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ABSTRACT

Incomplete fault signal characteristics and ease of noise contamination are issues with the current rolling bearing
early fault diagnostic methods, making it challenging to ensure the fault diagnosis accuracy and reliability. A novel
approach integrating enhanced Symplectic geometry mode decomposition with cosine difference limitation and
calculus operator (ESGMD-CC) and artificial fish swarm algorithm (AFSA) optimized extreme learning machine
(ELM) is proposed in this paper to enhance the extraction capability of fault features and thus improve the accu-
racy of fault diagnosis. Firstly, SGMD decomposes the raw vibration signal into multiple Symplectic geometry
components (SGCs). Secondly, the iterations are reset by the cosine difference limitation to effectively separate
the redundant components from the representative components. Additionally, the calculus operator is performed
to strengthen weak fault features and make them easier to extract, and the singular value decomposition (SVD)
weighted by power spectrum entropy (PSE) can be utilized as the sample feature representation. Finally, AFSA
iteratively optimized ELM is adopted as the optimized classifier for fault identification. The superior performance
of the proposed method has been validated by various experiments.
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1 Introduction

Rolling bearing is commonly applied in industrial production and other environments, and is extremely
important to equipment operation. The study of rolling bearing working conditions and its fault diagnosis
method is helpful to improve the stability of equipment and prevent the occurrence of serious equipment
failure [1,2]. The usual to maintain the operating status of a rolling bearing is to obtain vibration signals
by an accelerometer. In steady working conditions, the characteristics of its vibration signal are without
large changes, but by the complex working and environmental conditions, its operation may be due to
improper assembly, overload, insufficient lubrication, and other reasons [3,4], gradually appear wear,
corrosion, and in serious cases even damage failure and other abnormal defeat. Subsequently, the
amplitude of the vibration signal will also gradually increase.
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Bearing fault signal is often non-stationary and interspersed with noise, and the key to diagnosis is to
extract the fault characteristic frequency from the modulated vibration signal. Processing the fault signal
through signal processing techniques can reduce the influence of noise interference, and it is beneficial to
identify the fault type and severity, further improve the accuracy of fault diagnosis. The commonly used
methods include wavelet transform [5], Fourier transform [6], Wigner-Ville distribution [7], and other
various signal decomposition methods. Zhang et al. [8], based on the quaternion Fourier transform and
empirical wavelet transform, proposed a multichannel signal processing method of QEWT, and combined
with spectral negentropy, which was successfully applied to the field of fault diagnosis. Liu et al. [9]
proposed a bearing fault diagnosis method based on CEEMD and LDWPSO-PNN, which improved the
signal decomposition performance of the EMD-based method and enhanced the accuracy of fault
classification, while the optimized diagnosis performance was verified in the comparison methods. Wang
et al. [10] proposed a theory based on adaptive parameters optimized VMD to improve the
decomposition performance of rolling bearing by introducing the spectrum degree of cross-correlation
which is the criterion of selecting the optimal penalty factor.

Due to more vibration sources, complex transmission paths and strong noise interference. It is usually
difficult to accurately extract the periodic shock sequence caused by local damage to the bearing through the
above signal processing methods. Aiming at the improvement of characteristics extraction in rolling bearing
fault signals, Pan et al. [11] proposed the SGMDmethod which is capable of adaptive decomposition. SGMD
has the advantages of keeping the inherent features of the time series unchanged, suppressing the modal
aliasing, and is suitable for handling mechanical fault vibration signals. However, there are also
theoretical and practical issues to improve, such as reconstruction constraints, defects in decomposition
errors, etc.

After the proposed enhanced ESGMD-CC method, the decomposed components contain a large amount
of fault-related information. However, a suitable strategy is still needed to extract fault features from these
decomposed components. Various strategies have been developed by scholars to cope with it. Ye et al. [12],
by extracting the multiscale permutation entropy of VMD components, effectively bridged the signal
decomposition method and classifier to improve the performance of fault classification. Chen et al. [13]
calculated the energy entropy in order to effectively input the IMFs of CEEMDAN into the LSSVM
classifier, and achieved better diagnostic results. Zhang et al. [14] designed a bearing fault diagnosis
method based on WPD and optimized RBF, and verified the effectiveness of the method by extracting the
reconstructed components of WPD through energy features and inputting them into the classifier.
However, these methods have a certain degree of computational complexity and need to be further dealt
with without taking into account the quantity of some redundant components.

