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ABSTRACT

In this study, an optimized long short-term memory (LSTM) network is proposed to predict the reliability and
remaining useful life (RUL) of rolling bearings based on an improved whale-optimized algorithm (IWOA). The
multi-domain features are extracted to construct the feature dataset because the single-domain features are diffi-
cult to characterize the performance degeneration of the rolling bearing. To provide covariates for reliability
assessment, a kernel principal component analysis is used to reduce the dimensionality of the features. A Weibull
distribution proportional hazard model (WPHM) is used for the reliability assessment of rolling bearing, and a
beluga whale optimization (BWO) algorithm is combined with maximum likelihood estimation (MLE) to
improve the estimation accuracy of the model parameters of the WPHM, which provides the data basis for pre-
dicting reliability. Considering the possible gradient explosion by training the rolling bearing lifetime data and the
difficulties in selecting the key network parameters, an optimized LSTM network called the improved whale opti-
mization algorithm-based long short-term memory (IWOA-LSTM) network is proposed. As IWOA better jumps
out of the local optimization, the fitting and prediction accuracies of the network are correspondingly improved.
The experimental results show that compared with the whale optimization algorithm-based long short-term
memory (WOA-LSTM) network, the reliability prediction and RUL prediction accuracies of the rolling bearing
are improved by the proposed IWOA-LSTM network.
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1 Introduction

With advances in technology, the precision and complexity of various mechanical devices are
increasing. As an indispensable basic component of mechanical devices, rolling bearings directly
determine the safety and reliability of mechanical devices [1]. When high-strength wear, fracture, and
failure occur, the device must often be stopped for maintenance, which can cause serious accidents and
casualties [2]. Thus, based on vibration signals, it is important to improve the performance of rolling
bearings to avoid catastrophic accidents by implementing a reliability assessment and remaining useful
life (RUL) prediction for rolling bearings before faults occur [3].
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Theoretical and experimental studies have shown that data-driven methods have become the main
methods for reliability prediction and RUL prediction [4,5]. The concrete implementation can be
summarized as follows. Based on vibration signals, multidimensional data reflecting degeneration feature
trends are extracted. Then, the neural networks are constructed and trained so that reliability prediction
and RUL prediction are implemented. Generally, multidomain features include the features of the time,
frequency, and time–frequency domains. Investigations have been conducted on feature extraction. To
address the insufficient feature vectors, the features of the time and frequency domains were extracted
[6]; however, the time–frequency domain features were ignored. Some researchers have focused on time–
frequency domain feature extraction of vibration signals based on the empirical mode decomposition
(EMD) method [7–9]. However, it is well known that endpoint effects and modal component mixing of
EMD exist [10]. Thus, variational mode decomposition (VMD) has been combined with wavelet
transform to extract the time–frequency domain features [11]. The periodic features of every IMF are
more obvious owing to the VMD, and the prediction performance has improved. However, these methods
extracted only single-domain features, and complete feature information was not collected. Although the
degeneration features of the time, frequency, and time–frequency domains have been extracted to
implement the RUL prediction of the rolling bearing [12], the feature extraction of the time–frequency
domain has remained an EMD-based method that requires further improvement.

In the stage of product testing, reliability assessment and prediction usually play an important role in
product quality management [13]. For the reliability assessment, the Weibull distribution proportional
hazard model (WPHM) was constructed and applied to the reliability evaluation of bearings based on the
Weibull function [14]. Moreover, a Bayesian network was used for the weighted fusion of features
combined with a proportional hazard model to implement a reliability assessment [15]. Because the
accuracy of the reliability evaluation model depends on the values of its parameters, the parameter
estimation method needs to be studied emphatically. Based on modified maximum likelihood estimation
(MLE), the parameter estimation of the reliability model has been implemented [16]. Particle swarm
optimization (PSO) was combined with MLE to improve parameter estimation accuracy [17]. However,
this accuracy still needs to be improved because the PSO is easy to trap into the local optimum.
Reliability prediction was implemented using a relevance vector machine (RVM) [18]. However, the
randomness of the parameters in the RVM may lead to a large reliability assessment error. By combining
the Bayesian optimization algorithm (BOA) with the mixed kernel RVM (MKRVM), the reliability
assessment and prediction accuracy of the rolling bearing were improved [19]. From the above
investigations, it is clear that constructing a suitable reliability model and a reliability assessment method
is important for reliability prediction.

Additionally, RUL prediction is an important topic, that is, predicting the failure time of rolling bearings
in the future and the probability of failure. With the development of deep learning and improvement in
optimization algorithms, optimized deep recurrent neural networks have been used for time series
prediction, and many prominent results have been reported in recent years. Based on the PSO algorithm,
the back propagation neural network (BPNN) has been optimized and has obtained better robustness and
prediction accuracy [20]. Based on improved gray wolf optimization, the radial basis function neural
network (RBFNN) was optimized [21]. However, owing to the structure of the RBFNN, it may lead to
gradient vanishing and gradient explosion, which are inapplicable for predicting time series information
over a long time. Thus, a long short-term memory (LSTM) network has been designed, and many
optimization algorithms have been used to improve the performance of the LSTM network. To improve
the prediction accuracy of the network, a differential evolution algorithm was proposed to optimize the
LSTM network [22]. A gray wolf optimizer (GWO) was combined with the LSTM network to
demonstrate the excellent convergence of the network. However, the training time of the network
increases with the iteration of the GWO because of its complex characteristics [23]. An improved PSO
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(IPSO) algorithm was proposed to search for the parameters of the LSTM network, but the operating time of
the network increased as the calculation of the IPSO increased [24]. The WOA was used to optimize the
learning rate and iterations of the LSTM network [25]. However, the performance of the WOA requires
further improvement, because it can be easily trapped into local optimization.

For these reasons, this study proposes an optimized LSTM network to implement better reliability
prediction and RUL prediction. First, based on the entire life data of the rolling bearing, the features of
the time, frequency, and time–frequency domains are extracted, and a feature dataset is constructed. Then,
to obtain the covariates, kernel principal component analysis (KPCA) is utilized to reduce the dimensions
of the feature dataset. Based on these covariates, a WPHM is constructed for the reliability assessment,
and a beluga whale optimization (BWO) algorithm is introduced to optimize the MLE for the parameter
estimation of the WPHM; therefore, the reliability assessment accuracy is further improved. Furthermore,
based on the adaptive threshold and nonlinear adaptive weights, an improved whale-optimized algorithm
(IWOA) is proposed to better jump out of the local optimization, and an IWOA-LSTM network is
constructed. By combining the reliability assessment data obtained by the WPHM with the improved
whale optimization algorithm-based long short-term memory (IWOA-LSTM) network, the reliability
prediction and RUL prediction of the rolling bearings are better implemented because IWOA better
avoids randomness by applying the manual section of the key parameters of the LSTM network.

