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ABSTRACT

Convolution neural networks in deep learning can solve the problem of damage identification based on vibration
acceleration. By combining multiple 1D DenseNet submodels, a new ensemble learning method is proposed to
improve identification accuracy. 1D DenseNet is built using standard 1D CNN and DenseNet basic blocks,
and the acceleration data obtained from multiple sampling points is brought into the 1D DenseNet training to
generate submodels after offset sampling. When using submodels for damage identification, the voting method
ideas in ensemble learning are used to vote on the results of each submodel, and then vote centrally. Finally,
the cantilever damage problem simulated by ABAQUS is selected as a case study to discuss the excellent perfor-
mance of the proposed method. The results show that the ensemble 1D DenseNet damage identification method
outperforms any submodel in terms of accuracy. Furthermore, the submodel is visualized to demonstrate its
operation mode.
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1 Introduction

Structural health monitoring (SHM) [1] is critical for extending the life of civil engineering structures,
and damage identification is an essential component of structural health monitoring. Deep learning has been
used to propose many damage identification methods [2] based on vibration signals (natural frequency and
mode shapes [3–5], acceleration signals, and so on). Natural frequency and mode shapes necessitate the use
of sensors to cover the structure, whereas using acceleration signals necessitates less. The deep learning
algorithm based on vibration acceleration studied by predecessors is improved in this paper to improve
accuracy, and the common cantilever beam damage in engineering is used as the research object, which
also has some practical implications.

In the early stage, researchers have proposed various SHM approaches. Examples are the vision-based
methods of Barile et al. [6] and Zaurin et al. [7] and the vibration-based methods of Kumar et al. [8] and
Döhler et al. [9]. In recent years, with the explosive growth of data scale, deep learning has become the
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mainstream of artificial intelligence [10], triggering extensive research in various disciplines, and it also plays
a major role in the field of SHM.

Convolution Neural Network (CNN) is a deep learning algorithm, which was proposed at the end of the
twentieth century [11], but it was not taken seriously due to limited computing power and a lack of databases
at the time. Until AlexNet [12] demonstrated exceptional performance in the ImageNet Large-Scale Visual
Recognition Challenge (ILSVRC) in 2012, 2D CNN was widely used and became a representative deep
learning algorithm, primarily used in image classification [13,14], natural language processing [15,16],
speech recognition [17,18] and 1D signal (such as vibration) processing. Yu et al. [19] developed a 2D
CNN model to locate damage in a five-story structure, combining 14 measured signals into 2D features.
The trained model correctly identified the structural damage. Khoandehlouh et al. [20] conducted
experimental tests on a laboratory structure of a reinforced concrete bridge, and the proposed 2D CNN
model can identify the overall damage of the bridge. Gulgec et al. [21] used a 2D CNN model to
accurately classify damaged and undamaged finite element modeling samples.

The main advantage of 2D CNN is that it does not require artificial feature extraction by combining
feature extraction and classification tasks, and the features of local connection and weight sharing
significantly reduce the number of parameters. When feature mapping is particularly complex, however, it
is necessary to deepen the network, which may result in performance degradation, gradient
disappearance, or explosion. CNN variants have been developed to address these issues. He et al. [22]
created the Residual Network (ResNet), which realized another gradient flow mode by establishing jump
connections between residual layers and extended the network’s depth, and won first place in the
ILSVRC in 2015. Wang et al. [23] used this method to detect frame structure damage and achieved
remarkable results. Huang et al. [24] created Densely Connected Convolutional Networks, DenseNet,
which increased network width by reusing the characteristic graph, and achieved excellent results in
ILSVRC in 2017. Practice has shown that this method is better suited for small sample data sets than
ResNet. Wang et al. [25] successfully used this method to detect damage in simply supported beams.
Using 2D CNN for damage identification requires merging data obtained from multiple sampling points
into one sample. The data features obtained by each sampling point are different, which leads to a large
number of features. The difficulty of model training is exponentially related to the number of features.
So, it is necessary to increase the amount of data and model complexity. This problem has not been
substantially solved in long-term research.

