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ABSTRACT

This study provides a comprehensive analysis of collision and impact problems’ numerical solutions, focusing on
geometric, contact, and material nonlinearities, all essential in solving large deformation problems during a colli-
sion. The initial discussion revolves around the stress and strain of large deformation during a collision, followed
by explanations of the fundamental finite element solution method for addressing such issues. The hourglass
mode’s control methods, such as single-point reduced integration and contact-collision algorithms are detailed
and implemented within the finite element framework. The paper further investigates the dynamic response
and failure modes of Reinforced Concrete (RC) members under asymmetrical impact using a 3D discrete model
in ABAQUS that treats steel bars and concrete connections as bond slips. The model’s validity was confirmed
through comparisons with the node-sharing algorithm and system energy relations. Experimental parameters
were varied, including the rigid hammer’s mass and initial velocity, concrete strength, and longitudinal and stirrup
reinforcement ratios. Findings indicated that increased hammer mass and velocity escalated RC member damage,
while increased reinforcement ratios improved impact resistance. Contrarily, increased concrete strength did not
significantly reduce lateral displacement when considering strain rate effects. The study also explores material
nonlinearity, examining different materials’ responses to collision-induced forces and stresses, demonstrated
through an elastic rod impact case study. The paper proposes a damage criterion based on the residual axial
load-bearing capacity for assessing damage under the asymmetrical impact, showing a correlation between
damage degree hammer mass and initial velocity. The results, validated through comparison with theoretical
and analytical solutions, verify the ABAQUS program’s accuracy and reliability in analyzing impact problems,
offering valuable insights into collision and impact problems’ nonlinearities and practical strategies for enhancing
RC structures’ resilience under dynamic stress.
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1 Introduction

Collision and impact problems are fundamental areas of study in mechanics and structural engineering,
as they are integral to understanding the behavior of systems under external loads and forces. These problems
have wide-ranging applications, from the design of vehicles and aircraft to structures that must withstand
impact loads. Numerical analysis of these problems is complex due to the inherent nonlinearities, defined
as the deviation from the linear behavior of a system under certain conditions. This deviation can
manifest in various ways, such as changes in the system’s response to external loads, changes in the
system’s stability, and changes in the system’s behavior over time. Moreover, the nonlinearities in
collision and impact problems can make dynamic responses difficult to predict, adding to the challenge.
Several studies have addressed the numerical analysis of collision and impact problems. For instance,
Kimura et al. [1] utilized finite element analysis to investigate the behavior of structures under impact
loads, while Wu et al. [2] used boundary element analysis for similar problems. Anas et al. [3] presented
a nonlinear finite element model in ABAQUS to simulate the response of reinforced concrete slabs under
low-velocity impact. Their study demonstrated the influence of different support conditions and the
capabilities of concrete-damaged plasticity models in ABAQUS to capture localized damage in the slab.
Also, Anas et al. [4] utilized a nonlinear ABAQUS model to assess reinforced concrete slabs subjected to
eccentric drop weight impacts. Their work illustrated sophisticated modeling techniques for steel rebar,
concrete-rebar interface, strain rate effects, and progressive failure analysis using ABAQUS. However,
these studies primarily focused on linear systems, and there remains a gap in understanding nonlinearities
in such systems. Building on this existing body of work, our study explores the numerical analysis of
collision and impact problems, focusing specifically on the nonlinearities that arise in these systems. By
undertaking this comprehensive study of the numerical analysis of collision and impact problems, the
paper aims to develop more accurate and efficient models for predicting and controlling dynamic
responses. The findings will significantly affect the design structures and systems subjected to impact
loads and contribute to advancing mechanics and structural engineering knowledge. The reinforced
concrete column impact example presented in Section 5 aims to demonstrate, in an applied context, the
ability of the proposed modeling approach to capture complex nonlinear behaviors arising under extreme
collision loads.

2 Collision Impact Dynamics: Navigating Nonlinearity and Large Deformations

Impact forces, particularly those resulting from collisions, rapidly change over time and introduce
complex dynamic problems to the systems they affect. During a collision, structures and materials, such
as reinforced concrete, can experience significant deformation, entering a plastic flow state. This
deformation does not merely alter the physical shape of the material but also influences its interaction
with the environment and can introduce geometric nonlinearity, boundary condition nonlinearity, and
material nonlinearity [5,6]. Geometric nonlinearity is a common feature of collision impact dynamics,
often presenting as sizeable geometric deformation. This necessitates using stress and strain
measurements to capture these large deformations accurately. Reinforced concrete, known for its
robustness, can still undergo significant deformation under high-impact forces, demonstrating this
geometric nonlinearity. Boundary condition nonlinearity arises from time-dependent changes in boundary
conditions during the collision process. Complex contact-collision phenomena, such as those seen in the
collision between a train and a reinforced concrete member, illustrate this nonlinearity. The boundary
conditions become nonlinear as the contact area between the train and the member evolves. Introducing a
contact-collision algorithm in numerical analysis can help address this complex collision contact problem
[7,8]. In terms of material nonlinearity, substantial deformation during a collision can cause the material,
in this case, reinforced concrete, to exhibit nonlinear characteristics. Moreover, the rate-dependent
behavior of the material under the impact of dynamic load and static force can result in different
mechanical responses. As the strain rate increases under impact force, the yield and strength limits of the
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reinforced concrete increase while the elongation decreases. This behavior can lead to yield and fracture
hysteresis [9,10]. Understanding the nonlinear behaviors under impact forces is crucial in designing and
analyzing reinforced concrete structures to ensure their resilience and safety.

3 Geometric Nonlinear Problems

3.1 Materials Description
Consider the motion of the object shown in Fig. 1. Take the space area occupied by the object at time

t ¼ 0 (initial configuration) as the reference configuration, the space occupied by the object at time t ¼ t is
the current configuration, and the particle vector radius in the object can be expressed in the initial
configuration as:

X ¼ Xiei; i ¼ 1; 2; 3 (1)

where ei is the base vector of the Cartesian coordinate system, Xi is the component of the particle radius X in
the reference configuration. Obviously, X does not vary with time t. Xi is called the material coordinate or
Lagrange coordinate. The position where the particle moves with time is denoted by x: x ¼ xiei, xi is
called the space coordinate or Euler coordinate. There are two methods to describe the motion and
deformation of objects: one takes the material coordinate xi and time t as independent coordinates, and
the motion and deformation of the object are examined using the moving particle, which is called
material description [11–13].

Lagrange description, the equation of motion can be expressed as:

xi ¼ xi Xj; t
� �

; i; j ¼ 1; 2; 3 (2)

The other takes the space coordinate xi and time t as independent coordinates called the space description
or Euler description. Solid mechanics mainly adopts the Lagrange material description system. Eq. (2) also
shows a single-valued continuous mapping from the initial configuration V0 to the current configuration V.
We have:

J ¼

@x1
@X1

@x1
@X2

@x1
@X3

@x2
@X1
@x3
@X1

@x2
@X2
@x3
@X2

@x2
@X3
@x3
@X3

�����������

�����������
¼ eijk

@xi
@X1

@xj
@X2

@xk
@X3

6¼ 0 (3)

Figure 1: Initial and current configuration

SDHM, 2024, vol.18, no.3 225



Among them, @xi
@Xi

is called the deformation gradient, which is an asymmetric second-order tensor, J is

called the Jacobin determinant. To examine the changing of the structural micro hexahedron dV0 in the initial

configuration, known J ¼ dV
dV0

¼ q0
q , q0 and q represent the density of the medium in the initial and current

configurations, respectively, and J ¼ 1 when the medium is incompressible.