The rest of this paper is organized as follows. In Section 2, based on the experimental data and feature
extraction methods, a feature dataset is constructed for the entire life vibration signal of rolling bearings. In
Section 3, the kernel principal component analysis (KPCA) algorithm is used to reduce the dimension of the
extracted feature dataset, and the MLE is optimized using the BWO algorithm to improve the estimation
accuracy of the unknown parameters of the WPHM model, which evaluates the reliability of the bearing.
In Section 4, an IWOA is proposed based on the adaptive threshold and nonlinear adaptive weights to
optimize the key parameters of the LSTM network so that reliability prediction and RUL prediction can
be implemented. In Section 5, the experimental results are presented, and the prediction results obtained
by the IWOA-LSTM network are compared with those of previous studies to show the effectiveness of
the proposed method. Finally, conclusions are presented in Section 6.

2 Feature Extraction

2.1 Experimental Data Source
In this study, the rolling bearing life cycle experimental data [26] are presented, and a diagram of the life

cycle experiment platform is shown in Fig. 1. Moreover, the sampled frequency of the experiment is 20 kHz,
and the sampled points are 20480, as shown in Table 1.

During the three groups of experiments, owing to the various failure conditions of the rolling bearing,
some bearings were still in the stage of intermediate fault or even incipient fault at the end of the experiments.
Thus, the life features of these bearings are inapplicable to this investigation. After comparison, the
degenerate data of bearing 1 of experiment 2, in which the outer ring failure occurs, are selected as the
test data. The data of bearings 3 and 4 of experiment 1 as well as the data of bearing 3 of experiment
3 are selected as the training data in this study.

2.2 Feature Extraction Method
A major effective method for reliability prediction and RUL prediction is vibration signal analysis. In

this study, the vibration signal features of time, frequency, and the time–frequency domains are all
considered and extracted for further screening of the feature parameters that reflect the effective
degeneration.
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First, consider the feature parameter extraction of the time domain. Typically, the time-domain
information for feature extraction of the vibration signals includes the mean value, root mean square
(RMS), peak, peak-to-peak (P-P), kurtosis value, peak factor, shape factor, and margin factor.

Then, consider the feature parameter extraction of the frequency domain. Generally, analysis in the time
domain is more intuitive, while representation in the frequency domain is more concise. These two analytical
methods are interrelated and complementary. The vibration signals in the time domain are transformed into
the frequency domain so that the spectral data are arranged in the time dimension, which also exhibits a
degenerate trend. Thus, for an aperiodic signal x tð Þ, the Fourier transform

X fð Þ ¼
Z 1

�1
x tð Þe�j2pftdt; (1)

Acceierometers

Motor

Bearing 1 Bearing 2 Bearing 3 Bearing 4

Radial Load Thermocoupies

Figure 1: Diagram of the experimental platform

Table 1: Three groups of experiments in the data packet

Data packet Experiment 1 Experiment 2 Experiment 3

Files of experiment 2156 984 4448

File recording interval 10 min 10 min 10 min

Failures in the rolling bearings
at the end of the experiment

Inner race defect in bearing
3 and roller element defect in
bearing 4.

Outer race failure
occurred in
bearing 1.

Outer race failure
occurred in
bearing 3.
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and the multifrequency domain feature parameters, such as the frequency domain RMS, frequency variance,
and frequency mean, are extracted from the transformed signal.

Finally, consider the feature parameter extraction in the time–frequency domain. To analyze the law of
nonstationary signal spectrum changes with time, two analysis methods are presented in this study
considering that different types of features depend on different analysis methods.

The first feature parameter extraction method in the time–frequency domain is chosen as the wavelet
transform because it has variable time and frequency windows, that is, higher time resolution at high
frequencies and higher frequency resolution at lower frequencies, enabling it to characterize the rolling
bearing degradation trends.

The specific formula of the wavelet transform is expressed as follows:

WTX a; sð Þ ¼ 1ffiffiffi
a

p
Z 1

�1
x tð Þc� t � s

a

� �
dt; a. 0; (2)

where x tð Þ represents the signal to be analyzed, c tð Þ represents the wavelet basis function, a represents the
scaling function, and s represents the translation distance.

The second feature parameter extraction method in the time–frequency domain is chosen as VMD.
Traditional EMD has an endpoint effect and modal component mixing, which requires improvement.
Thus, as an adaptive and fully nonrecursive method for modal variation and signal processing, VMD is
proposed to better process the signal. VMD reduces the nonstationarity of time series with high
complexity and strong nonlinearity and decomposes them to obtain relatively stationary subsequences
containing multiple different frequency scales. For these reasons, the penalty factor and the number of
modal components in the VMD are optimized by the PSO, and the energy characteristics of the
decomposed signal of the VMD are extracted in this study. The energy values of the third and seventh
frequency bands are chosen as the features.

Using the above data source and analyzing the variation signals, multiple feature parameters are
extracted from the time, frequency, and time–frequency domains. Among these, time-domain feature
parameters are extracted as the mean, RMS, peak, and peak factors. Frequency domain feature
parameters, such as spectrum amplitude, power spectrum amplitude, and cepstrum, are extracted. The
extracted time–frequency domain feature parameters include the wavelet packet, energy entropy, and
sample entropy of each frequency band decomposed by the VMD. Excluding the features with
insignificant monotonic change in the main trend and those that exhibit similar functions or meanings but
reflect poor relative effects of the performance degradation process, 14 features of time, frequency, and
time–frequency domains are fitted and constructed as the feature dataset. Among these, the time domain
features include RMS, P-P, and the peak factor. The frequency domain features include spectrum root
mean square (SpecRMS), spectrum magnitude (SpecM), and spectrum variance (SpecV). The time–
frequency domain features include the 3rd frequency band energy spectrum of the wavelet packet (3SW),
the 7th frequency band energy spectrum of the wavelet packet (7SW), the 3rd frequency band sample
entropy of the wavelet packet (3EW), the 7th frequency band sample entropy of the wavelet packet
(7EW), the 3rd frequency band energy spectrum of the VMD (3SV), the 7th frequency band energy
spectrum of the VMD (7SV), the 3rd frequency band sample entropy of the VMD (3EV), and the 7th
frequency band sample entropy of the VMD (7EV).

3 Reliability Assessment of Rolling Bearing

In this section, a reliability assessment is implemented based on the KPCA.Moreover, a BWO is utilized
to optimize the MLE, and a BWO-MLE is proposed. WPHM is established based on a more accurate
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parameter estimation using the BWO-MLE, which provides a data basis for the reliability prediction, and is
presented as one of the features for the RUL prediction.

3.1 KPCA
The KPCA is the nonlinear extension of the PCA. Owing to the characteristics of the Gaussian kernel

function, such as few parameters and simple calculation processes, it is chosen as the kernel function of
nonlinear mapping. The derivation process of the KPCA is summarized as follows.

The Gaussian function maps each feature vector xi into high-dimensional eigenspace E, and the
covariance of E is expressed as follows:

N ¼ 1

n

Xn

1
� xið Þ�T xið Þ; (3)

where xi i ¼ 1; 2; � � � ; nð Þ denotes the sequence sample, n denotes the length of the input sequence, and
� xið Þ denotes the sample point of the feature. This characteristic equation of N satisfies the following
equation:

kV ¼ NV ; (4)

where k denotes the eigenvalue and V denotes the eigenvector.