After feature extraction, suitable classification algorithms need to be utilized to discover various
potential faults of rolling bearing in time, and a lot of research has been carried out by domestic and
foreign scholars in machine learning and other aspects. Commonly used methods generally include Back
Propagation (BP), Random Forest (RF), Support Vector Machine (SVM), Extreme Learning Machine
(ELM), etc., which are implemented by mapping and matching fault features to classification labels [15–
18]. Xiao et al. [19] proposed a fault diagnosis model with a beetle-optimized BP neural network, which
can find the error extremes faster, shorten the training time, and have some anti-interference capability.
Wan et al. [20], proposed an improved RF to eliminate redundant decision trees by filtering the RF,
parallel retention and constructing a decision tree similarity matrix, which is effective for fault
classification of rolling bearings. Zhang et al. [21], in order to improve the classification performance of
the model, proposed a fault detection method based on MPE and SOA-SVM, which accurately
accomplishes the identification of faults by taking the MPE matrix features decomposed by VMD and
inputting them into the SVM model optimized by the seagull optimization algorithm. From the above
studies, it can be found that these classification algorithms, with many parameter settings, extreme values
and slow training speed, limit the application in fault diagnosis.
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ELM is a class of single hidden layer feedforward neural networks with fast learning speed and high
generalization ability, which is suitable for application in fault diagnosis. Xi et al. [22] proposed a feature
extraction model based on wavelet decomposition and weighted PE to effectively extract feature vectors
and input them into an ELM model with optimal parameters for classification, and achieved better test
accuracy. The stability and accuracy of fault diagnosis will be impacted by the ELM’s random setting of
weights and bias. As a result, an appropriate method must be introduced for optimization to prevent the
impact of random selection on the outcomes of the diagnosis.

To address the above problems, a fault diagnosis integrating with enhanced ESGMD-CC and AFSA-
ELM is proposed in this paper, and technique route is shown in Fig. 1. Firstly, SGMD decomposes the
raw signal into SGCs. Secondly, the iterations are reset by the cosine difference limitation to effectively
separate the redundant components from the representative components. Additionally, the calculus
operator is performed to strengthen weak fault features and make them easier to extract, and the singular
values weighted by PSE are utilized as the sample feature representation. Finally, AFSA iteratively
optimized ELM is adopted as the optimized classifier for fault identification.

The rest of this paper is organized as follows. Section 2 mainly introduces methods of signal
decomposition and feature extraction. Section 3 describes the establishment of classifier. Section 4
introduces the experimental arrangement and the corresponding analyzes. Section 5 summarizes this paper.

Figure 1: The technical route of this paper
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2 Signal Decomposition and Feature Extraction

2.1 The Traditional SGMD Theory
As a new mode decomposition method, the advantage of SGMD is that the Symplectic transform can

preserve the phase space of the system structure. The SGMD method obtains the Hamilton matrix by
reconstructing the phase space of the one-dimensional vibration signal, and then solves the eigenvalues
and eigenvectors of the Hamilton matrix by the Symplectic transform, and finally reconstructs the SGCs
by diagonal averaging.

(1) Phase space reconstruction

Let x ¼ x1; x2; � � � ; xn and project x onto the trajectory matrix X according to Takens embedding
theorem, as follows:

X ¼
x1 x1þs � � � x1þðd�1Þs
: : :
xm xmþs � � � xmþðd�1Þs

2
4

3
5 (1)

where d is the embedding dimension; m ¼ n� ðd � 1Þs; s is the delay time. In order to construct X
reasonably, d is selected based on the power spectral density (PSD) of the original vibration signal [23].

(2) QR decomposition

Let A ¼ XTX , then the Hamilton matrix is as follows:

M ¼ A 0
0 �AT

� �
(2)

Let F ¼ M2, then the matrix F is also a Hamiltonian matrix, through Symplectic orthogonal matrix Q,
we can get:

QTFQ ¼ B R
0 BT

� �
(3)

where B is an upper triangular matrix with the eigenvalues k1; k2; � � � ; kd, so the eigenvalues of matrix A are
ri ¼

ffiffiffiffi
ki

p ði ¼ 1; 2; � � � dÞ, and its corresponding eigenvectors are Qiði ¼ 1; 2; � � � ; dÞ. The reconstructed
trajectory matrix Z is constructed from a series of initial single component matrices Ziði ¼ 1; 2; � � � ; dÞ as
follows:

Z ¼ Z1 þ Z2 þ � � � þ Zd (4)

where Zi ¼ QiSi, Si ¼ QT
i X

T .