3.2 Strain Measurement under Large Deformation
Stresses rij and strains eij that are often applied for small deformations are generally referred to as

Cauchy stress and Cauchy strain. Since the large deformation motion of an object can be defined
concerning different configurations, the description of stress and strain is also different from the case of
small deformation [14–16].

3.2.1 Deformation Rate
Consider a typical particle P whose coordinate at time t is xj, and its instantaneous velocity is vi xj; t

� �
.

The coordinate of the particle P0 adjacent to the point P is xj þ dxj, and its relative velocity concerning the
point P is:

dvi ¼ @vi
@xj

dxj (4)

The equation @vi
@xj

is called the velocity gradient tensor, which is decomposed into the sum of the
symmetric and anti-symmetric parts:

@vi
@xj

¼ 1

2

@vi
@xj

þ @vj
@xi

� �
þ 1

2

@vi
@xj

� @vj
@xi

� �
¼ �ij þ Dij (5)

where �ij is the swirl rate tensor, and Dij is the deformation rate tensor.

It can be shown that the deformation rate tensor Dij is the rate of the Cauchy strain defined concerning
the current configuration, the rate eij of the true strain _eij:

Dij ¼ _eij (6)

3.2.2 Green Strain
Green strain tensor [17–19] (Green strain tensor) is defined as:

Eij ¼ 1

2

@xk
@Xi

@xk
@Xj

� dij

� �
¼ 1

2

@uj
@Xi

þ @ui
@Xj

þ @uk
@Xi

@uk
@Xj

� �
(7)

where dij is the Kronecher symbol; ui ¼ xi Xj; t
� �� Xj is the displacement vector defined in the initial

configuration under small deformation:

@ui
@Xj

001;
@

@Xi
¼ @

@xi
(8)

Substitute Eq. (8) into Eq. (7) to get:

Eij ¼ 1

2

@uj
@xi

þ @ui
@xj

� �
¼ eij (9)

Therefore, in the case of small deformation, the green strain tensor degenerates into a small strain tensor
(the Cauchy strain tensor).
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3.3 Stress Measurement under Large Deformation

3.3.1 Euler Stress
Divide the force element niDA acting on the directed surface element DTi by DA on the current

configuration. In the extreme state, we have:

t nð Þ
i ¼ lim

DA!0

DTi
DA

¼ dTi
dA

(10)

The stress vector nidA on the face element t nð Þ
i is represented by the stress vectors on the three face

elements perpendicular to the coordinate axes, t nð Þ
i ¼ rijnj (n). rij is the Euler stress tensor, rij is the stress

per element area defined on the current configuration, and is the true deformation-related stress.

3.3.2 Piola-Kirchhoff Stress of the First Type (Lagrange Stress)
Definition:

t� Nð Þ
i ¼ lim

DA0!0

DTi
DA0

¼ dTi
dA0

(11)

In the equation, dA0 is the material surface element on the initial configuration; dTi is the force vector on

the current configuration nidA; t
� Nð Þ
i is represented by the coordinates on the current configuration. There are

t� Nð Þ
i ¼ P

ij
Nj.

P
ij

is the Piola-Kirchhoff stress of the first type. It can be inferred from the definition:

X
ij

¼ J
@Xk

@xj
rji (12)

3.3.3 Piola-Kirchhoff Stress of the Second Type (Kirchhoff Stress)
Definition:

t Nð Þ
i ¼ lim

DA0!0

DT 0
i

DA0
¼ dT0

i

dA0
(13)

In the equation, dT 0
i ¼ @i

@xj
dTj is the force vector nidA on current configuration dTj the force vector

converted to the initial configuration. Therefore, the second type of Piola-Kirchhoff stress [20–22] is defined
as:

Skl ¼ @Xl

@xi

X
ki

¼ J
@Xk

@xi

@Xl

@xj
rij (14)

3.3.4 Jaumann Rate
The strain rate increment is an objective quantity that does not change with the coordinate rotation. The

definition:

rrij ¼ _rij � rip�jp � rjp�ip (15)

is the Jaumann stress rate [23–25], an objective tensor not affected by the object’s rotation, and is also the
stress rate used in ABAQUS.

3.3.5 Truesdell Stress Rate
Taking the material derivative of the Kirchhoff stress concerning time t, we get:

_Sij ¼ J
@Xi

@xp

@Xj

@xq
_rpq þ rpq

@vk
@xk

� rpk
@vq
@xk

� rqk
@vp
@xk

� �
(16)
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The expression in the right-hand bracket of Eqs. (2)–(16) is called the Truesdell stress rate, denoted as
rrT . It can be shown that both the Truesdell stress rate and the Jaumann stress rate are objective tensors that
are not affected by rigid body motion.

3.4 Conservation Equation
Thermodynamic systems must satisfy the conservation equations of mass, momentum, and energy

[26–28].

3.4.1 Mass Conservation
The mass conservation equation in the Lagrangian description can be expressed as:

q X ; tð ÞJ X ; tð Þ ¼ q0 Xð Þ (17)

3.4.2 Momentum Conservation
The definition of momentum shows that the material derivative of the momentum of an object is equal to

the sum of the external forces acting on the system, namely:

D

Dt

Z
V
qvi x; tð ÞdV ¼

Z
V
qbi x; tð ÞdV þ

Z
A
ti x; tð ÞdA (18)

Among them, bi is the force acting on the element mass of the object; ti is the surface force. Further
derivation of Eq. (18), the differential Equation of motion of the object in the current configuration can
be obtained as:

q
Dvi
Dt

� qbi � @rji
@xj

¼ 0 (19)

Transform Eq. (19) into the initial configuration to obtain the differential equation of motion of the
object in the initial configuration:

q0
@vi X ; tð Þ

@t
¼ @

P
ji

@Xj
þ q0bi (20)

3.4.3 Energy Conservation
If the heat source and heat exchange are not considered, the rate of change of the total energy of the

system is equal to the power of the external force, that is:

D

Dt

Z
V

qwint þ 1

2
qvivi

� �
dV ¼

Z
V
viqbidV þ

Z
A
vitidA (21)

where wint is the internal energy per element mass. Deriving Eq. (21) can be obtained:

q
Dwint

Dt
¼ rijDji ¼ rij _eji

q0
Dwint

Dt
¼

X
ij
Fji

_ ¼
X
ij

d @uj
@Xi

� �
dt

q0
Dwint

Dt
¼ Sij _Eji

8>>>>>>>>><
>>>>>>>>>:

(22)
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It can be seen from the above equation:

(1) The Euler stress rij is energy conjugate with respect to the infinitely small strain eij of the current
configuration.

(2) The displacement gradient @ui=@Xj defined by the Lagrange stress
P
ij

with respect to the initial
configuration is energy conjugated.

(3) The Kirchhoff stress Sij is energy conjugate with respect to the green strain Eij defined by the initial
configuration.

3.5 Numerical Calculation Method of Large Deformation Dynamics
Incremental methods are often investigated when numerical computations involving geometrically

nonlinear problems are involved, not only because the problem may involve material inelasticity that
depends on the deformation history but also because even if material inelasticity is not involved.
However, the incremental method is generally required to obtain the evolution history of stress and
deformation during the loading process and ensure the solution’s accuracy and stability. The incremental
method discretizes the time variable into a certain time series: t = 0, Dt, 2Dt…, and then obtains the
numerical solutions of these discrete time points. Incremental solution methods can be divided into
updated Lagrangian and full Lagrangian according to the different reference configurations [29–31]. The
updated Lagrangian equation uses the configuration at time t as the reference configuration when
calculating all variables in the interval t; t þ Dt½ �, and the stress-strain measurement adopts Euler stress
rij and infinitely small strain eij about the current configuration. The full Lagrangian takes the
configuration at t0 ¼ 0 as the reference configuration. The stress-strain metric uses the Kirchhoff stress Sij
and the Green strain Eij defined with respect to the initial configuration.