Then, the inner product of � xið Þ and (4) is obtained as follows:

k � xið ÞV½ � ¼ � xið ÞNV i ¼ 1; 2; � � � ; nð Þ; (5)

The eigenvector V is linearly expressed as follows:

V ¼
Xn

i¼1
ai� xið Þ; (6)

where ai denotes the correlation coefficient. The kernel function is selected as K ¼ xi; xj
� �

, and the kernel
matrix is expressed as K ¼ �ðxið Þ; �ðxjÞÞ. Combining (3) and (6), then (4) can be rewritten as follows:

nka ¼ Ka; (7)

where a denotes the eigenvalue of kernel matrix K.

The projection of x on � xð Þ is expressed as follows:

V� xð Þ ¼
Xn

i¼1
ai� xið Þ� xð Þ ¼

Xn

i¼1
aiK xi; xð Þ; (8)

3.2 WPHM
In this study, owing to its excellent robustness, flexibility, and good fit to the failure rate curve of the

WPHM device, it is selected to describe the failure risk degree of the rolling bearing degradation process.
Based on the WPHM, the failure rate and reliability function are established, which are further used for
the reliability prediction and RUL prediction of the rolling bearing during the entire life process. The
failure rate of the WPHM is expressed as follows:

h t; ztð Þ ¼ b
g

t

g

� �b � 1

� exp ðcztÞ ¼ b
g

t

g

� �b � 1

� ec1z1 tð Þþc2z2 tð Þþ���þcpzp tð Þ; (9)

where b. 0 and g. 0 denote the shape and scale parameters of the Weibull distribution, respectively;
c ¼ c1; c2; � � � ; cp

	 

denotes the regression coefficient vector of a p-dimensional covariate; and

Z ¼ ½z1; z2; � � � ; zp�T denotes the feature of the monitoring data. Based on Eq. (9), the cumulative
proportional failure rate is obtained as
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H t; Zð Þ ¼ 1� exp �
Z t

0
h s; zkð Þds

� �
; (10)

and the reliability function is obtained as

R t; ztð Þ ¼ exp �
Z t

0
h s; zkð Þds

� �
: (11)

3.3 BWO-MLE
The selection of unknown parameters in the reliability model significantly affects the results of reliability

evaluation. In this subsection, the kernel principal component obtained after dimension reduction by KPCA
is chosen as the covariate, and BWO [27] is utilized to optimize the MLE for a more accurate parameter
estimation of the WPHM model. The main principle of the BWO algorithm is as follows.

The location matrix of the search agent is modeled as follows:

X ¼
x1;1 x1;2 � � � x1;d
x2;1 x2;2 � � � x2;d
..
. ..

. . .
. ..

.

xn;1 xn;2 � � � xn;d

26664
37775; (12)

where n denotes the population size of the beluga whale and d denotes the dimension of the design variable.
For all belugas, the fitness values are stored in the following form:

FX ¼

f x1;1; x1;2; � � � ; x1;d
� �
f x2;1; x2;2; � � � ; x2;d
� �

..

.

f xn;1; xn;2; � � � ; xn;d
� �

266664
377775: (13)

There is a balance factor Bf in the algorithm, and the algorithm enters the exploration or development
stage based on the size of Bf , which is expressed as follows:

Bf ¼ B0 1 � T

2Tmax

� �
; (14)

where B0 denotes a random number in the interval (0, 1) that changes with each iteration, T denotes the
current iteration number, and Tmax denotes the maximum iteration number. When Bf . 0:5 is the
exploration stage and Bf � 0:5 is the development stage, with the iteration, the Bf fluctuation range of
the current iteration number is reduced from (0, 1) to (0, 0.5). Thus, as the iteration progresses, the
probabilities of the exploration and development phases change, with fewer exploration phases and more
development phases.

(1) The exploration phase: In this phase, beluga whales are randomly selected to ensure the global search
ability of the algorithm in space. Because beluga whales often swim in pairs in mirrored or synchronized
poses, the position update during the exploration phase is defined as follows:

XTþ1
i;j ¼ XT

i;pj
þ XT

r;pj
� XT

i;pj

� �
1þ R1ð Þ sin ð2pR2Þ; j ¼ 2; 4; 6; � � �

XTþ1
i;j ¼ XT

i;pj
þ XT

r;pj
� XT

i;pj

� �
1þ R1ð Þ cos ð2pR2Þ; j ¼ 1; 3; 5; � � �

8<: (15)
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where XTþ1
i;j denotes the updated new position of the ith beluga whale in the jth dimension;

pj j ¼ 1; 2; � � � ; dð Þ denotes a random number in (1, d) dimensions; XT
i;pj

denotes the current position of
the ith beluga whale in the jth dimension; r denotes a beluga whale selected at random; and R1 and R2

are random numbers in the interval (0, 1). Moreover, sinð2pR2Þ and cosð2pR2Þ allow the updated position
to reflect the synchronized or mirrored behavior of the beluga whale as it swims, as determined by the
odd-even of (15).

(2) The development phase: At this stage, the control algorithm performs a local search within the space,
treats the beluga as a search agent, and directs it to move in the space by changing the position vector. The
beluga preys by sharing the position information of each other, and its expression is as follows:

XTþ1
i ¼ R3X

T
best � R4X

T
i þ C1 � LF � XT

r � XT
i

� �
; (16)

where XTþ1
i denotes the new position of the ith beluga whale after the update; XT

i and XT
r denote the current

positions of the ith and rth beluga whales, respectively; XT
best denotes the best position in the whale group; and

R3 and R4 are random numbers in the interval (0, 1). To enhance the convergence of the algorithm, the Levy
flight function LF is introduced, where C1 denotes the random jump strength, which is used to measure the
Levy flight strength.

C1 ¼ 2R4 1 � T

Tmax

� �
(17)

LF ¼ 0:05
lr

tj j
1
b

0@ 1A; (18)

r ¼
� 1þ bð Þsin p

2
b

� �
�

1þ b
2

� �
b � 2

b � 1ð Þ
2

0BBBBB@

1CCCCCA

1
b

; (19)

where l and t denote normally distributed random numbers and b denotes the default constant, specified as
1.5.

(3) Whale fall stage: The possibility of a whale falling is considered in the algorithm. To simulate the
behavior of a whale falling in each iteration, we choose the probability of a whale falling from
individuals in the population as our subjective hypothesis, thus simulating small changes in the population.

In reality, beluga whales also exhibit death or an outlier phenomenon, assuming that there is a certain
probability of beluga whales in the algorithm, so there is a whale fall stage. To keep the population size
unchanged, the updated position is established using the position of the beluga whale and the whale fall
step length. It is expressed as follows:

XTþ1
i ¼ R5X

T
i � R6X

T
r þ R7Xstep; (20)

where R5, R6, and R7 are random numbers in the interval (0, 1); Xstep is the whale fall step length, and it is
expressed as follows:
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Xstep ¼ ub � lbð Þ exp �C2T

Tmax

� �
; (21)

where ub and lb denote the upper and lower bounds of the variable, respectively; C2 denotes the whale fall
step factor: C2 ¼ 2nWf . Wf denotes the probability of the whale falling in the model, and its linear
expression is

Wf ¼ 0:1� 0; 05T

Tmax
(22)

The probability of whale fall decreased from 0.1 in the initial iteration to 0.05 in the last iteration,
indicating that the closer the beluga was to the food source, the less dangerous the beluga was.