Kiranyaz et al. [26] proposed 1D CNN in 2015, which has the same basic theory as 2D CNN but has far
fewer parameters and computational complexity, so it is widely used in 1D data processing. For the first time,
Abdeljaber et al. [27] used 1D CNN in vibration-based SHM. Using a large frame experimental structure
built by Qatar University as the experimental object, the acceleration data of each frame interface point
was extracted and analyzed, and it was possible to determine whether or not each frame interface point
was damaged. Avci et al. [28] used 1D CNN to analyze triaxial sensor signals and then integrate them,
yielding good results in many damage scenes. Yang et al. [29] solved the problem of two types of steel
truss structure damage using 1D CNN. Zhang et al. [30] tested three different beams and used 1D CNN
to determine where the stiffness of the beams changed. Using 1D CNN for damage identification only
requires identifying one type of feature, and the difficulty of model training and data demand are very
low, but when studying some complex problems, its accuracy is often not as good as 2D CNN.

From the description of the current research situation, it can be seen that both 2D CNN and 1D CNN
have certain limitations in the application of structural damage identification. The data volume
requirement of 2D CNN model is high, the training difficulty is high, and the application difficulty in
variable actual engineering is relatively high. The later emerging 1D CNN has greatly reduced both
computational complexity and data acquisition difficulty, but its accuracy for complex problems cannot
be guaranteed. Therefore, this paper proposes an idea of an ensemble 1D CNN model, which uses
multiple sampling points to obtain submodels for ensemble voting to improve the accuracy of the 1D
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CNN model. The submodel algorithm used in this research process is a 1D form of DenseNet that has
received rave reviews in recent years. I believe that according to different research problems, this
algorithm can be changed at will. Using this ensemble model to independently model each sampling
point’s features does not require too much data, and network training difficulty is also very small.

Chapter 2 introduces the principles of 1D CNN and DenseNet basic blocks, and proposes the network
structure and ensemble 1D DenseNet damage identification method built in this paper. Chapter 3 gives a
representative case, the problem of damage identification of cantilever beams, so as to explore the
accuracy of the proposed method, and briefly introduces the idea of parameter adjustment of the model.
Chapter 4 presents the results of the case, shows the results of each submodel and the results after
ensemble, and visualizes the feature vectors of the submodels to explore their internal mechanisms.
Chapter 5 summarizes the conclusions and shortcomings, as well as the future development direction.

2 Ensemble 1D DenseNet Damage Identification Method

The standard 1D CNN is divided into two layers: feature extraction and classification. The goal of this
paper’s 1D DenseNet is to improve the feature extraction layer of the standard 1D CNN into the DenseNet
basic block. The submodel of this paper is trained by 1D DenseNet. The following are examples:
2.1 introduces the standard 1D CNN theory, 2.2 introduces the DenseNet basic block, 2.3 introduces the
1D DenseNet structure used in this paper, and 2.4 ensemble 1D DenseNet damage identification method.

2.1 1D CNN Theory
The convolution layer and pooling layer are part of the 1D CNN feature extraction layer, and the

classification layer is a full connection network layer. Following the initial feature vector of 1D data input
into 1D CNN, features are extracted by convolution layer and compressed by pooling layer, which are
connected back and forth and stacked repeatedly to form new feature vectors. Fig. 1 depicts the principle.
The feature vector of the feature extraction layer’s final layer is expanded into one dimension and brought
into the fully connected network layer for classification.

2.1.1 Convolution Layer
Multiple convolution kernels with the same number of channels (equal to the number of eigenvector

channels and one-to-one correspondence between them), the same size, and different weights are present

Convolution process Pooling process

layer layer layer

Convolution calculation of
the th channel

Figure 1: Convolution and pooling principle
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on each convolution layer. To extract features, each convolution kernel performs convolution calculations
with an eigenvector.