(3) Diagonal averaging transformation

For the element zijð1 � i � m; 1 � j � dÞ in matrix Zi, let m� ¼ maxðm; dÞ. If m < d, let zij� ¼ zij,
otherwise, zij� ¼ zji.

Then the diagonal averaging transformation is shown in Eq. (5):

yk ¼

1

k

Xk
p¼1

z�p;k�pþ1 1 � k < d�

1

d�
Pd�
p¼1

z�p;k�pþ1

d� � k � m�

1

n� k þ 1

Xn�m�þ1

p¼k�m�þ1

z�p;k�pþ1 m� < k � n

8>>>>>>>>>>><
>>>>>>>>>>>:

(5)
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By diagonal averaging transformation, the initial matrix Zi can be converted into Yiðy1; y2; � � � ; ynÞ:
Y ¼ Y1 þ Y2 þ � � � þ Yd (6)

2.2 ESGMD-CC Theory
The SGMD theory yields a number of initial single components Y , which often includes redundant

components. It is crucial to distinguish the representative components from the redundant components
[24]. The cosine difference limitation is used in this situation to successfully reset the iterations and
separate the redundant components. The eigenvectors that correspond to relatively large eigenvalues in
the signal also contain redundant components, necessitating further processing. The calculus operator is
also introduced to make weak fault characteristics more easily extractable and to avoid weak fault
features from being obscured by background noise.

(1) Separation of redundant components by cosine difference limitation

First, sum the decomposed SGCs. For the obtained Y , the sum components Sk can be obtained as
follows:

Sk ¼
Xk
i¼1

Yi (7)

Second, cosine the adjacent sum components. For the obtained Sk , calculate their cosine values Cosi
according to Eq. (8):

Cosi ¼ cosðSk ; Skþ1Þ ¼ Sk � Skþ1

Skk k � Skþ1k k (8)

Finally, obtain the difference limitation. Combined with the characteristics of Cosi, the difference
limitation can be more helpful to find the turning point accurately where the sum components achieve to
be consistent. The cosine difference limitation CDi is constructed by Eq. (9):

CDi ¼ ðCosiþ1 � CosiÞj j < ee (9)

when the values of CDi change steadily and reach the pre-set value ee which tends to zero, the former z can be
chosen as the representative components. Before the z point, it contains plenty of helpful information of the
raw signal. After the z point, it can be donated as redundant parts.

Finally, the raw signal x is composed of

x ¼
Xz

i¼1

Yi þ rz (10)

rz ¼
Xd
i¼zþ1

Yi (11)

where rz is the sum of the redundant components after the turning point z.

(2) Signal enhancement by calculus operator

Research [25] has shown that differential and integral signals can improve fault characteristics. To fully
profit from these, calculus operator is used to the processing of signal components. The relevance is that it is
possible to boost high-frequency featured components, lessen low-frequency redundant components, and
emphasize transitory components by calculus operator. This strengthens weak fault characteristics and
makes them easier to extract.
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The differential result of the discrete signal Y ðnÞ in shown in Eq. (12):

DðY ðnÞÞ ¼ ðY ðnÞ � Y ðn� 1ÞÞ=Dt (12)

where Dt ¼ 1=fs, and fs is the sampling frequency.

The integral result of the discrete signal Y ðnÞ in shown in Eq. (13):

IðY ðnÞÞ ¼ DTðY ðnÞ þ Y ðn� DTÞÞ=2 (13)

where DT is the step factor. If it is set to 1, Eq. (13) can be simplified as follows:

IðY ðnÞÞ ¼ ðY ðnÞ þ Y ðn� 1ÞÞ=2 (14)

By integrating the differential and integral equations, the calculus operator of discrete signal Y ðnÞ can be
expressed as follows:

caðY ðnÞÞ ¼ IðDðY ðnÞÞÞ ¼ IðY ðnÞ � Y ðn� 1ÞÞ ¼ ðY ðnÞ � Y ðn� 2ÞÞ=2 (15)

For the reserved first z groups SGCs, the calculus operator is adopted for signal enhancement, which can
fully amplificated the advantages of differential and integral. To simplify the calculation, Dt and DT in Eqs.
(12) and (13) are both set to 1, so the ESLCs is shown as follows:

ESLCi ¼ caðYiðnÞÞ ¼ ðYiðnÞ � Yiðn� 2ÞÞ=2 (16)

ESGMD-CC is a robust and adaptive signal decomposition technique with targeted improvement that
can handle processing fault signals with background noise and weak fault characteristics.