The optimization steps of the BWO algorithm are as follows:

Step 1. Initialize parameters, including the population size and maximum number of iterations.

Step 2. Based on the balance factor, determine how to perform the location update in different ways.

Step 3. The probability of a whale fall is calculated in each iteration, and the position is updated based on
the whale fall probability.

Step 4. If the current iteration number is greater than the maximum iteration number, the BWO algorithm
stops. Otherwise, the steps are repeated from Step 2.

The parameter estimation process of the MLE is as follows:

In the WPHM model, the covariates are known, and the unknown variables b; h, and
c ¼ c1; c2; � � � ; cp

	 

need to be estimated. The likelihood function is expressed as follows:

L b; h; cð Þ ¼ �n
i¼1f ðti; b; h; cÞdi Rðti; b; h; cÞdi�1 ¼ �q

j¼1f tj; b; h; c
� � ��n

i¼1R ti; b; h; gð Þ; (23)

where n denotes the total number of data samples, q denotes the number of sample failures, and di denotes the
data sample truncation indicator. When the data are truncated, the value is 0, while when the sample fails, the
value is 1. In Eq. (23), f �ð Þ can be expressed as follows:

f t; ztð Þ ¼ b
h

t

h

� �b � 1

� exp
Xp

k¼1
ckzk �

t

h

� �b

exp
Xp

k¼1
ckzk

� �" #
: (24)

Then, substituting Eq. (24) into Eq. (23), the likelihood function of the WPHM model is obtained as
follows:

L b; h; gð Þ ¼ �q
j¼1

b
h

t

h

� �b � 1

� exp
Xp

k¼1
ckzk

� �" #
��n

i¼1 exp � t

g

� �b

� exp
Xp

k¼1
ckzk

" #
; (25)

By taking the logarithm of both sides of Eq. (25), the log-likelihood function is obtained as follows:

l ¼ lnL b; g; cð Þ

¼ qln
b
g

þ b� 1ð Þ
Xq

j¼1
ln
tj
g

þ
Xq

j¼1

Xp

k¼1
ckzk � exp

Xp

k¼1
ckzk

� �Xn

k¼1

tj
g

� �b

:
(26)

For the unknown parameters in Eq. (26), their partial derivatives are calculated. Then, each partial
derivative is equated to zero, and a nonlinear equation system is obtained. Furthermore, the equation
system is solved; then, the parameters to be estimated are obtained.
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According to the value of the log-likelihood function in Eq. (26), the BWO algorithm is used to optimize
the parameter estimation value of the MLE. The smaller the log-likelihood value, the higher the accuracy of
the parameter estimation.

Based on the KPCA and WPHM, the steps of the proposed reliability assessment method are as follows:

Step 1. Select the feature parameters. Extract the feature parameters of time, frequency, and time–
frequency domains, and the ones that can reflect the rolling bearing degradation trend are chosen to
construct the feature dataset.

Step 2. Reduce the feature dimension. Use the KPCA to analyze the feature parameters, and select the
kernel principal component with a cumulative contribution rate higher than 80% as a covariate.

Step 3. Construct the WPHM. Based on the MLE, the parameters of the model are estimated. To find the
best parameter estimation, the BWO algorithm is used to optimize the log-likelihood value of the MLE.
Then, the WPHM is constructed using the optimal parameters.

Step 4. Assess the reliability. Substitute the monitoring data into the WPHM, and calculate the
cumulative failure rate and reliability of the rolling bearing. Then, the reliability curve is obtained as the
basis for reliability prediction and is one of the features for RUL prediction.

4 Reliability Prediction and RUL Prediction Based on the IWOA-LSTM Network

In general, the key parameters of the LSTM network are random and difficult to select manually, which
may lead to low network accuracy. Therefore, it is necessary to optimize the key parameters of the network.
Some optimization algorithms have been proposed for optimizing the parameters of LSTM networks
[23–25]. However, these algorithms easily fall into local optimization. Thus, to improve the ability of the
WOA to jump out of the local optimization, an IWOA is proposed based on an adaptive threshold and
nonlinear adaptive weights; therefore, the key parameters of the LSTM network are optimized. In this
way, the prediction accuracy of the LSTM network is improved.

4.1 LSTM Network
LSTM networks are widely used to predict long-time series events because they prevent gradient

explosion by introducing a module with a memory function into the structure. The updating of the state
of the cell of the LSTM network is expressed as follows:

ft ¼ r Wf � ht�1; xt½ � þ bf
� �

;
it ¼ r Wi � ht�1; xt½ � þ bið Þ;
ot ¼ r Wo � ht�1; xt½ � þ boð Þ;

(27)

where it, ft, and ot denote the state calculation results of the input, forget, and output gates, respectively; Wi,
Wf , Wo and bi, bf , bo denote the weights coefficients and bias vectors of the corresponding gates,
respectively; and r denote the activation function, which is usually given as the sigmoid function.

The output of the memory block of the LSTM network is expressed as follows:

~Ct ¼ tanh Wc � ht�1; xt½ � þ bcð Þ;
Ct ¼ ft � Ct�1 þ it � ~Ct;

ht ¼ ot � tanh Ctð Þ:
(28)
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4.2 IWOA
Although BWO exhibits excellent estimation accuracy for single-objective optimization, it may not be

suitable for multi-objective optimization of the hyperparameters in the LSTM network. Moreover, the
performance of the WOA for multiobjective optimization requires further improvement. Thus, an IWOA
is proposed to improve the key parameters of the LSTM network.

First, the steps of the WOA are presented as follows:

Step 1. After initialization, the process of search agent update is expressed as follows:

~D ¼ ~C � X �!
tð Þ � ~X tð Þ

��� ���; X1
!

t þ 1ð Þ ¼ X �!
tð Þ �~A� ~D; (29)

where t denotes the current iteration, X �!
denotes the position vector of the optimal solution, ~X denotes the

current position vector, and ~A and ~C denote the coefficient matrices and are calculated by

~A ¼ 2~a �~r �~a and ~C ¼ 2 �~r; (30)

respectively, where~a linearly decreases from 2 to 0 during the iteration and~r denotes the random vector and
satisfies~r 2 0; 1½ �.

Step 2. Reduce the fluctuation range of ~A.

When ~A
��� ��� � 1, the random search agent is selected as follows:

~D ¼ ~C � Xrand
!

tð Þ � ~X tð Þ
��� ���;

~X t þ 1ð Þ¼ Xrand
!

tð Þ �~A� ~D;
(31)

where Xrand
!

tð Þ denotes the position of randomly selected whales in the current population.

When ~A
��� ���, 1, the optimal solution is selected to update the position of the search agent.