The convolution process is achieved by sliding the convolution kernels, each of which is nested with an
ReLU -activation function at the end of the convolution. This alleviates the gradient disappearance problem to
some extent, and the function expression is as follows:

ReLU xð Þ ¼ x; x. 0
0; x � 0

�
(1)

The convolution process for a single convolution kernel of size 3 and channel number MN is illustrated
in Fig. 1, with XN

i denoting the i th feature vector channel at layer N. WN
ik denotes the weight of the i th

channel of the k th convolution kernel in layer N. YN
ik denotes the convolution result of the i th channel

of the k th convolution kernel in layer N. bNþ1
k denotes the bias of the k th convolution kernel at layer

N þ 1. f �ð Þ denotes the activation function; YNþ1
k denotes the convolution result of the k th convolution

kernel in layer N þ 1. The principle of the convolution calculation for the i th channel in the convolution
kernel is shown in the dashed box.

The forward propagation formula from layer N to layer N þ 1 of the network is:

YNþ1
k ¼ f bNþ1

k þ
XMN

i¼1

YN
ik

 !
; YN

ik ¼ y1; y2; y3 . . . yt . . .½ � (2)

In Fig. 1, XN
i ¼ x1; x2; x3 . . . xt jð Þ . . . xm

� �
; WN

ik ¼ wN
ik 1ð Þ; w

N
ik 2ð Þ; w

N
ik 3ð Þ

h i
; YN

ik ¼ y1; y2; y3 . . . yt . . .½ �,

the convolution calculation formula in the dotted box is as follows:

yt ¼
X3
j¼1

wN
ik jð Þxt jð Þ (3)

where xt jð Þ denotes the j th weight value of the t th convolved region in the i th channel of the feature vector;
yt the convolution result of the t th convolved region.

2.1.2 Pool Layer
The features obtained by each convolution kernel in the convolution layer are compressed using the

maximum value or average value principle, and the features are compressed while maintaining the
relative position of the features, reducing the number of parameters and the amount of calculation. Fig. 1
depicts the pooling of a convolution kernel following convolution. In the channel dimension, all pooled
results in the same layer are connected to form a new feature vector.

2.1.3 Full Connection Layer Network Layer
The feature vector of the last layer is expanded into 1D form and used as the input to the fully connected

network. As this paper is a classification problem, the softmax function is set at the end of the fully connected
network and the expression is given in Eq. (4). Its function is to transform each output value into a
probabilistic form, and the label corresponding to the output value with the highest probability is the
category determined by the network.

�y yið Þ ¼ exp yið ÞPU
i¼1 exp yið Þ (4)

where yi denotes the function input value; U is the number of input values; �y yið Þ denotes the layer softmax
output value.
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2.2 1D DenseNet Basic Block

2.2.1 DenseBlock
DenseBlock is made up of DenseLayers with the same structure. Fig. 2 depicts the Dense Layer

structure. It can be seen that, in addition to normal forward propagation, there is branch propagation,
which allows for the splicing of front and back features in the channel dimension. In the figure, C � L
denotes the input feature vector (number of channels * feature length), BatchNorm denotes the
normalisation of the features, xConv1d denotes a 1-dimensional convolutional kernel of size x, 4k and k
(growth rate) represent the number of convolutional kernels, and dropout reduces overfitting by randomly
removing some neurons when training the network. Finally, the output feature vector is ðk þ CÞ � L.

2.2.2 Transition
The Transition joins two DenseBlocks, the structure of which is shown in Fig. 2, and compresses the

number of channels using a 1-dimensional convolution kernel of size 1. In the figure, h is the
compression factor (set to 0.5 in this paper), and the length of the feature vector is then compressed by an
average pooling layer.