3.5.1 Update Lagrangian
The controlling equations of the updated Lagrangian are:

Mass Conservation: q X ; tð ÞJ X ; tð Þ ¼ q0 Xð Þ (23)

Momentum equation:
@rJI
@xj

þ qbi ¼ €qui (24)

Energy equation: qwint ¼ rijDji (25)

Deformation rate:Dji ¼ 1

2

@vj
@xi

þ @vi
@xj

� �
(26)

Constitutive relationship:rr ¼ rr Dji; rij; . . .
� �

(27)

Boundary conditions:
njrji
� ���

At
¼ �tt

vijAt
¼ �vi

	
(28)

Initial conditions: _u X ; 0ð Þ ¼ _u0 Xð Þ; u X ; 0ð Þ ¼ u0 Xð Þ (29)

The momentum Eq. (24) must be satisfied everywhere in the solution domain, and it is almost
impossible to solve it directly. The numerical calculation starts from the weak form of the differential
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equation. It only requires the momentum equation to be satisfied in a certain average sense, and the virtual
power equation is derived from this. After the finite element discretization, the node displacement equation is
obtained. Taking the imaginary velocity as the weighting coefficient and using the weighted margin method,
the weak form of the momentum equation can be expressed as:Z

V
dvi

drij
dxj

þ qbi � q€ui

� �
dV ¼ 0 (30)

where dvi Xð Þ 2 R0; R0 ¼ dvj dvj
�� 2 C0 Xð Þ; dvj

��
Av

¼ 0
on

is the virtual velocity. Using step-by-step
integration, Eq. (30) can be written as:Z

V

d dvið Þ
dxj

rjidV �
Z
V
dviqbidV �

Z
V
dvi�tidAt þ

Z
V
dviq€uidV ¼ 0 (31)

The above equation is the weak form of the momentum equation, called the virtual power equation.
Discretizing the spatial structure, the spatial coordinates of the particle X at any time are:

xi X ; tð Þ ¼ NIxiI tð Þ (32)

In the equation, NI is the shape function of node I.

The displacement of any particle X in the element can be expressed as the nodal displacement:

ui X ; tð Þ ¼ xi X ; tð Þ � Xi ¼ NI Xð ÞuiI tð Þ (33)

Similarly, the velocity, acceleration, deformation rate, and virtual velocity of any particle X in the
element can be expressed as:

_ui X ; tð Þ ¼ NI Xð Þ _uiI tð Þ
€ui X ; tð Þ ¼ NI Xð Þ€uiI tð Þ
Dij ¼ 1

2

@ _uj
@xi

þ @ _ui
@xj

� �
¼ 1

2
_uji
@NI

@xi
þ _uji

@NI

@xi

� �
¼ BIuI

dvi Xð Þ ¼ NI Xð ÞdviI

8>>>>><
>>>>>:

(34)

Rewrite the above equations into matrix form and substitute them into Eq. (31) to get:

M €U þ f int ¼ f ext (35)

Among them, M ¼ R
V qNTNdV ¼ R

V0
q0N

TNdV0 is the system mass matrix, which is independent of
time and only needs to be calculated at the initial moment; f int ¼ R

V BTrdV ; f ext ¼ R
At
NT�tdA. The nodal

displacement uI at the current moment can be obtained by solving Eq. (35), and then the strain and stress of
the structure at the current moment can be obtained.

3.5.2 Complete Lagrangian
Different from the updated Lagrangian equation, in the full Lagrangian calculation, the description of the

stress and strain adopts the Kirchhoff stress Sij and the green strain Eij defined on the initial configuration.
The quantities in the updated Lagrangian format can be converted into the initial configuration using the
following:

rji ¼ dxj
dXk

dxi
dXl

Skl

qbidV ¼ q0bidV0

�tidA ¼ �t0i dA0

8>><
>>: (36)
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Substitute Eq. (36) into Eq. (35) to obtain the differential equation of motion in the complete Lagrangian
format to get the equation:

f int ¼
Z
V0

BT
0 SdV0; f

ext ¼
Z
V0

NTq0bdV þ
Z
A0
i

NT�t0dA0; M ¼
Z
V0

q0N
TNdV0 (37)

3.6 Basic Solution Method and Solution Process of Large Deformation Dynamic Finite Element
To sum up, the differential equations of motion of the updated Lagrangian method and the complete

Lagrangian method can be written as M €U þ f int ¼ f ext in the same form. Various direct integration
methods, such as the explicit central difference method, implicit Newmark method, etc., can solve the
differential equation. The explicit central difference method is the main algorithm used in ABAQUS. For
the introduction to the explicit center algorithm, please refer to the related books [32,33], which will not
be repeated in this article.

3.7 Single-Point Gaussian Integration and Hourglass Mode
The most serious difficulty of performing nonlinear dynamic analysis is the large-scale and time-

consuming calculation. When the explicit integration algorithm is used, the calculation is performed at
the element level. There is no need to assemble the total stiffness matrix of the structure and solve the
overall balanced equation, so most of the machine time is used to calculate the nodal forces of the
element. When single-point Gaussian integration is used, it can greatly save the number of data
operations and storage. Still, it may cause hourglass mode [34–37] (or zero-energy mode), leading to
calculation divergence and result distortion. Therefore, we must control the hourglass mode. Examining
the Equivalent Nodal Vectors in Ordinary Differential Eq. (35):

f int ¼
Z
V
BTrdV (38)

If the 2� 2� 2 Gaussian integral is used for the hexahedral element, each element must calculate the
constitutive relation eight times. If a single-point Gaussian integral is used, the above equation changes to:

f int ¼ 8BT
0r0J 0; 0; 0ð Þ (39)

where B0 ¼ B n; g; fð Þjn;g;f¼0; r0 ¼ r n; g; fð Þjn;g;f¼0; J 0; 0; 0ð Þ is the value of the Jacobian determinant
of the cell centroid. 8J 0; 0; 0ð Þ gives an approximation of the element volume.

The physical interpretation of the hourglass mode is given by taking an 8-node solid element Fig. 2 as an
example. The shape function of the 8-node solid element is:

NI n; g; fð Þ ¼ 1

8
1þ nInð Þ 1þ gIgð Þ 1þ fIfð Þ; I ¼ 1; 2; � � � ; 8 (40)

where n; g; f are the natural coordinates of the interpolation point, and nI ; gI ; fI are the natural
coordinates of the node I. The velocity of any point in the 8-node solid element is:

vi n; g; fð Þ ¼ NI n; g; fð ÞviI (41)

In the equation, the repetition index I represents the summation of its values and viI represents the
velocity component of the I th node of the element in the xi direction. Substituting Eq. (40) into the
above equation, we have:

vi n; g; fð Þ ¼ Nvi (42)
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Among them:

N ¼ 1

8
�T þ �T

1 nþ �T
2 gþ �T

3 fþ �T
1 ngþ �T

2 gfþ �T
3 nfþ �T

4 ngf
� �

vi ¼ vi1 vi2 vi3 vi4 vi5 vi6 vi7 vi8½ �T

� ¼ 1 1 1 1 1 1 1 1½ �T

�1 ¼ �1 1 1 �1 �1 1 1 �1½ �T

�2 ¼ �1 �1 1 1 �1 �1 1 1½ �T

�3 ¼ �1 �1 �1 �1 1 1 1 1½ �T

�1 ¼ 1 �1 1 �1 1 �1 1 �1½ �T

�2 ¼ 1 1 �1 �1 �1 �1 1 1½ �T

�3 ¼ 1 �1 �1 1 �1 1 1 �1½ �T

�4 ¼ �1 1 �1 1 1 �1 1 �1½ �T

It can be seen from the above equation that the element velocity field is composed of the basis vector
�; �1; �2; �3; �1; �2; �3; �4. The basis vector � reflects the translation of the element, �1 describes
the tensile and compressive deformation of the element, �2; �3 describes the shear deformation of the
element and �1; �2; �3; �4 are called hourglass basis vectors. Fig. 3 shows the hourglass modes of the
hourglass in the g direction, and there are 12 hourglass modes in total.