Step 3. Optimize the WOA. There are two types used for optimizing the WOA

~X t þ 1ð Þ ¼ X �!
tð Þ �~A� ~D; if p , 0:5;

D0! � ebl � cosð2plÞ þ X �!
tð Þ; if p � 0:5;

(
(32)

where whales choose to shrink around or spiral up depending on p:

Step 4. Set termination criteria to terminate the WOA.

Based on Eq. (32), the probability of each optimization method is set to 50%, and p 2 0; 1½ � is generated
randomly. Furthermore, the optimization method of the stage is determined by comparing p with the
threshold (often set as 0.5).

During the iterations of the WOA, the above equal probability strategy selection may lead to
inappropriate optimization for whales. Consequently, the WOA tends to have a low convergence speed
and is easily trapped in local optimization. Thus, adaptive parameters are introduced to replace the
original probability threshold. The introduced adaptive threshold varies from 0 to 1 with the iteration
change in the WOA; therefore, whales have a greater probability of choosing a predatory strategy that is
suitable for the current population in various periods. In this way, the global exploration and local
development capability of the WOA are coordinated, and the convergence speed of the WOA is
improved. The expression of the adaptive threshold is given as follows:

~p ¼ 1� 1

k� l
ktk

max tk
þ ltl

max tl

� �� �
; (33)
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where t denotes the current iteration, max t denotes the maximum iteration, and k and l denote the control
parameters. Substituting (33) into (32) yields

~X t þ 1ð Þ ¼ X �!
tð Þ � ~A� D;

!
if p, ep;

D0! � ebl � cosð2plÞ þ X �!
tð Þ; if p � ep:

(
(34)

Eq. (34) implies that at the beginning of the iteration, the adaptive threshold is relatively large, which
provides a greater probability for whales to implement the contraction encircle mechanism. Then, at a
later stage of the iteration, the adaptive threshold becomes smaller, which gives a larger probability of
implementing a spiral updating position. Based on Eq. (34), switching between either a spiral or circular
movement is transformed into first contraction encircling and then spiraling up to update the position,
which enhances the optimizing ability and convergence speed of the WOA.

Additionally, Eqs. (29)–(31) imply that in the position update process of the WOA, in addition to the
optimizing threshold, factors that affect whales to update their position also include ~A and X �!

. Thus,
nonlinear adaptive parameters are introduced as the weight coefficients of Eq. (34) to improve the WOA.
Define

c ¼
fi � fmin

favg � fmin
fi , favg

cmax fi . favg

8<: ; (35)

where c denotes the adaptive weight; cmax denotes the maximum value of c; fi, fmin, and favg denote the
fitness function of the current population, the minimum value of the fitness function of the current
population, and the mean value of the fitness function of the current population, respectively. Based on
(35), the position update strategy is expressed as follows:

~X t þ 1ð Þ ¼ c X �!
tð Þ þ D0! � ebl � cos ð2plÞ; if p � ep; (36)

~X t þ 1ð Þ ¼ c X �!
tð Þ �~A� D

!
; �if p,ep; ~A

��� j, 1; (37)

~X t þ 1ð Þ ¼ cXrand
!

tð Þ �~A� D
!
; �if p,ep; ~A

��� ��� � 1; (38)

When fi is greater than favg, the maximum inertia weight is obtained. Then, the activity of the population
increases. Conversely, a smaller inertia weight is obtained. Using the update strategy based on nonlinear
adaptive weights that satisfy (36)–(38), the global search capability and local detection capability of the
WOA are further balanced.

The algorithm flow of the IWOA is shown in Fig. 2.

4.3 Prediction Process
Based on the above discussion, the number of neurons in the hidden layer of the LSTM network

determines the fitting ability of the model, and the number of iterations and learning rate determine the
training effect. However, these parameters are difficult to determine, and the setting of the parameters
usually depends on experience, which results in greater randomness. Using the proposed IWOA to
optimize the parameters of the LSTM network, the randomness caused by manual selection is effectively
avoided; therefore, the prediction accuracy of the LSTM network is improved. The flows of the reliability
prediction and RUL prediction of the rolling bearing based on the IWOA-LSTM network are shown in
Fig. 3.
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5 Experimental Results and Analysis

In this section, based on the experimental data [26], reliability prediction and RUL prediction results are
provided to show the effectiveness of the proposed method.

5.1 Prediction Process
To estimate the parameters and evaluate their reliability, the kernel principal components, in which the

contribution rate exceeds 80%, are chosen as the covariates. The screening results for the covariates are
illustrated in Fig. 4.

The entire life vibration signal of rolling bearing

Feature parameters extraction
(Time domain, Frequency domain, Time-frequency domain)

KPCA 

WPHM

Reliability assessment IWOA-LSTM

Reliability prediction and RUL 
prediction

Constructing characteristic
evaluation indexes 

BWO-MLE

Figure 3: The flow of the reliability prediction and RUL prediction of the rolling bearing

Optimize parameter of 
LSTM network by IWOA

Calculate individual fitness to
determine the optimal 

solution

Update position
according to (36)

Update position
according to (37)

Update position
according to (38)

End

Initialize population size, maximum
number of iterations T

YES

YES

YES

NO

NO

NO

t=t+1 t � T

p � p

1A �

Figure 2: Algorithm flow of the IWOA
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Fig. 4 shows that the contribution rate of the first three kernel principal components is 98.84%, and they
are chosen as the covariates. However, the contribution rate of the kernel principal components after
6 dimensions is too low, so it is no longer shown in Fig. 4. The histogram amplitude corresponds to the
left ordinate and is represented as the contribution value of the first kernel principal component to the
sixth kernel principal component: 83.75, 13.39, 1.7, 0.96, 0.109, and 0.069.

In this experiment, the hyperparameters of the BWO algorithm are set as follows. “Population size = 50”
and “maximum number of generations = 100.” Based on the chosen covariates, the model parameter
estimation results are demonstrated in Table 2.

Table 2 shows that the log-likelihood value of the MLE after BWO optimization is −14.956, which is
higher than that of the traditional MLE, indicating that the parameter estimation accuracy after BWO
optimization is higher. The estimated parameters are introduced into the WPHM model. The cumulative
failure rate and reliability results of the rolling bearing are illustrated in Figs. 5 and 6, respectively.

Fig. 5 shows that the cumulative failure rate of the rolling bearing is proportional to the operating time
and that the faults accumulate over the life of the rolling bearing until it fails.