2.3 Network Structure and Super Parameter Setting
Table 1 depicts the network structure established in this paper. To suppress noise, the initial feature

vector is extracted using a large convolution kernel, and then it enters the 1D DenseNet basic block to
extract fine features using a small convolution kernel. Each DenseBlock block consists of 6 DenseLayers,
with a total of 40 layers in the network and a growth rate of k = 12.

re
ya

Le
sn

e
D T
ransition

Figure 2: DenseNet basic block

Table 1: Network structure

Basic block Structure setting Output dimension (C � L)
Convolution 45Conv1d; stride ¼ 25; padding ¼ 10

BatchNorm; ReLU
24 * 100

(Continued)
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2.4 Ensemble 1D DenseNet Damage Identification Method
Aiming at the problem of damage identification, for the same form of damage, after the structure is

loaded, different acceleration sampling points can obtain data with different characteristics. Many
researchers combine the data obtained from different sampling points to establish 2D CNN model to
solve it. However, we know that 1D CNN outperforms 2D CNN in processing sequence data because it
has fewer network parameters and requires fewer samples. So in this paper, another idea is put forward.
Carry out offset sampling on the data sets obtained from each sampling point, and bring it into 1D
DenseNet introduced in 2.3 for training to generate a model, so that each sampling point corresponds to a
submodel. When applying submodels to damage identification of structures, it is only necessary to obtain
the data of each sampling point by the same method, and after the offset sampling, it is brought into each
submodel to output the classification results. Each submodel is solved by voting method, and then the
voting results are concentrated to improve the accuracy. See Fig. 3 for ideas.

Table 1 (continued)

Basic block Structure setting Output dimension (C � L)
DenseBlock (1) BatchNorm; ReLU

1Conv1d
BatchNorm; ReLU

5Conv1d; padding ¼ 2

0
B@

1
CA� 6.

96 * 100

Transition (1) BatchNorm; ReLU
1Conv1d

5AvePool1d

8<
: .

48 * 100
48 * 20

DenseBlock (2) BatchNorm; ReLU
1Conv1d

BatchNorm; ReLU
5Conv1d; padding ¼ 2

0
B@

1
CA� 6.

120 * 20

Transition (2) BatchNorm; ReLU
1Conv1d

5AvePool1d

8<
: .

60 * 20
60 * 4

DenseBlock (3) BatchNorm; ReLU
1Conv1d

BatchNorm; ReLU
3Conv1d; padding ¼ 1

0
B@

1
CA� 6.

132 * 4

Prediction BatchNorm; ReLU
4AvePool1d
Linear; tanh
12Linear
Softmax

132 * 1
64
12
12
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3 Example: Damage Location of Cantilever Beam

3.1 Data Sets Establishment
Data sets are created to simulate the damage problem of cantilever beam in order to evaluate the method

proposed in this paper. Create the cantilever beam model shown in Fig. 4 using ABAQUS. The elastic
modulus is set to 3e10, the Poisson’s ratio to 0.2, the density to 2551, the unit type to Plane182, and the
structure size to 6 m � 0.4 m. The grid is divided into 8 horizontal sections and 120 vertical sections. To
simulate the damage, the local elastic modulus reduction (random reduction of 30%∼60%) is used. The
damage size is fixed at 3 � 3 units, and the location of the damage on the beam is chosen at random.

A vertical downward transient load is applied to the upper right end of the cantilever beam, as shown in
Fig. 4, and six acceleration sampling point (A1–A6) are configured to obtain acceleration time history
response data in the Y direction. The transient load’s first load step is set to 0.2 s, the number of sub-
steps to 20, the load size to 100 N, the second load step is set to 2 s for sampling, and the number of sub-
steps to 5,000 (that is, the sampling frequency is 2,500 Hz).

…

1D DenseNet training

…

Offset sampling

Submodel 1New data set 1Data set 1

…

Submodel establishment Submodel application and ensemble ideas

Bring in submodels and voteOffset sampling Voting result ensemble

E
nsem

ble voting results

Submodel 2New data set 2Data set 2

Submodel nNew data set nData set n

voting results 1New data 1Data 1

voting results 1New data 1Data 1

voting results 1New data 1Data 1

… … …

Figure 3: Ensemble 1D DenseNet damage identification method

Figure 4: Cantilever beam model
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Only one type of damage is considered in this paper, and 400 structural damage states are generated. The
beam is divided into 12 areas labeled 0–11 based on the location of the damage. As shown in Fig. 4, the
damage at the intersection of the areas is classified based on its size.

