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ABSTRACT

The aging prediction of railway catenary is of profound significance for ensuring the regular operation of elec-
trified trains. However, in real-world scenarios, accurate predictions are challenging due to various interferences.
This paper addresses this challenge by proposing a novel method for predicting the aging of railway catenary
based on an improved Kalman filter (KF). The proposed method focuses on modifying the priori state estimate
covariance and measurement error covariance of the KF to enhance accuracy in complex environments. By com-
paring the optimal displacement value with the theoretically calculated value based on the thermal expansion
effect of metals, it becomes possible to ascertain the aging status of the catenary. To improve prediction accuracy,
a railway catenary aging prediction model is constructed by integrating the Takagi-Sugeno (T-S) fuzzy neural net-
work (FNN) and KF. In this model, an adaptive training method is introduced, allowing the FNN to use fewer
fuzzy rules. The inputs of the model include time, temperature, and historical displacement, while the output is
the predicted displacement. Furthermore, the KF is enhanced by modifying its prior state estimate covariance and
measurement error covariance. These modifications contribute to more accurate predictions. Lastly, a low-power
experimental platform based on FPGA is implemented to verify the effectiveness of the proposed method. The
test results demonstrate that the proposed method outperforms the compared method, showcasing its superior
performance.
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1 Introduction

The aging prediction of the railway catenary is a field of great research value, which plays a significant
role in promoting the railway transportation industry [1-3]. Many researchers use a combination of image
processing and artificial intelligence to determine the degree of aging of the catenary. Chen et al. [4]
proposed a convolutional neural network for the detection of contact line support devices and
components, using high-resolution images from cameras to continuously detect structures in various
complex contact lines. Chen et al. [5] used deep neural networks to improve learning efficiency and
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recognition accuracy in stages. In the first stage, a neural network is established to identify the areas of the
pantograph and contact network in complex scenes. In the second stage, image feature extraction algorithms
are used to detect the contact points between the pantograph and the contact network. Wu et al. [6] proposed
an improved convolutional neural network and a rotating retina network, which uses neural networks
combined with machine vision to detect the support structure of the railway catenary. Image processing
and artificial intelligence can achieve high prediction accuracy but are easily affected by environmental
interference and limited training data [7]. Moreover, the engineering applicability of such equipment is
not convenient, and the development cost and equipment price are not competitive.

The KF is an algorithm that uses a linear system state to perform optimal estimation of the system state
[8,9]. To improve the performance of the KF, many researchers have begun to fuse neural networks with it.
For example, the extended KF proposed in [10] uses a linearization method for nonlinear systems to solve the
problem of inaccurate prediction of nonlinear systems. To address the problem of information loss in
linearizing nonlinear systems, Liu et al. [11] used the unscented KF to handle nonlinearity. To deal with
high-order nonlinear systems, Long et al. [12] used multilayer neural networks to map nonlinearity. The
multilayer perceptron uses historical data to learn the dynamic representation of the observation model,
replacing the rough approximation of the system state and measurement state in the KF. Revach et al.
[13] proposed a neural network-aided KF, which replaces the gain with a recurrent neural network. Based
on the advantages of neural networks in processing nonlinear systems, Kim et al. [14—-16] used deep
neural networks to improve the KF, resulting in better estimation performance in specific application areas.

The FNN combines the characteristics of fuzzy control and neural networks and has many applications
in the field of nonlinear state prediction. For example, in reference [17], a particle swarm optimization
algorithm was used to optimize FNN, and this model was successfully applied to dynamic environmental
prediction. Yang et al. [18] proposed a method for identifying parameters of fuzzy models using recursive
least squares with forgetting factors. Improved control accuracy for highly nonlinear systems. Zang et al.
[19] used FNN to predict the mixed remaining service life of railway catenary, which improves the
accuracy of prediction compared to traditional methods. Narges et al. [20] proposed a method for
optimizing Fault Detection based Decision Tree strategy (FDDT) using neural networks and fuzzy
algorithms. The neural network algorithm detects and distinguishes a type of load, and the fuzzy model
serves as a modifier to determine the final output fault type. Jan et al. [21] proposed a fault detection and
diagnosis system using a Fuzzy Deep Neural Network algorithm.