Fig. 6 shows that from the beginning to approximately 10.5 days of operation, the rolling bearing
reliability decreases smoothly with a small fluctuation such that the rolling bearing is in the initial normal
operation stage, and there are no faults in the rolling bearing. After 10.5 days, the incipient fault occurs,
and the failure rate and reliability fluctuate significantly. This is because the faults in the rolling bearing
are random, and the reliability of the rolling bearing decreases at this stage. In the recovery stage, which
is inevitable for the degeneration of the rolling bearing (at approximately 12.5 days), cracks and scratches
in the inner and outer rings of the rolling bearing are smoothed. The operating state of the rolling bearing
tends to be stable, and its reliability increases in a short time. Furthermore, owing to the accumulation of

Figure 4: Screening results of the covariate

Table 2: Estimation results of the WPHM parameters

Parameter b̂ ĝ ĉ1 ĉ2 ĉ3 l

MLE 1.7403 300.251 1.5084 −0.232 −0.1007 −18.239

BWO-MLE 2.2315 198.9141 2.6423 −0.7629 0.0082 −14.956
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faults and fatigue, the reliability of the rolling bearing decreased significantly, and the rolling bearing finally
failed. Consequently, the reliability curve fully reflects the entire life cycle process of the rolling bearing
operation, which can be the basis for assessing the operating state of the rolling bearing.

5.2 Reliability Prediction Results and Analysis
In this section of the experiment, the degradation data of bearing 1 in experiment 2 where the outer ring

failure occurs are selected as the test data, and the data of bearings 3 and 4 in experiment 1 and the data of
bearing 3 in experiment 3 are selected as the training data. Then, the reliability curve depicted in Fig. 6 is
chosen as the label for reliability prediction so that the reliability prediction of the rolling bearing is
implemented. Moreover, the BPNN and support vector machine (SVM) network are utilized for a
comparison experiment to show the accuracy of the LSTM network for long-time series prediction. Root
mean square error (RMSE), mean absolute error (MAE), and R-Square in the regression evaluation
indexes are used to evaluate the experimental results. These indexes are chosen because the existence of
large errors in the predicted value increases the value of the RMSE. Absolute values are taken for the
error values in the MAE because the positive and negative errors cannot cancel each other out, and the

Figure 5: Cumulative failure rate results of the rolling bearing

Figure 6: Reliability curves
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mean absolute error can therefore better reflect the actual prediction error. R-square is used to represent the
quality of data fitting; the closer the value is to 1, the better the fitting effect.

In this experiment, the hyperparameters of the LSTM model are set as follows: “Number of neurons in
the first layer = 64,” “Number of second layer neurons = 64,” “Learning rate = 0.001,” “Iterations = 100,” and
“Batch size = 64.” The hyperparameters of the BPNN model are set as follows: “Learning rate = 0.01,”
“Iterations = 1000,” and “Batch size = 500.” The hyperparameters of the SVM model are set as follows:
“C = 1.0,” “Kernel = ‘rbf’,” and “gamma = 32.” Based on these hyperparameters, the reliability prediction
results are shown in Fig. 7.

The obtained regression evaluation indexes of the prediction are shown in Table 3.

Fig. 7 shows that the LSTM network better uses time sequence information and performs better
prediction compared with the SVM network and BPNN. In particular, at the last stage of the prediction,
the prediction and real values are highly fitted, which better reflects the degeneration degrees of
reliability. Furthermore, IWOA implements better reliability prediction compared with the WOA-LSTM
and LSTM networks. Table 3 illustrates the above discussion. All the regression evaluation indexes
obtained by the LSTM network are better than those of the SVM network and BPNN, which shows that
the LSTM network better uses time sequence information. Moreover, all the regression evaluation
indexes obtained by the IWOA-LSTM network are better than those of the WOA-LSTM and LSTM
networks. By calculation, compared with the WOA-LSTM network, the RMSE and MAE of the
reliability prediction of the IWOA-LSTM network decreased by 12.5% and 23.5%, respectively;

(a) Prediction results for different kinds of networks (b) Prediction results for three LSTM-based networks

Figure 7: Reliability prediction results

Table 3: Reliability regression evaluation indexes

Algorithm RMSE MAE R2

SVM 0.0074 0.0036 0.9545

BPNN 0.0075 0.0020 0.9482

LSTM 0.0029 0.0017 0.9923

WOA-LSTM 0.0024 0.0016 0.9933

IWOA-LSTM 0.0021 0.0013 0.9945
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compared with the LSTM network, the RMSE and MAE decreased by 27.6% and 44.9%, respectively.
Moreover, compared with the WOA-LSTM and LSTM networks, the R-squares of the reliability
prediction of the IWOA-LSTM network increased by 1.2% and 2.2%, respectively. These results fully
verify that the proposed IWOA further improves the prediction accuracy of the LSTM network.

5.3 RUL Prediction Results and Analysis
To exclude features with a high degree of similarity in the feature dataset, correlation indexes, such as

correlation, robustness, and monotonicity, are used to evaluate the degree of correlation between
degeneration features and time. Define

W ¼ x1Corr F; Tð Þ þ x2Rob Fð Þ þ x3Mon Fð Þ; (39)

whereW denotes the linear superposition of each weighted index; Corr F; Tð Þ, Rob Fð Þ, andMon Fð Þ denote
correlation, robustness, and monotonicity, respectively; x1, x2, and x3 denote the weights of each index.

Set x1 ¼ 0:3, x2 ¼ 0:3, and x2 ¼ 0:4. The weighted values for each feature parameter indicator are
calculated based on Eq. (39), and the calculation results are shown in Fig. 8.

(a) Correlation index of features

(b) Robustness index of features

Figure 8: (Continued)
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Furthermore, to guarantee the effectiveness of the screened feature parameters, the screening threshold is
chosen as 0.435, and the screening process is shown in Fig. 9.

Based on Fig. 9, 9 effective features are screened from the feature dataset, including 14 feature
parameters obtained in Section 2, and the screened results are shown in Fig. 10. The analysis shows that
the screened feature parameters reflect the degeneration process of the life cycle of the rolling bearing and
verifies the effectiveness of the evaluation indexes of the feature parameters simultaneously.

Based on Fig. 10, 9 screened features are combined with the reliability curve as the input of the IWOA-
LSTM network. Using the proposed IWOA-LSTM network for the RUL prediction, in this experiment, the
hyperparameters of the IWOA algorithm are set as follows: “Population size = 100” and “Maximum number
of generations = 10”. The optimization results for the hyperparameters are depicted in Fig. 11.

Fig. 11 shows the parameters of the LSTM network as batch size; the number of neurons in the first
layer, the number of neurons in the second layer, the number of iterations, and the learning rate are all
optimized from the original random values to suitable values using the proposed IWOA.

(c) Monotonicity index of features

Figure 8: Feature parameter indicators

Figure 9: Ranking results of feature parameters
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In this study, to implement a comparison experiment, the hyperparameters of the LSTM networks are
optimized using WOA and IWOA. The optimized hyperparameters of the LSTM model are set as shown
in Table 4. The RUL prediction results of the IWOA-LSTM network are compared with those of the
WOA-LSTM and LSTM networks are shown in Fig. 12.

Fig. 12 shows that the IWOA-LSTM network implements the best RUL prediction, and the prediction
results of the IWOA-LSTM network fit the real RUL curve. This is because the proposed adaptive threshold
and nonlinear adaptive weights improve the ability of the WOA to jump out of local optimization. In this
way, the IWOA implements better-optimizing ability. The WOA-LSTM and GWO-LSTM networks
implement a better RUL prediction compared with the traditional LSTM network, as the WOA and GWO
avoid the randomness of the manual selection for key parameters of the LSTM network.