2.3 Feature Extraction by Weighted SVD
A number of ESLCs with a variety of fault-related data may be available by the aforementioned

ESGMD-CC. An appropriate method is still required to extract fault characteristics from these obtained
ESLCs. These fault characteristics can be successfully extracted by SVD, which also properly shows the
fault-related feature information. It is suitable for ESLCs-based matrix’s feature extraction. The power
spectrum entropy, which might display the uncertainty of the signal, simultaneously measures the feature
vectors. The steps are as follows:

(1) The proposed ESGMD-CC is firstly applied to decompose the raw signals into ESLCs with hiðtÞ.
(2) SVD is utilized on hiðtÞ to obtain the singular values matrix Vi:

Vi ¼ SVD ½h1ðtÞ; h2ðtÞ; . . . ; hhðtÞ�T
� �

(17)

(3) Fourier transform hiðtÞ ¼ ðhi1; hi2; . . . ; hinÞ to obtain FiðfrÞ on frequency domain, where fr is a
spectrum, then the power spectrum PiðfrÞ is:

PiðfrÞ ¼ 1

2pn
FiðfrÞj j2 (18)

According to Parseval’s theorem, energy is invariable in the transfer stage from two domains related to
time and frequency [26], so it can be written as:

Xn
j¼1

hij

�����
�����
2

¼
Xn
r¼1

PiðrÞ
�����

�����
2

(19)
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The power spectrum entropy PSi can be donated as:

Ei ¼ �
Xn
r¼1

Hir lnHir (20)

where Hir is the proportion of the r � th power spectrum component in hiðtÞ, and its calculation is as
follows:

Hir ¼ PiðrÞ=
Xn
r¼1

PiðrÞ (21)

(4) The weighted matrix Wi is as follows:

g ¼ Emax � Emin

Wi ¼ Ei � Emin

g

8><
>: (22)

The weighted singular values Ri can be obtained as follows:

Ri ¼ Wi � Viði ¼ 1; 2; . . . ; hÞ (23)

The overall flowchart of signal decomposition and feature extraction is shown in Fig. 2.

3 The Establishment of the AFSA-ELM Classifier

In this section, the ELM model and AFSA theory are initially explained firstly for the AFSA-ELM
classifier. The choice of the random parameters in the fundamental ELM model has a significant influence
on the generalization performance and diagnostic precision of fault diagnosis. In order to plan the best
course of action and find the globally optimal solutions, AFSA is capable of optimizing the random
parameters for each artificial fish. It then builds the AFSA-ELM model to enhance the performance of the
classifier.

3.1 The Basic ELM Model
ELM is a feedforward neural network with only one hidden layer, and its generalization performance is

better than that of traditional neural network models, and only the number of hidden layer neurons needs to
be set without adjusting its parameters to obtain the solution during the training process. The structure of
ELM is shown in Fig. 3. The specific process is as follows:

Signals with m samples SGCs with dimension d SLCs with dimension h

ESLCs with dimension h

Weighted values with 

dimension h

Singular values with 

dimension h

Feature vectors with 

dimension h

weighted 

Cosine difference
factor

SVD

SGMD

PSE Calculus operator

Figure 2: The overall flowchart of signal decomposition and feature extraction
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For the ELM network structure with an input sample X , the number of nodes in the hidden layer l, the
output function Y can be expressed as follows:

Y ¼
Xl

i

bigðWXj þ bÞ; j ¼ 1; 2; . . . ;N (24)

whereW is the input weight, i.e., the connection weight between the input layer and the hidden layer; b is the
output weight, i.e., the connection weight before the hidden layer and the output layer; b is the bias of the
hidden layer; and gðxÞ is the activation function.

The neural network is trained so that the error is minimized, i.e., the error between the output and the
desired output is close to 0, the error can be calculated as follows:

jY � T j ¼ 0 (25)

Combining Eqs. (24) and (25) to obtain:

Xl

i

bigðWXj þ bÞ ¼ T ; j ¼ 1; 2; . . . ;N (26)

Simplifying the above expression Eq. (26) as follows:

Hb ¼ T 0 (27)

where H is the output matrix of the hidden layer nodes; T is the expected output.