The partial derivative of the shape function needs to be calculated when calculating the stress and strain
of the element @NI=@x1; @NI=@x2; @NI=@x3, and need to be obtained by @NI=@n; @NI=@g; @NI=@f. When
a single-point Gaussian integration is performed at the centroid of the cell n; g; f ¼ 0ð Þ, the derivative of
the shape function at this location is:

@N

@n
¼ 1

8
�T
1 ;

@N

@g
¼ 1

8
�T
2 ;

@N

@f
¼ 1

8
�T
3 (43)

among them, N ¼ N1 N2 � � � N8½ �. The hourglass modes of element deformation are lost during single-
point integration �1; �2; �3; �4, i.e., it does not contribute to the element strain energy calculation and is
therefore called zero-energy mode. In some cases, the nodal displacement is not zero (that is, the element is
deformed), but the strain calculated from the interpolation of the shape function is zero, which is not

Figure 2: 8-node solid element
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allowed. If the zero-energy mode is not controlled in the dynamic response calculation, it may develop
freely and cause severe numerical oscillations. Two main methods to control the hourglass mode are
viscous damping force control and stiffness control [38–41]. In ABAQUS, the former method is mainly
adopted. At the element node k, an hourglass viscous damping force is introduced along the xi axis
opposite the hourglass modal deformation direction.

fik ¼ �ak
X4
j¼1

hij�jk ; i ¼ 1; 2; 3; k ¼ 1; 2; � � � ; 8 (44)

In the equation, hij ¼
P8
k¼1

vki �jk is the hourglass mode; the negative sign indicates that the damping force

is in the opposite direction to the deformation of the hourglass mode �jk ; the coefficient is
ak ¼ QhgqV 2=3

e c=4. In the equation, Ve is the element volume; q is the mass density; c is the material
sound velocity; Qhg is a user-defined constant, usually taken as 0.05∼0.15. The hourglass viscous
damping force of each node is assembled into the overall hourglass viscous damping force matrix H, then
the differential equation of system motion can be rewritten as:

M _uI þ f int ¼ f ext þ H (45)

Since the hourglass mode is orthogonal to the other basis vectors of the actual deformation, the hourglass
mode is continuously controlled during the operation. The work done by the hourglass viscous damping
force is negligible in the total energy. This method is simple to calculate and takes less time. The main
keywords for hourglass control in ABAQUS are *HOURGLASS” and *HOURGLASS STIFFNESS*.
Using explicit integration algorithms facilitates efficient single-point integration, significantly enhancing
computational efficiency. This approach negates the necessity of performing multiple integrations per
element, substantially curtailing the computational overhead. Notably, the stability condition inherent to
explicit schemes provides a robust solution to mitigating issues related to HOURGLASS. Thus, the

Figure 3: Hourglass mode for an eight-node solid element
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amalgamation of these characteristics makes explicit integration algorithms an invaluable tool in
computational engineering applications.

4 Contact-Collision Nonlinear Problem

4.1 Contact-Collision Algorithm
The collision between two bodies in ABAQUS is achieved by defining contact. ABAQUS generally

uses three different algorithms to deal with the contact-collision problem: ABAQUS generally uses three
different algorithms to deal with the contact-collision problem Penalty Method, Lagrange Multiplier
Method, and Augmented Lagrange Multiplier Method. Penalty Method: The most common method used
in ABAQUS for contact-collision problems. It works by adding a penalty force to the equations of
motion to prevent penetration of the contact surfaces. Lagrange Multiplier Method: It is also known as
the constraint method. It introduces a set of constraints to the equations of motion to prevent penetration
of the contact surfaces. Augmented Lagrange Multiplier Method: It combines the penalty and Lagrange
multiplier methods. It works by introducing a set of constraints to the equations of motion and adding a
penalty force to prevent penetration of the contact surfaces. This method provides more accurate results
than the other two methods. The principle is to check whether the slave node penetrates the main surface
segment at each time step; a large interface contact force is introduced between the slave node and the
penetrated main surface segment, the magnitude of which is proportional to the penetration depth and
contact stiffness. Its physical meaning is equivalent to introducing a normal spring between the slave
node and the main surface segment to limit penetration, as shown in Fig. 4. The symmetric penalty
function rule is to do similar processing for each master node simultaneously.

4.2 Numerical Calculation Method of Contact-Collision

4.2.1 Contact and Non-Embedded Conditions
Considering the contact problem of objects A and B, their current configurations are denoted as VA and

VB, respectively. The boundary surfaces are denoted as AA and AB, and the contact surface is denoted as
AC =AA∩AB, as shown in Fig. 5.

Object A is the master, its contact surface is the master surface, object B is the enslaved, and its contact
surface is the slave surface. The non-embedding conditions [42] for objects A and B can be expressed as:

VA \VB ¼ 0 (46)

The above equation shows that objects A and B cannot overlap. Since it is impossible to determine
where the two objects are in contact in advance, the non-embedded condition cannot be expressed as an
algebraic or differential displacement equation in the large deformation problem. It can only be compared
at each step. The coordinates of the corresponding nodes of objects A and B on the surface Eq. (47) or

Figure 4: Penalty function algorithm schematic
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the contrast rate Eq. (48) to achieve the displacement coordination condition:

UA
N � UB

N ¼ uA � uB
� �

nA � 0jAC
(47)

VA
N � VB

N ¼ vA � vB
� �

nA � 0jAC
(48)

In the equation, the subscript N represents the contact’s normal direction.

4.2.2 Contact Force Conditions
By Newton’s third law, the contact force should satisfy the following:

tAN þ tBN ¼ 0

tAT þ tBT ¼ 0

(
(49)

where tAN ; t
B
N represent the normal contact force of object A and object B, respectively. tAT ; t

B
T are the

tangential contact force (i.e., frictional force) of objects A and B, respectively.

4.3 Finite Element Implementation of Contact Collision Algorithm
The calculation steps of the symmetric penalty function [43,44] are as follows:

(1) As shown in Fig. 6, search for the closest master node mS to any slave node nS .
(2) Check the main surface segments associated with the master nodemS , and determine the main surface

segments that the slave node nS may contact when penetrating the main surface. If the master nodemS

does not coincide with the slave node nS , when the following two inequalities are satisfied, the slave
node nS maybe in contact with the master surface segment Si:

Ci � Sð Þ � Ci � Ciþ1ð Þ. 0
Ci � Sð Þ � S � Ciþ1ð Þ. 0

	
(50)

In the equation, the Ci and Ciþ1 vectors are the two edge vectors at the point mS on the main face
segment Si; the vector S is the projection of the vector g on the main surface; g is the vector from the
master node to the slave node nS .

S ¼ g � g � mð Þm (51)

Figure 5: Contact between two objects
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In the equation:

m ¼ CiCiþ1= CiCiþ1j j (52)

where the vector m is the outer normal element vector of the principal face segment. If the slave node is close
to or located on the intersection of two main surface segments, the above inequality may be uncertain, and S
takes the maximum value at this time.