Each acceleration sampling point can obtain one data set, but 400 sets of data in a single data set are
insufficient for deep learning. As a result, offset sampling (see Fig. 5) is used to improve the data, and a
single set of data is divided into 21 segments. The benefits of this method are twofold: first, it expands
the data sets, and second, it allows multiple sets of data to correspond to the same injury in order to
prepare for subsequent voting. The data sets’s input is the acceleration time history response after offset
sampling, and the data sets’s output is the category label.

Each data set is divided into train set and validation set in the ratio of 8:2. The train set is used to train the
model, and the validation set is used to adjust the model and test its generalization ability. Such a validation
set, however, can only test the set damage. To put the model’s extrapolation ability to the test, 48 new damage
states are chosen at random, and the data from 6 sensors is offset sampled to generate 6 sets of test set A,
which are then added to 6 data sets. To discuss the voting method further below, a new damage is set in
each category label, and test set B is generated and added to the data sets in the same manner. To verify
the effectiveness of the method in this paper, the difficulty of identification needs to be increased, so all
data sets are modified by adding −2 dB of super-large white Gaussian noise.

3.2 Model Establishment and Test Set Classification Ideas
All of the obtained data sets were standardized (mean 0, variance 1) before being fed into 1D DenseNet

training to generate six submodels. During the training process, the parameters are constantly adjusted based
on the loss of the training set and the accuracy of the validation set. The control variable method is used to
adjust the parameters in this paper, and when adjusting one parameter, the other parameters are kept as
constant as possible. The first step is to modify the network structure. The number of neurons in the final
fully connected layer should not be too large, based on the experience of 1D CNN parameter adjustment.
Based on this premise, the number of network layers and the structure of each layer are adjusted, yielding
the network structure shown in Table 1. Then, one by one, adjust the following superparameters: (1) The
training algorithm is Adam-optimized random gradient descent; (2) Set the batch size to 64; (3) Set the
epoch to 50; (4) Set the initial learning rate to 0.01, then reduce it by 0.5 every 10 epoch; (5) Set 0.2 in
each DenseLayer; and (6) Use L2 regularization with a parameter of 0.0005. In this paper, all of the data
processing and neural network code is written in Python, and the neural network framework is Pytorch.
Because the six data sets in this paper are very similar in sequence length and characteristics, the
parameter adjustment results are essentially the same.

The loss of training set, the accuracy of validation set, and the accuracy of test set A can be obtained after
six models are trained using six data sets. The voting method is investigated in test set B. Each damage
corresponds to 21 groups of acceleration time-history response segments after offset sampling. Each loss
has 21 results as 21 votes after being introduced into a single submodel, and the one with the most votes

125 2500

Figure 5: Offset sampling
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is considered the prediction result of a single submodel. The prediction results of multiple sub-models are
then voted on collectively to achieve more accurate classification.

4 Result Analysis

4.1 Accuracy Evaluation of Submodels
Table 2 shows the evaluation results of data sets training submodels obtained by six sampling point.

Under the influence of −2 dB white Gaussian noise, the accuracy of validation set and test set A is not
high. Voting can help to solve these issues.

4.2 Test Set B Voting Classification
Fig. 6 shows the voting results of test set B corresponding to six sampling points (A1–A6), with the

vertical axis representing the true label and the horizontal axis representing the predicted label. Each
injury receives 21 votes; the label with the most votes is chosen as the prediction result, and the diagonal
of the confusion matrix indicates the correct result.

As shown in Fig. 6, for the test set B of each data set, each sub-voting model’s has a positive effect, but
each submodel still has the incorrect label, and some of them are far from the true label. Then, in Fig. 7, the
ensemble voting results are shown.