Figure 10: The degradation feature parameters

Figure 11: Changes in hyperparameters in the IWOA
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To further illustrate the effectiveness of the proposed method, the obtained regression evaluation
indexes, such as RMSE, MAE, and R-square, are listed in Table 5.

Table 5 shows that the RMSE and MAE of the IWOA-LSTM network are less than 3, which is smaller
than those of the other three LSTM-based networks. Moreover, the R-square of the IWOA-LSTM network is
greater than 0.986, which is closer to 1 compared with that of the other three LSTM-based networks. By
calculation, compared with the WOA-LSTM, GWO-LSTM, and LSTM networks, the RMSEs of the
RUL prediction decreased by 18.8%, 59.9%, and 79.5%, respectively; the MAEs decreased by 51.2%,
61.77%, and 82.4%; and R-squares increased by 1.6%, 5.2%, and 7.9%, respectively. The results shown
in Fig. 12 and Table 5 further verify the effectiveness of the proposed method.

Based on the above discussion, using the reliability assessment results based on the KPCA and the
WPHM, the reliability prediction and RUL prediction results obtained by the IWOA-LSTM network are

Table 4: The optimized hyperparameters of LSTM

Hyperparameters WOA-LSTM IWOA-LSTM GWO-LSTM

Number of neurons in the first layer 44 20 34

Number of second layerneurons 83 31 43

Learning rate 0.0052 0.0052 0.0047

Iterations 40 35 37

Batch-size 17 58 50

Figure 12: RUL prediction results

Table 5: RUL regression evaluation indexes

Algorithm RMSE MAE R2

LSTM 14.3458 14.1652 0.9086

GWO-LSTM 7.3247 6.5271 0.9347

WOA-LSTM 5.3262 5.113 0.9703

IWOA-LSTM 2.9371 2.4952 0.9862
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better than those of the WOA-LSTM network. These results verify that the proposed adaptive threshold and
the nonlinear adaptive nonlinear weights improve the capability of the WOA to jump out of the local
optimization; therefore, the prediction accuracy of the LSTM network is further improved. The
experimental results comprehensively illustrate the effectiveness of the proposed method for reliability
prediction and RUL prediction.

6 Conclusions

In this study, a reliability prediction and RUL prediction method for a rolling bearing based on an
optimized neural network was proposed. Based on signal processing methods, the features of the time,
frequency, and time–frequency domains were extracted from the original vibration signals, and a feature
dataset was established. Using the KPCA, the feature dataset dimension reduction was implemented. To
improve the accuracy of the reliability assessment, the WPHM was constructed using the optimal
parameters obtained using the BWO-MLE. To characterize the rolling bearing degradation process, the
main evaluation indexes for degradation features during the entire life cycle, namely, correlation,
monotonicity, and robustness, were used to evaluate the suitability of the feature parameters. Using the
adaptive threshold and nonlinear adaptive parameters, an IWOA was proposed to optimize the global
searching ability of the LSTM networks. The IWOA avoided the inaccurate manual selection of the
hyperparameters, and the accuracy of the reliability prediction and RUL prediction was improved.
Experimental results showed that compared with previous studies, the proposed prediction model
implemented a better reliability prediction and RUL prediction for the rolling bearing.

Acknowledgement: None.

Funding Statement: This paper was supported by the Department of Education of Liaoning Province under
Grant JDL2020020 and the Transportation Science and Technology Project of Liaoning Province under
Grant 202243.

Author Contributions: The authors confirm contribution to the paper as follows: study conception and
design: R Wang, T Liang; data collection: Y Wang, J Yang; analysis and interpretation of results: R
Wang, X Zhang; draft manuscript preparation: R Wang, Y Wang. All authors reviewed the results and
approved the final version of the manuscript.

Availability of Data and Materials: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. He, M., He, D. (2018). Simultaneous bearing fault diagnosis and severity detection using a LAMSTAR network-

based approach. IET Science, Measurement and Technology, 12(7), 893–901. https://doi.org/10.1049/iet-smt.2017.
0528

2. Mao, W., Tian, S., Fan, J., Liang, X., Safian, A. (2022). Online detection of bearing incipient fault with semi-
supervised architecture and deep feature representation. Journal of Manufacturing Systems, 55, 179–198.
https://doi.org/10.1016/j.jmsy.2020.03.005

3. Wu, J., Wu, C., Cao, S., Or, S. W., Deng, C. et al. (2018). Degradation data-driven time-to-failure prognostics
approach for rolling element bearings in electrical machines. IEEE Transactions on Industrial Electronics,
66(1), 529–539. https://doi.org/10.1109/TIE.2018.2811366

4. Cao, X., Li, P., Ming, S. (2021). Remaining useful life prediction-based maintenance decision model for stochastic
deterioration equipment under data-drive. Sustainability, 13(15), 8548. https://doi.org/10.3390/su13158548

SDHM, 2023, vol.17, no.5 453

https://doi.org/10.1049/iet-smt.2017.0528
https://doi.org/10.1049/iet-smt.2017.0528
https://doi.org/10.1016/j.jmsy.2020.03.005
https://doi.org/10.1109/TIE.2018.2811366
https://doi.org/10.3390/su13158548


5. Guo, J., Li, Z., Li, M. (2019). A review on prognostics methods for engineering systems. IEEE Transactions on
Reliability, 69(3), 1110–1129. https://doi.org/10.1109/TR.2019.2957965

6. Helmi, H., Forouzantabar, A. (2019). Rolling bearing fault detection of electric motor using time domain and
frequency domain features extraction and ANFIS. IET Electric Power Applications, 13(5), 662–669. https://doi.
org/10.1049/iet-epa.2018.5274

7. Chen, Q., Wen, D., Li, X., Chen, D., Lv, H. et al. (2019). Empirical mode decomposition based long short-term
memory neural network forecasting model for the short-term metro passenger flow. PLoS One, 14(9),
e0222365. https://doi.org/10.1371/journal.pone.0231199

8. Meng, D., Wang, H., Yang, S., Lv, Z., Hu, Z. et al. (2022). Fault analysis of wind power rolling bearing based on
EMD feature extraction. Computer Modeling in Engineering & Sciences, 130(1), 543–558. https://doi.org/10.
32604/cmes.2022.018123

9. Shi, H., Guo, J., Yuan, Z., Liu, Z., Hou, M. et al. (2020). Incipient fault detection of rolling element bearings based
on deep EMD-PCA algorithm. Shock and Vibration, 2020, 1–17. https://doi.org/10.1155/2020/8871433

10. Zhang, Y., Chen, B., Pan, G., Zhao, Y. (2019). A novel hybrid model based on VMD-WTand PCA-BP-RBF neural
network for short-term wind speed forecasting. Energy Conversion and Management, 195, 180–197. https://doi.
org/10.1016/j.enconman.2019.05.005

11. Niu, H., Xu, K., Wang, W. (2020). A hybrid stock price index forecasting model based on variational mode
decomposition and LSTM network. Applied Intelligence, 50(12), 4296–4309. https://doi.org/10.1007/
s10489-020-01814-0