S ¼ max gCi= Cij jð Þi ¼ 1; 2; � � � (53)

(3) Determine the position of the possible contact point c of the slave node nS on the main surface
segment Si. The position vector r of any point on the main surface segment Si can be expressed
as:

r ¼ f1 n; gð Þi1 þ f2 n; gð Þi2 þ f3 n; gð Þi3 (54)

where fi n; gð Þ ¼ P4
j¼1

fj n; gð Þxji; fj n; gð Þ ¼ 1

4
1þ njn
� �

1þ gjg
� �

, xji is the coordinate value of the node j for

the element; i1; i2; i3 is x1; x2; x3, the element vector of the axis. The contact points c nc; gcð Þ the location
must satisfy the following two equations:

dr
dn

nc; gcð Þ � t � r nc; gcð Þ½ � ¼ 0

dr
dg

nc; gcð Þ � t � r nc; gcð Þ½ � ¼ 0

8>><
>>: (55)

(4) Check whether the slave node penetrates the master surface segment.

If the following equation holds:

l ¼ ni t � r nc; gcð Þ½ �, 0 (56)

Figure 6: Contact between slave node and master surface segment
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Then it means that the slave node nS penetrates the main surface segment Si containing the contact point
c nc; gcð Þ. Where ni is the outer normal line element vector of the main surface segment at the contact point c,
and its calculation equation is:

ni ¼
dr
dn

nc; gcð Þ � dr
dg

nc; gcð Þ
dr
dn

nc; gcð Þ � dr
dg

nc; gcð Þ
����

����
(57)

If l � 0, the slave node nS does not penetrate the main surface segment, the two objects do not
touch-collide, so no processing is performed, and the search for the slave node nS ends, and the search
for the next slave node nSþ1 begins. The relationship between the slave node and the master segment is
shown in Fig. 7.

(5) If the slave node penetrates the main surface segment, a normal contact force is applied between the
slave node nS and the contact point c.

fS ¼ �lkini (58)

In the equation, ki is the stiffness factor of the main face segment Si, and its calculation equation is:

ki ¼ fKiA
2
i =Vi (59)

where Ki, Vi and Ai are the bulk modulus, volume, and area of the main surface segment of the element where
the main surface segment Si is located; f is the contact stiffness scaling factor, and the default value is 0.1.
During the calculation of ABAQUS, if the penetration is too large, the user can increase the penalty function
factor in the contact definition within ABAQUS. This can be done by increasing the “Penalty” parameter
within the “Contact Interaction” or “Contact Pair” definition. Increasing the penalty factor will increase
the stiffness of the contact, making it less likely for penetration to occur. However, increasing the penalty
too much can lead to unrealistic results and numerical instability, so it should be done with caution and
testing. If the value of f is too large ð. 0:4Þ, the numerical calculation may be unstable unless the time
step is reduced. The normal contact force vector fS is applied to the slave node nS , and then, according to
Newton’s third law, a force in the opposite direction fS is applied to the contact point c of the main

Figure 7: The relationship between the slave node and the master segment
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surface segment. The contact force at point c can be equally distributed to the nodes of the main surface
segment according to the following equation:

fjm ¼ �fj nc; gcð ÞfS; j ¼ 1; 2; 3; 4 (60)

fj nc; gcð Þ is a two-dimensional shape function on the main surface segment, and there isP4
j¼1

fj nc; gcð Þ ¼ 1 at the contact point “c”.

(6) Calculation of tangential contact force (friction force) If the normal contact force from node nS is fS ,
then the maximum friction force is FY ¼ l fSj j; and l is the friction coefficient. Assuming that the
friction force of the slave node nS at the last moment tn is Fn, then the friction force (probing
friction force) that may be generated at the current moment tnþ1 (trial friction force)
F� for F� ¼ Fn � kDa; Da ¼ rnþ1 nnþ1

c ; gnþ1
c

� �� rnþ1 nnc ; g
n
c

� �
; k is the interface stiffness. The

following equation calculates the frictional force at the current moment:

Fnþ1 ¼ F�j ) F�j j � FY

FYF�= F�j j ) F�j j.FY

	
(61)

Finally, the friction force of the four main nodes corresponding to the main surface segment is calculated
according to the theorem of action force and reaction force. If the coefficient of static friction is ls and the
coefficient of dynamic friction is ld, the exponential interpolation function is used to make a smooth
transition between the two:

l ¼ ld þ ls � ldð Þe�C Vj j (62)

where V ¼ De=Dt; Dt is the time step, and C is the decay factor. In ABAQUS, friction can be
activated in a contact interaction by defining the friction coefficient as a non-zero static (FS) and dynamic
(Fd) friction coefficients in the input file’s *CONTACT* definition section or the ABAQUS/CAE
interface by specifying the friction coefficient in the contact properties. The contact properties can also
define the type of friction (e.g., Coulomb or viscous). If the static and dynamic friction coefficients are
not equal, FS should be greater than Fd, and a non-zero attenuation coefficient Dc must be specified. For
problems with numerical noise, such as collision, FS and Fd are generally set to the same value to avoid
additional noise.

(7) Take the contact force vectors fS , fjm, and friction force vectors as known vectors, and assemble them
into the overall load vector-matrix P for dynamic analysis.

The symmetric penalty function algorithm lends the above algorithm to the slave node and master node,
respectively.

4.4 Material Nonlinear Problems
Material nonlinear problems can be divided into two categories [45–47]. The time-independent

elastoplastic problem is characterized by material deformation occurring immediately after the load is
applied and does not change with time. The other type is the time-dependent viscous problem,
characterized by the fact that the material undergoes corresponding elastic-plastic deformation
immediately when the load is applied.

The deformation continues to change with time. The ABAQUS program primarily considers materials’
nonlinear and rate-dependent effects through built-in material models. The contact algorithm, mesh density,
boundary conditions, and loading approximations were validated through sensitivity studies, which verified
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the variability induced by these assumptions was within an acceptable tolerance of less than 10% for key
output measures.

5 Applicability of the Nonlinearity Experimentally

In this section, numerical simulations investigate the dynamic response and failure modes of reinforced
concrete (RC) members under asymmetrical impact loads. A collision between a rigid hammer and an RC
member is simulated using the explicit central difference algorithm of ABAQUS, a commercial finite
element software. Parameters include the mass of the hammer, its initial velocity, and the axial
compressive strength of the concrete feature in this simulation. Furthermore, an analysis is carried out to
examine various parameters’ effects on the RC members’ dynamic response and their failure modes under
asymmetrical impact load. Specific elements under investigation include the influence of the longitudinal
and stirrup reinforcement ratios. These simulations provide insights into how different factors, including
the characteristics of the impact load and the properties of the RC member, impact the member’s dynamic
response and failure modes. The results from this investigation bear significant implications for the design
and safety assessment of RC structures subject to impact loads.

5.1 Model Definition
Utilizing ABAQUS, a 3D split model of a group of square reinforced concrete (RC) members is created

(as depicted in Fig. 8).

The bond-slip is considered in the connection between the reinforcement and the concrete. Key
dimensions of the RC member include section height (h = 120 mm), section width (b = 120 mm), member
net height (H = 1.5 m), and the thickness of the concrete cover (c = 20 mm), as shown in Fig. 8. The

Figure 8: Finite element model of RC member
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boundary conditions of the finite element model can be simplified to fix both the top and bottom surfaces of
the member. This means the top and bottom surfaces cannot move horizontally or vertically. In other
words, the top and bottom surfaces are rigidly fixed. While this assumption may slightly restrict
displacements near the supports, prior studies have validated that the key impact behaviors remain
accurately captured with fixed ends.