Table 2: Accuracy evaluation of submodel

Sampling point A1 A2 A3 A4 A5 A6

Loss of train set 0.0577 0.1201 0.1190 0.0595 0.2675 0.0785

Accuracy of validation set 0.8785 0.7942 0.6959 0.8636 0.6950 0.8091

Accuracy of test set A 0.6448 0.6310 0.6567 0.7103 0.6706 0.6766

Figure 6: Votes on test set B
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In Fig. 7, (A1–A2) shows the ensemble voting results of the first two submodels, and its recognition
effect is roughly equal to that of a single submodel, which is not particularly prominent; (A1–A4) shows
the ensemble voting results of the first four submodels, and its effect opinions are significantly improved,
and it can be seen that even if the identification is incorrect, it is very close to the real tag; (A1–A6)
shows the ensemble voting results of all models, and the results are slightly better than those of (A1–A4).
It can be seen that the effect of ensemble voting is very significant, which can improve recognition
accuracy, and the effect of this method improves as the number of submodels increases.

4.3 Network Visualization
CNN’s operating mechanism is difficult to comprehend because it is a black box. This paper takes the

data set and submodel corresponding to sampling point A6 as an example. The test set A is brought into the
submodel for damage classification, and the dimension is reduced using the t-SNE method, and the features
extracted by each DenseBlock and finally input into the fully connected network are visualized. The features
are depicted in Fig. 8.

Figure 7: Ensemble method votes on test set B

Figure 8: Visualize feature maps
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Fig. 8 shows that, first and foremost, as the network layers are deepened, the categories become
increasingly better. The classification in each DenseBlock layer is initially poor, but improves
dramatically in the full connection layer. Second, when we look at the Prediction, we can see that there
are some overlapping areas between two labels, which will affect the accuracy, but there are also non-
overlapping areas, which provide a theoretical basis for the voting method. Third, the eigenvectors
extracted by Convolution and DenseBlock (1) are very uniform when compared to the initial
eigenvectors, and clustering begins only with DenseBlock (2), demonstrating that 1D DenseNet can
decorrelate without any additional items.

5 Conclusion

Regarding to the structural damage identification problem related to vibration acceleration, this paper
proposes a new method. First introduce the idea of building a 1D DenseNet as an algorithm for training
submodels; then use data offset to enhance multiple acceleration sampling points’ acquired data features
as a basis for submodel voting; finally introduce how multiple sampling points’ submodels form an
ensemble model for ensemble voting. An ABAQUS simulated cantilever beam fracture damage case was
listed; seemingly simple cases use ultra-large Gaussian white noise to increase training difficulty to verify
this method’s effectiveness. In the end discussed submodel process visualization.

(1) In this paper, the offset sampling method is used to expand the data, which effectively solves the
problem of insufficient samples in the data set. This offset sampled data can then be brought into
the 1D DenseNet model for voting classification, and has achieved very good recognition effect.

(2) A set of 1D DenseNet submodels is created, and the voting results of each submodel are combined.
The recognition accuracy improves significantly as the number of submodels increases, and even if
the recognition is incorrect, the prediction results are very close to the real results.

(3) Investigate the internal mechanism of the submodel trained by 1D DenseNet by reducing the
dimension and visualizing the feature map of each model, and conclude that the model can
automatically decorrelate, and the classification effect will improve as the network layer is
deepened. In the last layer of the model you can see classification results; after offset sampling
samples will cluster according to their respective category labels; only a few will be identified
with other labels; this can serve as a basis for submodel voting.

The submodel used in this paper is established by 1D DenseNet, because the author considers DenseNet
to be a relatively novel CNN that has been shown in some studies to be an algorithm suitable for damage
identification. In fact, the submodel of this method can be any algorithm or a different algorithm, and I
believe that different results will be obtained after experimenting. The cantilever beam simulated by
ABAQUS is used in this paper, and the proposed method is validated by increasing the difficulty of
identification with white Gaussian noise, without considering more damage situations and experimental
verification, but the author believes that the ensemble method proposed in this paper can be applied to
these situations.

Acknowledgement: None.