The lowest training error may theoretically be attained by ELM. Just the number of neurons must be
taken into account while employing ELM for pattern recognition. The stability and accuracy of fault
detection will be impacted since the input weight and bias are produced by functions, which have a
degree of unpredictability. It must utilize a proper algorithm to optimize the basic ELM.

3.2 AFSA-ELM Classifier
AFSA is a new intelligent algorithm by simulating fish swarm, which can rely on the field of view to

adjust its position during foraging, and mainly contains the behaviors of searching, swarming, chasing
and random, etc., gradually expanding from local to global to obtain the global optimal solution [27], and
its main behaviors are described as follows:

Figure 3: The structure of ELM
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(1) AF-search

The AF realizes external perception by its vision:

Xj ¼ Xi þ V � Rð�1; 1Þ (28)

where Xi is the current state of the i� th artificial fish, Xj is the position after moving, V is the field of view,
and Rð�1; 1Þ is a random value between −1 and 1.

X tþ1
i ¼ X 1

i þ Xi � X t
i

Xj � X t
i
� S � Rð�1; 1Þ (29)

where X tþ1
i is the state of the artificial fish after the t þ 1 iteration and S is the step size.

(2) AF-swarm

The number of artificial fish in the visual range is nf , and their average position is Xa, if Ya=nf > dYi,
where d is the crowding factor, indicating a high food concentration at this position, then a move of step
S is performed:

XC ¼
Pnf
i¼1

Xi

nf
(30)

X tþ1
i ¼ X 1

i þ Xa � X t
i

jjXa � X t
i jj

� S � Rð�1; 1Þ (31)

(3) AF-chase

The individual with the best state in the current visual field Xj has a food concentration of Yj, if it satisfies
Yj=nf > dYi, indicating that Yj is highest at Xj. The other individuals move towards Xj in steps S:

X tþ1
i ¼ X 1

i þ Xj � X t
i

jjXj � X t
i jj

� S � Rð�1; 1Þ (32)

(4) AF-random

If the iteration reaches the maximum number of iterations Gmax, Yj is still not satisfied, then a randomly
selected position in the current field of view is chosen and a step S is moved towards that state:

X tþ1
i ¼ X t

i þ V � Rð�1; 1Þ (33)

The parameters that may be chosen during ELM training are insufficient to address the demands of
diagnosis performance because of the low stability of ELM. The artificially set input weights and hidden
layer bias of the ELM model, which are typically assigned by random calculation functions, is a
significant factor in the instability of the ELM prediction results. The input weights and hidden layer bias
thus obtained might not be suitable for fault classification. AFSA-ELM was constructed to improve the
performance of the classifier. The flow chart of the AFSA-ELM is shown in Fig. 4, and the steps of
constructing the AFSA-ELM are as follows:

Step 1: The ELM single hidden layer neural network structure is constructed and the input weights and
hidden layer bias are initialized.

Step 2: The input weights and hidden layer bias are passed to the individual locations of artificial fish in
AFSA, the relationship between them is established, and the sample data are input into the AFSA-ELM.

Step 3: An iterative operation is performed, containing search, swarm, chase and random behavior.
When the termination condition of the AFSA algorithm is satisfied, the optimal artificial fish individual
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positions in the current AFSA dataset are transferred to the ELM, i.e., the optimal input weights and hidden
layer bias available to the current ELM.

Step 4: At the completion of each iteration, determine whether Gmax is reached, and if so, output the
optimal solution, and if not, return to Step 3.

Step 5: The optimal parameters are transferred to ELM to obtain the fault diagnosis classifier and test it
accordingly.

4 Experiment Validation

To assess the efficacy of the proposed method in this study, two distinct datasets are chosen for
validation, which contain CWRU and HFZZ, and they will be covered in depth subsequently.

4.1 Experiment Platform and Data Description
The CWRU rolling bearing experimental platform is shown in Fig. 5. The accelerometers with sampling

frequency of 12 KHz are attached to the motor drive end and the fan end, respectively to collect fault signals
in various states, and the detailed data chosen for this section are shown in Table 1, where each fault includes
1024 sampling points, and there is no overlap between them.