The KF and the FNN have many applications in health monitoring, life prediction, nonlinear state
estimation, etc. Combining the KF with the FNN can greatly improve the performance of the algorithm in
certain scenarios. The aging prediction of railway catenary can be transformed into a nonlinear state
estimation problem. Therefore, this paper proposes a novel improved KF algorithm that uses a T-S FNN
to replace the prior state estimate of the KF. The constructed T-S FNN uses an adaptive training method
to increase the efficiency of prediction. In addition, the data collected by the vibration sensor is converted
into measurement error covariance for the KF. The main contributions of this paper are as follows:

e Proposed a novel fusion approach. It integrates T-S FNN and KF to improve the accuracy of the aging
railway catenary prediction.

e An adaptive training method is proposed, which enables the FNN to use fewer fuzzy rules while
maintaining the accuracy of fitting and prediction, thus reducing the computational complexity.

e The vibration interference data is introduced into the KF to correct the measurement error covariance
on the estimation of optimal values.

e An experimental platform is built to compare with some of the latest improved KF algorithms, proving
the superiority of the proposed algorithm.
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The rest of this paper is as follows. Section 2 explains the principle of aging prediction for the railway
catenary. Section 3 illustrates the structure of the proposed method. The overall program structure is
described in Section 4. Section 5 shows the comparative experiments. The conclusions are summarized in
Section 6.

2 Problem Statement

2.1 Theoretical Displacement

The railway catenary model discussed in this paper is shown in Fig. 1. Where L, is the distance between
the weights and the catenary, and L is the distance between the bottom of the weights and the ground. The
changes in L, and L, can both serve as displacement changes in the railway catenary. However, considering
that in practice, the weights will cause slight vibration of the arc with the pulley as the origin, which has a
significant impact on the L;. Therefore, the displacement value of the catenary is defined as the L,.

Figure 1: Railway catenary structure model

Metal cables have a specific coefficient of thermal expansion, which means that changes in ambient
temperature can lead to variations in the catenary length [22]. The coefficient of thermal expansion of
metals [23], L, can be calculated as follows:

La = Lmin + ’VLC(p(TC - Tmin) (1)

where L, is the minimum length, y represents the transmission coefficient of the compensating pulley, and
L. represents the distance from the center anchor to the compensator. ¢ indicates the expansion coefficient of
the contact network, 7, represents the current temperature, 7, represents the lowest temperature.

When no train passes by, the trend of ambient temperature and catenary displacement over time plotted
based on data collected by sensors is shown in Fig. 2. The temperature curve is the temperature data within
24 h, the theory curve is the displacement change trend calculated by Eq. (1), and the actual curve is the data
collected by the displacement sensor. The data sampling period is 10 min. From the statistical results, it can
be seen that the theory value of the catenary displacement is correlated with temperature. Due to
environmental interference, there is a certain dissimilarity between the displacement collected by the
sensor and the theory value, but the correlation is still obvious.

2.2 The Principle of Aging Prediction

After being affected by sudden interference like pantograph passing, the displacement of the catenary
will experience significant fluctuations. As shown in Fig. 3, the pantograph passing effect occurred
between 1000 and 2000 s. The catenary experiences significant interference resulting in a substantial
deviation from the theoretical expectations. However, once the interference diminishes, they gradually
realign with the theoretical predictions.
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Figure 2: The relationship between catenary displacement and temperature
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Figure 3: Pantograph interference effect

As the catenary ages, the physical properties are altered due to cable fractures. In Fig. 4, a comparison
between the displacement of the aged catenary and that of a normal one is made, with the differences
illustrated in Fig. 5. The results indicate a substantial disparity in the displacement distribution between
the aged and normal catenaries, and this difference does not spontaneously revert to the normal state for a
certain period. When the detected difference surpasses a predefined threshold and persists for a specific
duration, it serves as an indicator to determine whether the catenary is indeed aged [24].