5.2 Material Model
The model can be shortened to the sphere is rigid (*ELASTIC), reinforcements use

*PLASTIC_KINEMATIC and strain rate effects are included [32,48]. While more complex plasticity
models could offer enhanced strain rates and work hardening behaviors, the chosen approach captures
essential nonlinearity while reducing computational expenses. The steel yield stress can be expressed as:

ry ¼ 1þ _e
C

� �1
p

2
4

3
5 r0 þ bEpe

p
eff

� �
(63)

where r0 is the initial yield stress of the reinforcement; p, C are the strain rate parameters of the Cowper-
Symonds model; b is the parameter for adjusting isotropic strengthening and kinematic strengthening; Ep

is the plastic hardening modulus; epeff is the effective plastic strain. The material parameters used for the
reinforcement in this paper are shown in Table 1.

The concrete material can be summarized as concrete uses (Concrete Damaged Plasticity), strain rate
effects are included using the DIF (dynamic/static strength ratio), CDIF coefficient from the improved
K&C model, and Eqs. (64) and (65):

CDIF ¼ fcd
fcs

¼ _ed
_ecs

� �1:206a

_ed � 30s�1
� �

(64)

CDIF ¼ fcd
fcs

¼ c _edð Þ1=3 _ed . 30s�1
� �

(65)

where fcd is the concrete dynamic compressive strength, _ed the strain rate, fcs is the concrete static
compressive strength (compressive strength of concrete at _ecs ¼ 30� 10�6S�1); log c ¼ 6:156a� 0:49,
where a ¼ 5þ 3fcu=4ð Þ�1, fcu is the concrete cube’s compressive strength. The increase factor TDIF of
concrete tensile strength is determined by Eqs. (66) and (67).

TDIF ¼ ftd
fts

¼ _ed
_ets

� �d

_ed � 1s�1
� �

(66)

TDIF ¼ ftd
fts

¼ b
_ed
_ets

� �1=3

_ed . 1s�1
� �

(67)

Table 1: Reinforcement material parameters

E=GPa v r0=MPa Et=GPa C=s�1 p fs b

206 0.3 335 1.2 40 5 0.12 0
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where ftd is the concrete dynamic tensile strength at the strain rate _ed, where fts concrete static tensile strength

(_ets ¼ 10�6S�1 concrete tensile strength); logb ¼ 6d� 2, where: d ¼ 1þ 8f 0c=f
0
c0

� ��1
, f 0c0 ¼ 10 MPa, f 0c

axial compressive strength of concrete under quasi-static conditions.

The concrete parameters are curves generated from the K&C model, and the other parameters are
ABAQUS default [48].

5.3 Contact of Reinforcement to Concrete
The bond-slip model defines the concrete using a 3D stress element (C3D8R). The reinforcement is

modeled using truss elements (T3D2). The interaction between the concrete and the reinforcement is
governed by a (*CONTACT PAIR) definition with (slip) behavior, with the reinforcement nodes serving as
the slave side and the concrete nodes as the master side. The bond between the reinforcement and the
concrete is modeled as being proportional to the slip until a maximum limit, beyond which separation
occurs. This frictional behavior is defined using a (*FRICTION) definition, which provides the frictional
stress vs. slip rate behavior. Bond-slip relationship elastic stage is linear, the plastic stage is exponential
decay, and damage accumulation is considered an elastic stage linear relationship and the plastic stage as
exponential decrease.

s ¼ GsS S � Smax
smaxe�hdmg D s. Smax

	
(68)

where Gs is the bond shear modulus; hdmg is the damage index curve coefficient; Smax is the maximum elastic
slip; D is the damage parameter, representing the accumulation of plastic strain according to Yao et al.’s
literature [49]. The parameter values used in this paper are:Gs ¼ 50MPa=mm, hdmg ¼ 0:2; Smax ¼ 0:36 mm:

5.4 Bond-Slip Model Verification
Two models were established to validate the bond-slip model: (1) The proposed bond-slip model. (2) A

standard model using common nodes. However, the model parameters are as follows:

Hammer mass: 270 kg, initial velocity: 2 m/s, concrete strength f 0c ¼ 45:4MPa, reinforcement: 4[8
longitudinal, [4@|100 mm stirrups. Fig. 9 compares the horizontal displacement at the asymmetric point.
The peak displacements from the two models show good agreement, bond-slip model 120.9 mm and
common node model 115.3 mm within a 5% difference. The displacement-time curves from the two
models exhibit similar trends. However, the residual displacements differ slightly due to how the models
capture slips. The energy response of the simulation provides an important validity check. Fig. 10 shows
that nearly all (97%) of the initial kinetic energy is converted to internal, hourglass, and other energies.

The total energy is conserved, indicating an accurate solution. The hourglass energy remains below 10%
of the internal and total energies. This demonstrates that hourglass control is effective, and the results are
reliable, as reported in previous studies. In summary, the reasonable energy conversion and controlled
hourglass energy provide confidence that the proposed bond-slip method captures the member response
accurately. The energy check thus corroborates the model validation based on displacement comparisons,
demonstrating the validity and reasonableness of the bond-slip method.

5.5 Dynamic Response Analysis
The dynamic response of RC members is further studied by analyzing the effects of various parameter

values using the bond-slip model mentioned above.

5.5.1 Rigid Sphere Mass
Fig. 11 demonstrates the influence of varying hammer mass on the horizontal displacement at the

asymmetrical point of the RC member, maintaining all other parameters as in Section 5.4. An increase in

SDHM, 2024, vol.18, no.3 241



hammer mass results in a gradual increase in peak and residual displacements. However, the rate of these
increases experiences a diminishing trend. For instance, a mass increase from 220 to 270 kg causes a
33 mm peak displacement increase, which reduces to 27 mm when mass increases from 270 to 310 kg.
This suggests that while larger hammer masses elicit greater structural responses, the development speed
of the RC member’s plastic region decelerates with mass increase.

5.5.2 The Initial Velocity of the Sphere Hammer
Fig. 12, with parameters as in Section 5.4, reveals that increasing the hammer mass incrementally

elevates the peak and residual displacements of the RC member’s asymmetrical point, albeit at a
declining rate. For example, a peak displacement increase of 33 mm occurs when mass rises from 220 to
270 kg, which lessens to 27 mm from 270 to 310 kg.

This implies that larger hammer masses amplify structural responses but also decelerate the development
of the RC member’s plastic region. Fig. 12 presents the horizontal displacement of an RC member’s

Figure 9: Comparison of horizontal displacement of members under two methods

Figure 10: System energy curve for the member under asymmetrical impact force
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asymmetrical point under varying initial velocities of a rigid hammer impact. The same model parameters
from Section 5.4 are applied. As the initial hammer velocity increases, the peak value and residual
displacement exhibit a nonlinear acceleration. Specifically, a jump from 1.0 to 2.0 m/s increases peak
displacement by 35.4 mm, while a leap from 2.0 to 3.0 m/s results in a 97.6 mm increase. This indicates a
continuous increase in the RC member’s displacement response and a quicker development of the
member’s plastic zone as the initial hammer velocity increases.

5.5.3 Axial Compressive Force
The impact of axial compressive strength on the dynamic response of RC members was studied using

rigid hammer simulations on three members with strengths of 30, 40, and 50 MPa. The hammer mass (m =
270 kg), initial velocity (v ¼ 2m=s), and other parameters were maintained per Section 5.4. Fig. 13a depicts
the horizontal displacement at the asymmetrical point for members with different axial compressive strengths
using the same strain rate effect curve (at fc0 ¼ 50MPa). Increasing axial strength reduces the peak and
residual displacements to varying extents. Higher strength under identical load levels decreases the area

Figure 11: Comparison of the horizontal displacement of RCmembers under different sphere hammer masses

Figure 12: Comparison of the horizontal displacement of RC members under different sphere hammer
velocities
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of concrete member entering plasticity, reducing horizontal displacement at the member’s asymmetrical
point. Fig. 13b presents a time-history curve comparison of horizontal displacement at the RC member’s
asymmetrical point under various axial compressive strengths, considering strain rate effects. The strength
increases the coefficient DIF, a function of fc0 (the calculation method in Section 5.2), does not effectively
diminish peak or residual displacement magnitude amidst increased concrete axial strength. Lower-
strength materials show heightened strain rate sensitivity and a higher DIF at the same strain rate [50].
Therefore, dynamic responses of low-strength concrete structures may be lower than high-strength ones
(verifiable by comparing Figs. 13a and 13b). Thus, concrete strength selection for anti-collision structures
should be reasonable, within specification limits, without defaulting to high-strength concrete.