Funding Statement: The authors received no specific funding for this study.

Author Contributions: The authors confirm contribution to the paper as follows: study conception and
design: Chun Sha; data collection: Chun Sha, Wenchen Wang; analysis and interpretation of results: Chun
Sha, Chaohui Yue and Wenchen Wang; draft manuscript preparation: Chun Sha, Chaohui Yue. All
authors reviewed the results and approved the final version of the manuscript.

SDHM, 2023, vol.17, no.5 379



Availability of Data and Materials: The data that support the findings of this study are available from the
corresponding author, upon reasonable request.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Farrar, C. R., Worden, K. (2007). An introduction to structural health monitoring. Philosophical Transactions of

the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851), 303–315.

2. Fan, W., Qiao, P. (2011). Vibration-based damage identification methods: A review and comparative study.
Structural Health Monitoring, 10(1), 83–111. https://doi.org/10.1177/1475921710365419

3. Pathirage, C. S. N., Li, J., Li, L., Hao, H., Liu, W. et al. (2018). Structural damage identification based on
autoencoder neural networks and deep learning. Engineering Structures, 172, 13–28. https://doi.org/10.1016/j.
engstruct.2018.05.109

4. Wang, R., Li, L., Li, J. (2018). A novel parallel auto-encoder framework for multi-scale data in civil structural
health monitoring. Algorithms, 11(8), 112. https://doi.org/10.3390/a11080112

5. Liu, D., Tang, Z., Bao, Y., Li, H. (2021). Machine-learning-based methods for output-only structural modal
identification. Structural Control and Health Monitoring, 28(12), e2843. https://doi.org/10.1002/stc.2843

6. Barile, C., Casavola, C., Pappalettera, G., Pappalettere, C. (2016). Analysis of crack propagation in stainless steel
by comparing acoustic emissions and infrared thermography data. Engineering Failure Analysis, 69, 35–42.
https://doi.org/10.1016/j.engfailanal.2016.02.022

7. Zaurin, R., Catbas, F. N. (2009). Integration of computer imaging and sensor data for structural health monitoring
of bridges. Smart Materials and Structures, 19(1), 015019. https://doi.org/10.1088/0964-1726/19/1/015019

8. Kumar, P. R., Oshima, T., Yamazaki, T., Mikami, S., Miyamouri, Y. (2012). Detection and localization of small
damages in a real bridge by local excitation using piezoelectric actuators. Journal of Civil Structural Health
Monitoring, 2, 97–108. https://doi.org/10.1007/s13349-012-0020-5

9. Döhler, M., Hille, F., Mevel, L., Rücker, W. (2014). Structural health monitoring with statistical methods during
progressive damage test of s101 bridge. Engineering Structures, 69, 183–193. https://doi.org/10.1016/j.engstruct.
2014.03.010

10. LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/
nature14539

11. LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R. et al. (1989). Handwritten digit recognition with a
back-propagation network. Advances in Neural Information Processing Systems, 2, 396–404.

12. Krizhevsky, A., Sutskever, I., Hinton, G. (2012). Imagenet classification with deep convolutional neural networks.
Advances in Neural Information Processing Systems, 25(2), 84–90.

13. Koziarski, M., Cyganek, B. (2017). Image recognition with deep neural networks in presence of noise–dealing
with and taking advantage of distortions. Integrated Computer-Aided Engineering, 24(4), 337–349. https://doi.
org/10.3233/ICA-170551

14. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. et al. (2015). Going deeper with convolutions. Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9. Boston, MA, USA.

15. Young, T., Hazarika, D., Poria, S., Cambria, E. (2018). Recent trends in deep learning based natural language
processing. IEEE Computational Intelligence Magazine, 13(3), 55–75. https://doi.org/10.1109/MCI.2018.
2840738

16. Sorin, V., Barash, Y., Konen, E., Klang, E. (2020). Deep learning for natural language processing in radiology—
Fundamentals and a systematic review. Journal of the American College of Radiology, 17(5), 639–648. https://doi.
org/10.1016/j.jacr.2019.12.026

17. Palaz, D., Collobert, R. (2015). Analysis of CNN-based speech recognition system using raw speech as input.
Proceedings of Interspeech, no. EPFL-CONF-210029. Dresden, Germany.