The values obtained from displacement sensors are susceptible to numerous influencing factors,
including rain, wind, physical disturbances, etc. Without proper filtering of these observations, it can
result in erroneous assessments. The aging prediction method employed in this paper relies on catenary
displacement, making it crucial to account for significant interfering factors. Other factors like
temperature and corrosion can manifest as changes in displacement. However, factors that do not have an
abrupt impact on displacement data do not necessitate technical consideration.
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Figure 5: Displacement difference between aged and normal catenary

3 Proposed Method
3.1 Traditional Architecture

The traditional KF architecture can be described as Fig. 6. The item R represents the measurement error
covariance. The prior estimate error covariance is

- T

P =FP,_F" +0 2
where F indicates the state transition matrix, P,_, represents the posterior estimate error covariance, and Q is
the process noise. K; represents the KF gain. z indicates the actual measurement. The prior state estimate is

x, = Fx;_1 + Bu;_y (3)

where x;_; is the last posterior state estimate, B indicates the control matrix and u,_; represents the input
state.
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Figure 6: Traditional KF architecture

3.2 High Level Architecture

As seen in Egs. (2) and (3), the optimal state of the KF is based on the output from the previous time,
which exhibits hysteresis and is unable to effectively mitigate nonlinear interference. To enhance the anti-
interference performance, this paper proposes replacing the prior state estimate equation of the KF with a
T-S FNN model. The suggested structure is depicted in Fig. 7. Furthermore, the corresponding prior
estimate error covariance has also been substituted. Additionally, the measurement error R has been
replaced by R,, which will be discussed in Section 3.5. The design of a T-S FNN to learn how to
compute x,” and P, as integral components of an overall KF framework involves addressing three pivotal
questions:

1) What are the inputs and outputs of the network?
2) How to design the structure of the network?
3) What methods are needed for training the network?

&

Figure 7: Proposed KF architecture

3.3 Design of the Network Structure

Compared with the traditional Mamdani fuzzy model, the T-S FNN adopts multiple linear functions for
defuzzification. This enables the T-S fuzzy model combined with a back propagation neural network to
reduce fuzzy rules and achieve better training results [25]. Based on the on-site collected data
characteristics, this paper proposes to design the T-S fuzzy model as a three-input single-output model.
As shown in Fig. 8, the model consists of the Premise Network and the Latter Network.

The lower part shown in Fig. 8 is the Premise Network. The first layer is the input, represented by
x=[x1 x x3] @

where x;, x, and x3 indicate time, temperature, and the history of filtered displacement value, respectively.
The input membership function is designed as a bell curve

2

dh=e % ,i=1,...,nj=1,....,m &)

where ¢;; is the center of the bell curve, 0 represents the width of a bell curve, n indicate the number of input,
m is the number of membership function. In the discussion of this paper, n = m = 3.
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Figure 8: Proposed T-S FNN structure

The second layer of the Premise Network is the fuzzy language variable layer. This layer plays a primary
role in computing the membership function for each component input from the first layer, which corresponds
to its respective fuzzy set. This computation is carried out as follows:

1= 1 (xi) (6)

where A’,: represents the j-th language variable of the x-th input.

The third layer represents the matching fuzzy rule layer, where each node corresponds to a specific fuzzy
rule. The primary function of this layer is to match the fuzzy rules and compute the fitness of each rule. The
fitness value is determined through the following calculation:

oy = min{u, 13, 15} ()

The third layer of the Premise Network also needs normalization. The specific calculation method is as
follows:

o

£ ©
After taking the minimum value and normalization, the coefficient vector v can be obtained

v=1fi £ 5] ©)

Ji=la bl (10)

where a and b are the coefficients. Convert the coefficients into a linear function
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Vi = a% + by (11)

Finally, take the minimum value to obtain the output
D=min{y; ys s} (12)

The Later Network is a fusion method based on the Premise Network and fuzzy system. It receives input
signals from the Premise Network and outputs the results using fuzzy inference processing based on these
signals. The network structure proposed in this paper is shown in the upper half of Fig. 8. The Later
Network can be trained based on real-time data to improve the performance of fuzzy control. It consists
of n subnetworks with the same structure, each of which generates an output.