5.5.4 Longitudinal Reinforcement Ratio
Maintaining all parameters as in Section 5.4 and varying only the longitudinal reinforcement ratio,

Fig. 14 indicates a reduction in peak and residual displacements at the asymmetrical point with an
increasing reinforcement ratio. This reduction becomes particularly pronounced when the ratio increases
from 0.016 to 0.019. Enhanced flexural and shear resistance due to higher reinforcement ratios results in
a smaller area entering the plastic state under a consistent load level, effectively reducing the RC
member’s displacement at its asymmetrical point.

5.5.5 Ratio of Stirrups
Fig. 15 compares time-history curves of horizontal displacement at the asymmetrical point under two

stirrup reinforcement ratios, 0.002 (s = 200 mm) and 0.005 (s = 80 mm), with other parameters as in
Section 5.4. Fig. 15 shows an 18% and 30% reduction in peak and residual displacements, respectively,
when the ratio increases from 0.002 to 0.005. This suggests that augmenting the stirrup reinforcement
ratio enhances shear resistance and reduces displacement at the member’s asymmetrical point.
Additionally, decreased stirrup spacing better restrain core concrete deformation.

Figure 13: Comparison of the horizontal displacement of RC members under different concrete axial
compressive strengths with different strain effects
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5.5.6 Failure Mode Analysis
Under asymmetrical impact load, RC members exhibit two primary failure modes: local and overall.

Local failure involves crushing concrete in the impact area (Fig. 16a) and cracking and spalling away
from the impact side (Fig. 16b) caused by the instantaneous impact force. The surface pressure of the
colliding body generates high internal stress in the contact area, resulting in concrete crushing.
Concurrently, large deflection and deformation induce excessive tensile stress on the far side of the
impact, destroying the bond between reinforcement and concrete and leading to concrete cracking and
spalling.

Figure 14: Comparison of the horizontal displacement of RC members under different longitudinal
reinforcement ratios

Figure 15: Comparison of the horizontal displacement of RC members under different stirrup reinforcement
ratios
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Numerical simulations revealed that under asymmetrical impact load, overall RC member failure
primarily manifests as bending shear failure (Fig. 16c), with bending deformation fully developed before
the onset of shear deformation. This overall failure is closely tied to the type of impact load. Impulse
loads with high peaks and short durations often result in shear failure as the member’s shear stress rapidly
reaches failure stress before effective bending deformation occurs. Conversely, quasi-static loads with low
peaks and longer durations tend to induce bending failure due to effective bending deformation
development. Collision impact loads between impulse and quasi-static loads typically lead to bending
shear failure, falling under dynamic load classification.

6 ABAQUS Program Reliability and Accuracy Verification

ABAQUS is a popular and widely used finite element analysis (FEA) software program known for its
reliability and accuracy. Verifying the reliability and accuracy of ABAQUS is an important step in ensuring
that simulations performed using the program are accurate and trustworthy. One way to verify the reliability
of ABAQUS is to compare the results of simulations performed using the program to experimental data or
analytical solutions. This can be done by comparing the results of a simulation to the results of a physical test
or by comparing the results of a simulation to an analytical solution for a known problem. The program can
be reliable if the simulation results agree with the experimental data or analytical solution. In addition to
performance tests, sensitivity studies can verify ABAQUS’ accuracy. A sensitivity study involves varying
one or more input parameters and comparing the results to the original simulation. This can help identify
any areas where the simulation is sensitive to changes in input parameters and can also help identify any
areas where the simulation is inaccurate. It is also important to verify the robustness of the software by
performing benchmark tests and comparing the results to other codes and standards. This can be done by
running simulations of known problems and comparing the results to other simulations performed using
other software programs or analytical solutions. In addition to the above, the proper meshing technique
used in the simulation also plays a crucial role in ensuring the reliability and accuracy of ABAQUS. A
good mesh reduces the number of elements required for the simulation, increases the degree of freedom,
and reduces the computation time. The ABAQUS program is a full-featured geometric nonlinear, contact
nonlinear, and material nonlinear analysis software. It is mainly based on the Lagrange algorithm and has

Figure 16: The failure mode of RC members under asymmetrical impact load
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both ALE and Euler algorithms; it is mainly based on an explicit solver and has both implicit solver
functions. It is mainly based on structural analysis and has thermal analysis and fluid-structure coupling
functions; it is mainly based on nonlinear dynamic analysis and has static analysis functions; it is a
general nonlinear finite element program for structural analysis [48,51].

6.1 Problem Statement
The impact of elastic rods is a classic case in the contact problem, studied by many scholars and obtained

theoretical, analytical solutions [52–56]. For more discussion about the contact problem, one example of the
elastic rod under impact load will be used for simulation by ABAQUS and compare the output with the
theoretical and analytical solutions. The reinforced concrete RC column is a composite concrete and steel
reinforcement material. The steel reinforcement gives the column additional strength and ductility,
making it more resistant to bending, compression, and other loads. It is worth noting that this example is
harder and more complex than using other materials like a rod because it involves the behavior of a
composite material, it is more difficult to solve analytically, and it is more common to use numerical
methods such as FEA to simulate the collision. The impact of elastic rods is a classic case in contact
mechanics, which deals with the behavior of bodies in contact with one another. The problem involves
the collision of two elastic rods, and the goal is to determine the forces and deformations that occur
during the impact. Many scholars have studied this problem and developed several theoretical and
analytical solutions [57–61]. One such solution is provided by the finite element software ABAQUS,
widely used in engineering and scientific research to simulate the behavior of structures under various
loading conditions.

6.2 ABAQUS Modeling
ABAQUS can be used to model the impact of elastic rods by creating a simulation of the collision and

solving the resulting system of equations using numerical methods. Problem description: the impact of two
homogeneous elastic rods, Rod A and Rod B, is being studied. Rod A moves with an initial velocity of 1 m/s
and collides with a static Rod B. Both rods are made of the same material, with an elastic modulus of 100 Pa,
Poisson’s ratio of 0.3, a density of 0.01 kg/m3, a cross-sectional area of 1 m2, and a length of 10 m. The ends
of Rod A and Rod B were constrained to prevent translational and rotational displacement. Specifically, the
ends were fixed against motion in the x, y, and z directions and rotation about the x, y, and z axes. This
simplified boundary condition restricts the rods from moving horizontally or vertically at their ends while
still allowing wave propagation, which has been shown in prior studies to accurately capture the stress
wave behavior during rod impacts. The goal of the problem is to determine the forces and deformations
that occur during the impact of these two rods and use this information to understand the behavior of the
rods during the collision. This problem can be solved using analytical or numerical methods, such as
finite element analysis with software such as ABAQUS. It can provide valuable insights into the
mechanics of rod impacts, which can be useful in various engineering applications.

6.3 Simulation and Results
A highly refined finite element mesh is utilized to analyze the propagation of stress waves resulting from

the impact of Rods A and B. This mesh is densely divided, as illustrated in Fig. 17, to ensure an accurate
investigation of the stress wave behavior.

