3

mAP (%) 71.27 61.76 65.82 70.96

FPS (f/s) 23.81 37.37 39.96 40.73

Parameter size (MB) 246.42 9.58 16.35 6.92

Figure 14: Comparison of mAP, FPS, and model size
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In summary, the proposed MDN-YOLOv3 identifies cracks quickly while maintaining high accuracy
levels despite its small model size.

6 Conclusions

The identification of crack locations and patterns is of great significance in evaluating the service
performance of concrete structures. To address this issue, this study proposes an improved
YOLOv3 algorithm for the rapid and accurate identification of the surface cracks of concrete structures.
The proposed model is verified using a self-built training set. The main conclusions are presented as follows:

(1) The proposed MDN-YOLOv3 has lightweight network structures and robust feature extraction
capability. The DSC and proposed DDS structure can effectively extract and fuse the features of cracks.

(2) The proposed MDN-YOLOv3 has a model size of 6.92 M and an identification speed of 40.73 FPS,
which is 97.2% smaller in size and 41.5% faster in speed than YOLOv3. This finding indicates that the
proposed MDN-YOLOv3 is more suitable for applications on mobile devices due to the faster calculation
speed and smaller memory of these devices.

In the future, a better crack identification scheme should be studied to evaluate the applications of
proposed models, such as temperature cracks, concrete shrinkage cracks, and external load cracks. In
addition, concrete crack images from complex scenes such as underwater concrete and tunnel concrete
require further research and development.
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