The first layer of the subnetwork is the input layer, the same as the Premise Network. The second layer
consists of m nodes, each of which can represent a fuzzy rule in a fuzzy model, and its main function is to
calculate the consequences of each rule. The calculation method for the output of this layer is as follows:

i=1 j=1

where p indicate the usage weights of various fuzzy rules in the second layer.

The third layer is the output of the Later Network, which is the weighted sum of the Later Network of
each rule. The weighted coefficients are the weights of each fuzzy rule, which means that the output of the
Premise Network is used for the connection weights of the third layer of the Later Network:

W=
j=1

In summary, FNN combines the advantages of fuzzy systems and neural networks, enabling the model to
not only have self-learning and parallel processing capabilities but also handle fuzzy knowledge and utilize
expert experience. In the Premise Network, the use of bell curves as input membership functions reduces
training parameters while improving accuracy. Use Eqgs. (7) and (8) to calculate the output of the
membership function and normalize it. Output the result through Eq. (11), which has higher accuracy
compared to constants. Using Eqs. (13) and (14) in the Later Network, parallel computation of the
weights corresponding to each fuzzy rule is achieved.

After all, the output of the proposed T-S FNN model is D,. The process noise of the proposed KF is as
follows:

;W] (14)

K

(15)

where £ indicates training data volume, d represents the historical displacement of filtered. Eq. (15) elucidates
that the process noise of the KF is transformed through the prediction process error of the T-S FNN model.
The prior estimate error covariance and priori state estimate are defined as follows:

P =P +0 (16)
X =D, (17)
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3.4 Adaptive Training Algorithm Design

Considering that the model of each catenary on-site is not the same, an adaptive algorithm can certainly
improve the practicality of the algorithm. There are many learning algorithms for neural networks, such as
Unsupervised learning algorithms based on iterative learning [26], Supervised learning algorithms [27], deep
learning [28], etc. Supervised learning is suitable for big data-intensive and purposeful training. Deep
learning requires a larger number of data for specific functional training. Unsupervised learning can use a
small amount of data to quickly train the model. Considering real-time requirements, using an iterative
Unsupervised learning algorithm to train the model can have a better effect.

The input membership function of the proposed fuzzy system is set to a bell curve. So the parameters
that need to be adaptively updated in the Premise Network can be defined as the center value ¢;; and the width
value g;; corresponding to each node in the second layer. The Later Network needs to adaptively update the
usage weights of various fuzzy rules in the second layer. Therefore, define the error cost function as follows:

n

=33 (T-m) a®)

i1
where W, represents the expected output of the neural network. First, fix the usage weights of various fuzzy
rules p/,, and discuss the Premise Network. Then the output of each fuzzy rule is equal to the weight of the

third layer of the Later Network. Let W/ = pl, the activation function of the neural network can be defined as
follows:

s =W, —w, (19)
o => 5w (20)
i=1
2 o
(3) _ g@ =LA
) =0 T 1)
(&)
i=1
, m_ .(xi*?‘/)
07 =" 07sle (22)
k=1

where sJ, represents adaptive parameters, which is defined as follows:

i { 1, £, is the minimum value for the k-th rule 23)

J 0, otherwise

Above all, the partial derivative of the error concerning the central and width of the membership function
is as follows:

oE (2) 2(x; — ¢)
= oW T ) 24
e % Tij -
2
OE _s® 2(x; —30,1) 25)

L i
Oaj o
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The learning algorithm for adjusting the parameters of the bell curve is as follows:

OE
ek +1) = e5(k) — o~ (26)
ij
OF
oi(k+1)=0;k)—p (27)
g g 80’1‘1‘
where f§ is the learning rate. Then the usage weights p’l can be calculated as follows:
OF —~
= —(Wi— W)z (28)

-
Pik + 1) = pli(k) + pOW; — W)ax; (29)

In summary, when designing adaptive algorithms for the FNN to select different fuzzy rules based on
varying states, the inclusion of parameter s; becomes crucial. This parameter plays a pivotal role in the
selection of specific fuzzy rules by matching them with the training data.