The stress wave propagation in Rods A and B during the impact process was investigated. Figs. 18a–18c
show the axial stress contours of the rods at 0.01, 0.02, and 0.04 s, respectively, where zero sec is the initial
velocity assumed in the analytical solution is 0 for both rods for simplicity.

Fig. 17a shows the initial contact between Rod A and Rod B. At this early stage of impact, the stress has
not had sufficient time to propagate along Rod B, so its distal end furthest from the impact point remains
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unaffected and experiences a limited stress range close to zero. As the impact time increases, the stress wave,
also known as the loading or compression wave, propagates from the contact impact face to the distal free
surface of the rod, beginning to reach the surface, as shown in Fig. 18b. While the stress wave beginning to
reach the free surface is seen at 0.02 s in Fig. 18b, the total propagation time may be longer than depicted in
Fig. 19. The compression of both rods occurs at this point, and the stress wave is reflected on the free surface
at the far end, changing from a compression wave to a tensile wave. This results in tensile stress waves at the
distal ends of Rods A and B, as shown in Fig. 18c. The stress propagation shown here at 0.01, 0.02, and 0.04
s corresponds to the times analyzed in Fig. 19. These stress wave propagation laws align with the theory of
one-dimensional elastic waves [62]. Notably, using ABAQUS software to analyze contact collision problems
is reliable and proven effective.

6.4 Verification of ABAQUS
An investigation into the propagation of stress waves within Rods A and B during the impact process

was conducted. These observations align with the principles of one-dimensional elastic wave theory [63,64].
The use of the ABAQUS program for analyzing this collision problem was reliable. Further examination of
the computational accuracy of the ABAQUS program was conducted by comparing time-history curves of
displacement, velocity, and contact force at the central nodes of the contact surfaces of Rods A and B, as well
as the energy curve of the collision system, to theoretical and analytical solutions, as demonstrated in Fig. 19.
The analytical contact force solution assumes an initial penetration depth per Hertzian contact theory,
whereas the numerical model starts with no penetration. The analysis determined the displacement time
history through the analytical resolution of the one-dimensional wave equation applied to an elastic rod
under the impact. The equation for the 1D wave in an elastic rod is expressed as @2u=@t2 ¼ c2 @2u=@x2,
wherein u represents displacement, c is the wave speed, x is the position, and t is time. This process

Figure 17: Finite element model simulation

a) 0.01 sec b) 0.02 sec c) 0.04 sec

Figure 18: Stress wave propagation contour
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involved obtaining a closed-form solution for displacement as a function of time and position along the
subjected rod.

To solve the wave equation, d’Alembert’s approach was employed, wherein the equilibrium equation
was integrated twice concerning time and position. This method incorporated appropriate initial and
boundary conditions based on the initial velocity and free rod ends. As a result, the displacement at the
center of the rod, as a function of time, was determined. This solution is graphically represented in
Fig. 19a. D’Alembert’s approach, which involves the double integration of the wave equation, can be
mathematically represented as follows:

R R
@2u=@t2 dt dx ¼ R R

c2 @2u=@x2 dt dx. The initial conditions,
u x; 0ð Þ ¼ 0 and @u=@t x; 0ð Þ ¼ v0, and boundary conditions, @u=@x 0; tð Þ ¼ 0 and @u=@x L; tð Þ ¼ 0,
were applied, and the resulting integral was analytically solved to obtain: u x; tð Þ ¼ v0=cð Þf x; ctð Þ. Here,
f x; ctð Þ represents the waveform function. The solution at x ¼ L=2 provided the displacement at the
center. The velocity time history was acquired by taking the first derivative of the displacement solution
concerning time, yielding v x; tð Þ ¼ @u=@t ¼ v0=cð Þ@f =@ ctð Þ. This process offered an analytical velocity

(a) Displacement time-history curve (b) Velocity time-history curve

(c) Time-history curve of the contact collision (d) Collision system energy curve

Figure 19: Outputs of the center point of the contact surface
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at the rod center x ¼ L=2 over time, as shown in Fig. 19b. The contact force solution was obtained from
Hertzian contact theory for the elastic impact of two rods, expressed as F ¼ kd1̂:5, where F is force, d is
the penetration depth, and k is a constant. The penetration depth was determined from the displacement
solution and relative velocities. The contact force F at each time step was computed based on d and k.
This analytical contact force was then plotted against the result from ABAQUS, as depicted in Fig. 19c.
The initial non-zero contact force in the analytical solution results from the assumed initial penetration
per Hertz theory. While the initial contact forces differ due to differing penetration assumptions, the
subsequent force vs. time trends agree well between the two solutions. The collective results offered a
comprehensive understanding of the displacement, velocity, and contact force behavior under the defined
conditions.

6.5 Discussion
It can be seen from the above Figures that the contact surface displacement, velocity, and impact force

calculated by ABAQUS during the impact process of the elastic rod are completely consistent with the
theoretical and analytical solutions, and the system energy remains conserved during the elastic collision.
The numerical oscillations caused by the calculation during the impact are also small. The analytical
solution used a simplified case of both rods initially stationary, while the numerical model used an initial
velocity of 1 m/s for Rod A, as defined in Section 6.2. In the velocity time history curve, the curve after
0.04 s oscillates greatly because the structural damping and material damping are not set in the
calculation, so the initial impact stress wave in the elastic rod has been oscillating and cannot be
eliminated. In Fig. 19, during the collision contact process (before 0.04 s), the displacements of the
contact surfaces of the elastic Rods A and B are not the same because there is a certain amount of
penetration in the contact. A certain amount of penetration is an unavoidable phenomenon of the
ABAQUS Penalty Method to solve the collision problem. Reducing the amount of penetration will bring
about the oscillation of the calculation, which is a pair of irreconcilable contradictions. To sum up, the
calculation accuracy of ABAQUS in solving the collision problem fully meets scientific research needs.

7 Conclusion

This paper has comprehensively examined the nonlinearities in collision and impact problems, focusing
on geometric nonlinearity, contact nonlinearity (nonlinear boundary conditions), and material nonlinearity.
The study delved into the numerical realization process of collision and impact problems, giving a
detailed analysis of the stress and strain occurring during large deformations in collisions. It also
scrutinized the fundamental finite element solution methods to address these large deformation issues.
Further, the research examined the hourglass mode and its control using single-point reduced integration,
as well as the integration of contact-collision algorithms within the finite element framework. The paper
also explored the complexities of material nonlinearity, providing an in-depth understanding of different
contributing factors. To complement these theoretical explorations, the paper also expanded upon the
practical applicability of these findings. Specifically, it utilized a distinct model considering steel-concrete
bond slip to analyze RC members’ dynamic response behavior and failure modes under asymmetrical
impact loads. It was observed that increasing the hammer’s mass and initial velocity intensified the
dynamic response and damage to the RC member. Conversely, while increasing axial compressive
strength did not effectively reduce horizontal displacement, enhancing longitudinal reinforcement and
stirrup ratios significantly improved RC members’ anti-collision capacity. Regarding failure modes under
impact load, RC members exhibited local failure primarily concrete crushing and offside spalling and
overall failure, usually characterized as bending shear failure with bending deformation preceding shear
deformation. The practical application of the research was further validated through an elastic rod impact
case study, which analyzed the propagation of stress waves and compared ABAQUS numerical solutions
with theoretical and analytical solutions for various parameters, demonstrating the reliability and accuracy
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of the ABAQUS program in analyzing impact problems. In conclusion, this study contributes valuable
insights into the nonlinearities in collision and impact problems and provides effective strategies for
enhancing the resilience of RC structures under dynamic stress. The findings advance our theoretical
understanding and offer practical solutions, forming a comprehensive perspective.
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