The HFZZ rotating machinery fault diagnosis simulation platform is shown in Fig. 6. The bearing model
is N205. Four kinds of faults were available for experiments through the IEPE accelerometer with the
sampling frequency of 12.8 KHz installed on the bearing housing. The physical diagram and time domain
waveform of the faults are depicted in Figs. 7 and 8, respectively.

Figure 4: The flow chart of the AFSA-ELM

Torque encoder Dynamometer2 hp motor

Figure 5: The CWRU experimental platform
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4.2 Experiment Setup
After data preprocessing, no distinctive features could be observed based on the time domain waveform

of the rolling bearing, so the proposed method needs to be applied for further fault identification. The relevant
comparative tests are carried out in this part from the following angles in order to fully assess the
performance demonstrated by the proposed method. In the aforementioned trials, 10 separate experiments
were carried out for each group to eliminate bias, and additional comparative items, including the average
accuracy, were afterwards listed.

Table 1: The description of CWRU dataset

Fault (Label and type) Total sample Ratio of training
and testing

0: Normal 100 1:1

1: Ball fault (Drive end) 100 1:1

2: Inner race fault (Drive end) 100 1:1

3: Outer race fault (Drive end@3) 100 1:1

4: Outer race fault (Drive end@6) 100 1:1

5: Outer race fault (Drive end@12) 100 1:1

6: Ball fault (Fan end) 100 1:1

7: Inner race fault (Fan end) 100 1:1

8: Outer race fault (Fan end@3) 100 1:1

9: Outer race fault (Fan end@6) 100 1:1

10: Outer race fault (Fan end@12) 100 1:1

Accelerometer

Bearing Motor

Control system

Figure 6: The HFZZ experimental setup

0: NM 1: OF 2: IF 3: BF

Figure 7: The four rolling bearings from HFZZ
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(1) The improved ESGMD-CC is combined with weighted SVD feature extraction to assess the benefits
of the overall feature extraction method. It is then compared to EEMD, LMD, and VMD, and to the
traditional SGMD method to assess the necessity of the proposed constraints based on the cosine
difference limitation and calculus operator.

(2) The AFSA optimized ELM classification model is compared to the basic ELM model and to a
number of other methods, like BP, SVM, etc., in order to demonstrate the benefits of the optimized classifier.

(3) The proposed fault diagnosis method is compared with some work published in the literatures to
evaluate the performance of the whole fault diagnosis process.

4.3 Experiment Results and Comparative Analysis
The first set of comparison tests was carried out to assess the necessity of introducing cosine difference

limits and calculus operator limitations by contrasting the improved ESGMD-CC with the conventional
SGMD. A set of vibration signals under the inner race defect are shown in Fig. 9 as the first four SGCs,
the last four SGCs, and the improved first four ESLCs, respectively. As can be observed, the energy is
distributed more evenly throughout the first four SGCs while their amplitudes are less. The iterations may
also be limited by the cosine difference limitation constraint, which also lowers the dimensionality by
efficiently distinguishing superfluous components from representative components. Calculus operators
have the advantage of enhancing the fault features in the signal.

Also, EEMD, LMD and VMD were compared with the improved ESGMD-CC. The weighted SVD
mapping was employer in the feature extraction stage, and the AFSA-ELM classification algorithm was
utilized to output the diagnostic results. The feature vectors produced by the various approaches outlined
above were visualized by t-SNE, as shown in Fig. 10. Although it is evident that the various approaches
produce various clustering effects, the precise accuracy of the classification cannot be determined only
from Fig. 10. The associated experimental findings are presented in Table 2 and Fig. 11.

It is evident that the enhanced ESGMD-CC outperforms numerous others in terms of diagnostic
performance. This is primarily caused by the fact that all ESLCs are capable of improving the fault
characteristics of the signal as well as reducing the feature dimension while retaining representative
components and deleting superfluous ones in the signal processing. The enhanced ESGMD-CC has more
decomposed modes than some other signal decomposition techniques, but less than the traditional
SGMD. The enhanced ESGMD-CC can successfully assess and rebuild the pre-existing modes in the

Figure 8: The time domain waveform obtained from HFZZ
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original signal while preserving the phase space’s organization, and the fault information is richer and more
detailed in the decomposed ESLCs.

Then, a second set of comparison experiments evaluated the benefit of the classifier and the AFSA
optimization. The function of AFSA in the proposed AFSA-ELM classifier is to iteratively seek for the
best parameters in the ELM model in order to improve diagnostic outcomes. As two widely used
classification models, BP and SVM are included in the comparison. The results are shown in Table 3 and
Fig. 12.