3.5 Measurement Error and KF Output

When the accuracy of the sensor is high, its interior error range is too small compared to the error range
of the system measurement error, which cannot truly reflect the system error information. Therefore, the
vibration data of the catenary is proposed as the KF measurement error. Then the measurement error
covariance is calculated as follows:

R, = (30)

where S is the vibration data. Then the KF gain is as follows:

K, = ! 31
"~ P-HT(HP;HT +R,)

where H is the observation matrix. Finally, the output state estimate of the KF is

xy =x, +Ki(z— Hx,) (32)

4 Overall Algorithm Structure

The process of the aging prediction method for the railway catenary proposed in this paper is shown in
Fig. 9. First, use on-site equipment to collect training data, including time, temperature, and filtered
displacement data. Secondly, the trained model output used as the prior state estimate x, of the KF, and
the difference between the output and the actual displacement is used as the process noise Q. Then the
posteriori estimate error is obtained through iterative calculation. The high-precision displacement sensor
on-site serves as the actual measurement z of the KF, and the vibration data on-site serves as the KF
measurement error R,. Finally, the improved Kalman filtering algorithm can filter out the vibration
interference caused by environmental factors such as pantograph and wind speed on the contact network.
Subtract the filtered value from the theoretical value to obtain an error curve, and determine the health
status of the contact network by calculating whether the error curve meets the specified threshold.
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Figure 9: The structure of the proposed prediction method

5 Experiment Validation

5.1 Construction of Experimental Equipment

In the fields of neural networks and artificial intelligence, to validate algorithms and collect data, it is
essential to establish a reasonable experimental platform [29-32]. To obtain sufficient and accurate data,
as well as the authenticity of the experiment, the equipment structure used in this experiment is shown in
Fig. 10. The control unit adopts a combination of MCU and FPGA, SHT30 is a high-precision
temperature and humidity sensor, and 4GCAT1 is an IoT module using the CAT1 frequency band. The
product is shown in Fig. 11. MCU is mainly responsible for network communication and peripheral
control, and FPGA is mainly responsible for the implementation and acceleration of T-S FNN algorithms.

Solar panels

Battery pack
Displacement Temperature
sensor y sensor
H MCU&FPGA H
ADC - e » Accelerometer
4GCATI

Figure 10: Topological structure of functional modules in experimental equipment

To show the effectiveness of the proposed method, under the coordination of the local railway
department, experimental equipment was installed in a local operating railway section for experiments.
The experimental setting is shown in Fig. 12. The device within the red outline is the catenary weights,
and the distance between the weights and the top pulley is the displacement of the catenary. Firstly,
collect catenary data in a static state to study the vibration characteristics of the catenary. For this
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purpose, the equipment is installed on the weights at the end of the catenary and uses high-precision thermal
resistance as a sensor to obtain temperature data. Then, a rope sensor modified by an encoder is used to
measure the displacement of the catenary.

Figure 12: On-site installation of experimental equipment

Due to provisions, the complete dataset used in this experiment cannot be fully disclosed. However, for
reference, some samples have been provided in the supplementary materials. The uploaded dataset sample
can be found in Table S1.

5.2 Performance of the Proposed Training Method

To illustrate the effectiveness of the proposed training algorithm, we compare the performance of the
proposed adaptive algorithm with the traditional backpropagation (BP) algorithm. The experimental
dataset consists of 24-h data collected at a railway site. The experimental results are presented in Table 1,
and the comparison of iteration times is depicted in Fig. 13.