12. Cheng, Y., Wang, J., Wu, J., Zhu, H., Wang, Y. (2023). Abnormal symptom-triggered remaining useful life
prediction for rolling element bearings. Journal of Vibration and Control, 29(9–10), 2102–2115. https://doi.org/
10.1177/10775463221074797

13. Santhosh, T. V., Gopika, V., Ghosh, A. K., Fernandes, B. G. (2018). An approach for reliability prediction of
instrumentation & control cables by artificial neural networks and Weibull theory for probabilistic safety
assessment of NPPs. Reliability Engineering & System Safety, 170, 31–44. https://doi.org/10.1016/j.ress.2017.
10.010

14. Wang, Y., Chen, Z., Zhang, Y., Li, X., Li, Z. (2020). Remaining useful life prediction of rolling bearings based on
the three-parameter Weibull distribution proportional hazards model. Insight-Non-Destructive Testing and
Condition Monitoring, 62(12), 710–718. https://doi.org/10.1784/insi.2020.62.12.710

15. Li, Y. F., Liu, Y., Huang, T., Huang, H. Z., Mi, J. (2020). Reliability assessment for systems suffering common
cause failure based on Bayesian networks and proportional hazards model. Quality and Reliability Engineering
International, 36(7), 2509–2520. https://doi.org/10.1002/qre.2713

16. Jokiel-Rokita, A., Pia̧tek, S. (2022). Estimation of parameters and quantiles of the Weibull distribution. Statistical
Papers, 1–18. https://doi.org/10.1007/s00362-022-01379-9

17. Algamal, Z. Y., Basheer, G. (2021). Reliability estimation of three parameters Weibull distribution based on
particle swarm optimization. Pakistan Journal of Statistics and Operation Research, 17(1), 35–42. https://doi.
org/10.18187/pjsor.v17i1.2354

18. Zhu, L., Chen, D., Feng, P. (2021). Equipment operational reliability evaluation method based on RVM and PCA-
fused features. Mathematical Problems in Engineering, 2021(9), 1–9. https://doi.org/10.1155/2021/6687248

19. Gao, S., Yu, Y., Zhang, Y. (2022). Reliability assessment and prediction of rolling bearings based on hybrid noise
reduction and BOA-MKRVM. Engineering Applications of Artificial Intelligence, 116, 105391. https://doi.org/10.
1016/j.engappai.2022.105391

20. Liu, X., Liu, Z., Liang, Z., Zhu, S. P., Correia, J. A. et al. (2019). PSO-BP neural network-based strain prediction of
wind turbine blades. Materials, 12(12), 1889. https://doi.org/10.3390/ma12121889

21. Shang, S., He, K. N., Wang, Z. B., Yang, T., Liu, M. et al. (2020). Sea clutter suppression method of HFSWR based
on RBF neural network model optimized by improved GWO algorithm. Computational Intelligence and
Neuroscience, 2020. https://doi.org/10.1155/2020/8842390

454 SDHM, 2023, vol.17, no.5

https://doi.org/10.1109/TR.2019.2957965
https://doi.org/10.1049/iet-epa.2018.5274
https://doi.org/10.1049/iet-epa.2018.5274
https://doi.org/10.1371/journal.pone.0231199
https://doi.org/10.32604/cmes.2022.018123
https://doi.org/10.32604/cmes.2022.018123
https://doi.org/10.1155/2020/8871433
https://doi.org/10.1016/j.enconman.2019.05.005
https://doi.org/10.1016/j.enconman.2019.05.005
https://doi.org/10.1007/s10489-020-01814-0
https://doi.org/10.1007/s10489-020-01814-0
https://doi.org/10.1177/10775463221074797
https://doi.org/10.1177/10775463221074797
https://doi.org/10.1016/j.ress.2017.10.010
https://doi.org/10.1016/j.ress.2017.10.010
https://doi.org/10.1784/insi.2020.62.12.710
https://doi.org/10.1002/qre.2713
https://doi.org/10.1007/s00362-022-01379-9
https://doi.org/10.18187/pjsor.v17i1.2354
https://doi.org/10.18187/pjsor.v17i1.2354
https://doi.org/10.1155/2021/6687248
https://doi.org/10.1016/j.engappai.2022.105391
https://doi.org/10.1016/j.engappai.2022.105391
https://doi.org/10.3390/ma12121889
https://doi.org/10.1155/2020/8842390


22. Hu, Y. L., Chen, L. (2018). A nonlinear hybrid wind speed forecasting model using LSTM network, hysteretic
ELM and differential evolution algorithm. Energy Conversion and Management, 173, 123–142. https://doi.org/
10.1016/j.enconman.2018.07.070

23. Mahmoodzadeh, A., Nejati, H. R., Mohammadi, M., Ibrahim, H. H., Rashidi, S. et al. (2022). Forecasting tunnel
boring machine penetration rate using LSTM deep neural network optimized by grey wolf optimization algorithm.
Expert Systems with Applications, 209, 118303. https://doi.org/10.1016/j.eswa.2022.118303

24. Wang, S., Li, P., Ji, H., Zhan, Y., Li, H. (2021). Prediction of air particulate matter in Beijing, China, based on the
improved particle swarm optimization algorithm and long short-term memory neural network. Journal of
Intelligent & Fuzzy Systems, 41(1), 1869–1885. https://doi.org/10.3233/JIFS-210603

25. Wang, W., Tang, Q. (2022). Combined model of air quality index forecasting based on the combination of
complementary empirical mode decomposition and sequence reconstruction. Environmental Pollution, 120628.
https://doi.org/10.1016/j.envpol.2022.120628

26. Qiu, H., Lee, J., Lin, J., Yu, G. (2006). Wavelet filter-based weak signature detection method and its application on
rolling element bearing prognostics. Journal of Sound and Vibration, 289(4–5), 1066–1090. https://doi.org/10.
1016/j.jsv.2005.03.007

27. Zhong, C., Li, G., Meng, Z. (2022). Beluga whale optimization: A novel nature-inspired metaheuristic algorithm.
Knowledge-Based Systems, 251, 109215. https://doi.org/10.1016/j.knosys.2022.109215

SDHM, 2023, vol.17, no.5 455

https://doi.org/10.1016/j.enconman.2018.07.070
https://doi.org/10.1016/j.enconman.2018.07.070
https://doi.org/10.1016/j.eswa.2022.118303
https://doi.org/10.3233/JIFS-210603
https://doi.org/10.1016/j.envpol.2022.120628
https://doi.org/10.1016/j.jsv.2005.03.007
https://doi.org/10.1016/j.jsv.2005.03.007
https://doi.org/10.1016/j.knosys.2022.109215

	Predicting Reliability and Remaining Useful Life of Rolling Bearings Based on Optimized Neural Networks
	Introduction
	Feature Extraction
	Reliability Assessment of Rolling Bearing
	Reliability Prediction and RUL Prediction Based on the IWOA-LSTM Network
	Experimental Results and Analysis
	Conclusions
	flink7
	References