According to the above results, it can be seen that in most experiments, after the feature extraction
algorithm proposed in this paper and then the fault identification by the classifier, the diagnosis accuracy
of the ELM is generally higher than that of other models, and even more outstanding after AFSA-
optimized ELM parameters. In the AFSA-ELM fault diagnosis model, the input weights and bias are
precise based on the prediction errors on the training set to ensure that the two parameters of the ELM
model are optimized, while the output weights are further adjusted based on the above two parameters to
achieve structural optimization and parameter preference of the AFSA-ELM, which converges to the
optimal solution faster and better, and thus has better diagnosis accuracy.

(a) The first four SGCs (b) The last Four SGCs

(c) The enhance first four ESLCs

Figure 9: The decomposed components by ESGMD-CC
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Table 2: The results by different feature extraction methods

Dataset Items EEMD LMD VMD SGMD ESGMD-CC

CWRU Feature dimension 11 5 7 341 23

Accuracy (%) 92.72 86.59 95.92 96.85 98.22

HFZZ Feature dimension 14 8 7 28 16

Accuracy (%) 90.45 85.54 94.15 94.98 96.22

(d) SGMD (e) ESGMD-CC

(a) EEMD (b) LMD (c) VMD

Figure 10: Feature mapping by t-SNE

Figure 11: The diagnosis results by different feature extraction methods
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Several literature also used the CWRU rolling bearing dataset, even if other research also employed
alternate open-source or independently developed datasets for testing. In order to further prove the
efficacy of the proposed strategy, comparisons between the available literatures were made during the
third set of experiments, as shown in Table 4. Although the accuracy of the techniques presented varies,
they all have high accuracy, the testing accuracy of the proposed approach is higher than that of other
ways. In comparison to the shallow optimization feature extraction and classification techniques in [28],
the updated feature extraction and classification algorithms are more accurate. The enhanced feature
extraction approach and iterative optimization classification model provided in this study should work
together quite effectively. In order to get better diagnostic results, the literature [29] used a deep network
that uses one-dimensional convolutional neural networks. Its diagnostic performance is on par with the
well-designed deep network using the techniques described in this research in terms of diagnostic accuracy.

Figure 12: The diagnosis results by different classifiers

Table 3: The results of diagnosis evaluation by different classifiers

Dataset Items BP SVM ELM AFSA-ELM

CWRU Accuracy (%) 93.69 88.87 95.48 98.22

HFZZ Accuracy (%) 91.26 88.13 92.76 96.22

Table 4: The results of diagnosis evaluation by different reported methods

References Methods Dataset Fault types Accuracy
(%)

1. Li et al. [29] DBN and 1D-CNN Self-
built

Ball fault (BF) 97.50

Inner race fault (IF)

Outer race fault (OF)

Normal condition
(NO)

(Continued)
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Through the above comparative experiments, it can be found that the model combining ESGMD-CC and
AFSA-ELM for feature extraction and fault classification proposed in this paper has better results in fault
diagnosis.

5 Conclusion

In order to explore an effective rolling bearing defect detection method, the enhanced ESGMD-CC and
the AFSA-ELM are provided in this paper. The proposed method first utilizes the SGMD to decompose the
raw signal into numerous SGCs, and then the cosine difference limitation and the calculus operator served as
limiting constraints are introduced to reconstruct the SGCs into ESLCs. Then, fault characteristics are
extracted from the obtained ESLCs by weighted SVD, which are then supplied to the following classifier
for fault identification. Finally, the parameters of the ELM are iteratively found for optimality by the
AFSA to construct the optimized classifier for fault identification. On the bearing dataset, pertinent
comparison tests were carried out to confirm the diagnostic effectiveness of the proposed method and it is
a promising method in the field of fault diagnosis. Extraction of characteristics from signals in complex
noise environments and increasing approach efficiency will be key entry points in the future.
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Table 4 (continued)

References Methods Dataset Fault types Accuracy
(%)

2. Gu et al. [30] SDP-DCNN Self-
built

Outer ring crack 96.00

Roller crack

Inner ring crack

Outer ring pitting

Roller pitting

Inner ring pitting

3. Zhang et al. [28] SGMD and SVM CWRU BF, IF, OF, NO 96.23

4. Authors of this article ESGMD-CC and AFSA-
ELM

CWRU BF, IF, OF, NO 98.22
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