The results indicate that the suggested algorithm exhibits rapid convergence, with an increase in error of
only 0.15 mm. Despite the slight growth in error, it has minimal effect on the prediction of aging. The
purpose of this effect is to eliminate vague rules that bear minimal influence on the ultimate output result,
thus enhancing computational efficiency.
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5.3 Effectiveness of the Error Correction

To validate the effectiveness of replacing the KF measurement error, we conduct a comparison between
using sensor internal noise and vibration information within the same dataset. The parameter of comparison
is the disparity between the filtered and theoretical values. As illustrated in Fig. 14, the comparison
showcases the filtering performance on three days of random data. Further details regarding the
experimental data comparison can be found in Table 2, and visual comparisons of the filtered data are

available in Figs. S1-S3.
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Figure 14: The impact of vibration on the KF

Table 2: Comparison of standard deviation under different measurement error

Day 1 Day 2 Day 3
Internal 544.0759 664.6504 263.1777
Vibration 75.5754 80.7921 86.0062

It can be seen from the results that using vibration information as the measurement error covariance of
the KF can significantly reduce the amplitude and fluctuation of the displacement difference. The comparison
of the standard deviation shows that using vibration data can significantly reduce the fluctuation of the
catenary displacement. The reason for this result is that using catenary vibration information as
observation noise can more accurately reflect the interference carried by sensors when detecting catenary
displacement.

5.4 Comparison of the Prediction Performance

To assess the progressive nature of the proposed algorithm, we compare it with the unscented Kalman
filter (UKF) in [10] and the KalmanNet in [13]. The test set comprises three days of data collected from
sensors, with the comparison parameter remaining as the difference between the filtered and theoretical
values. The results of this comparison are depicted in Fig. 15, and detailed experimental data can be
found in Table 3. For a visual representation of the original filtered data comparison, refer to Figs. S4-S6.

From the experimental results, compared to the traditional KF, the UKF, and the KalmanNet have a
certain filtering effect. However, the filtering effect of the proposed algorithm is the most visible because
it has made proprietary improvements to the problem discussed in this paper. From Fig. 15c¢, it can be
seen that even for relatively less obvious interference, the proposed algorithm can still achieve better
filtering performance.
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Figure 15: Comparison of filtering effects

Table 3: Comparison of standard deviations between different algorithms

Day 1 Day 2 Day 3 Mean
Kalman 215.4166 118.1470 160.2684 187.9107
UKF 127.5826 89.1995 117.7021 111.4947
KalmanNet 39.1860 51.7298 67.9718 52.9625
Proposed 4.4431 6.0577 7.8699 6.1236

To further verify the actual aging prediction ability of the proposed algorithm, a prediction accuracy
comparison is also conducted. In this experiment, the fault diagnosis threshold is set to the displacement
difference of the catenary greater than 20 mm and the duration exceeding 10 min. The comparative
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experimental results are shown in Table 4. The results show that the proposed algorithm greatly reduces the
false alarm rate of faults caused by environmental factors or pantograph influence in the railway catenary
system.

Table 4: Number of false alarms

Day 1 Day 2 Day 3 Day 4 Day 5

Kalman 8 10 11 3 5
UKF 2 4 5 0 1
KalmanNet 0 2 1 0 0
Proposed 0 1 0 0 0

6 Conclusion

This paper proposes an improved KF algorithm to enhance the accuracy of aging prediction for the
railway catenary. The suggested algorithm substitutes the priori state estimation and error in the KF
procedure with the output and error of the T-S FNN model and uses the catenary vibration information as
a replacement for sensor observation noise. To enhance the network’s training efficiency, an adaptive
algorithm that dynamically selects fuzzy rules is suggested. Comparative experiments are conducted on
an FPGA-based data acquisition and computing platform to verify the effectiveness of the proposed
algorithm. The platform utilizes a modular pipeline design that enables rapid data processing. After
comparing the experimental results, it is apparent that the proposed method possesses substantial
advantages over other enhanced KF algorithms.

The model described in this paper is based on the study of a single railway catenary system, so the
variable parameters considered are relatively few, and there may be some interference factors that are not
considered in practical, resulting in a certain deviation in the prediction. So to further improve the
accuracy of prediction and the universality of the model in multi-catenary systems, the future research
goal will be positioned in multi-catenary systems.
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