380 SDHM, 2023, vol.17, no.5

https://doi.org/10.1177/1475921710365419
https://doi.org/10.1016/j.engstruct.2018.05.109
https://doi.org/10.1016/j.engstruct.2018.05.109
https://doi.org/10.3390/a11080112
https://doi.org/10.1002/stc.2843
https://doi.org/10.1016/j.engfailanal.2016.02.022
https://doi.org/10.1088/0964-1726/19/1/015019
https://doi.org/10.1007/s13349-012-0020-5
https://doi.org/10.1016/j.engstruct.2014.03.010
https://doi.org/10.1016/j.engstruct.2014.03.010
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.3233/ICA-170551
https://doi.org/10.3233/ICA-170551
https://doi.org/10.1109/MCI.2018.2840738
https://doi.org/10.1109/MCI.2018.2840738
https://doi.org/10.1016/j.jacr.2019.12.026
https://doi.org/10.1016/j.jacr.2019.12.026


18. Abdel-Hamid, O., Deng, L., Yu, D. (2013). Exploring convolutional neural network structures and optimization
techniques for speech recognition. Interspeech, vol. 2013, pp. 1173–1175. Lyon, France. https://doi.org/10.
21437/Interspeech.2013

19. Yu, Y., Wang, C., Gu, X., Li, J. (2019). A novel deep learning-based method for damage identification of smart
building structures. Structural Health Monitoring, 18(1), 143–163. https://doi.org/10.1177/1475921718804132

20. Khodabandehlou, H., Pekcan, G., Fadali, M. S. (2019). Vibration-based structural condition assessment using
convolution neural networks. Structural Control and Health Monitoring, 26(2), e2308.

21. Gulgec, N. S., Takáč, M., Pakzad, S. N. (2017). Structural damage detection using convolutional neural networks.
Model Validation and Uncertainty Quantification, vol. 3, pp. 331–337. Springer International Publishing.

22. He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 770–778. San Francisco, CA, USA.

23. Wang, R., Chencho, An, S., Li, J., Li, L. et al. (2021). Deep residual network framework for structural health
monitoring. Structural Health Monitoring, 20(4), 1443–1461. https://doi.org/10.1177/1475921720918378

24. Huang, G., Liu, Z., Pleiss, G., van Der Maaten, L., Weinberger, K. Q. (2019). Convolutional networks with dense
connectivity. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(12), 8704–8716. https://doi.
org/10.1109/TPAMI.2019.2918284

25. Wang, R., Li, J., An, S., Hao, H., Liu, W. et al. (2021). Densely connected convolutional networks for vibration
based structural damage identification. Engineering Structures, 245, 112871. https://doi.org/10.1016/j.engstruct.
2021.112871

26. Kiranyaz, S., Ince, T., Hamila, R., Gabbouj, M. (2015). Convolutional neural networks for patient-specific ECG
classification. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), pp. 2608–2611. Milan, Italy, IEEE.

27. Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M., Inman, D. J. (2017). Real-time vibration-based structural
damage detection using one-dimensional convolutional neural networks. Journal of Sound and Vibration, 388,
154–170. https://doi.org/10.1016/j.jsv.2016.10.043

28. Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Inman, D. J. (2018). Wireless and real-time structural damage
detection: A novel decentralized method for wireless sensor networks. Journal of Sound and Vibration, 424, 158–
172. https://doi.org/10.1016/j.jsv.2018.03.008

29. Yang, Y., Lian, J., Zhou, G., Chen, Z. (2020). Damage identification of steel truss structure based on one-
dimensional convolutional neural network. 20th National Symposium on Modern Structural Engineering,
pp. 68–71. Hebei, China.

30. Zhang, Y., Miyamori, Y., Mikami, S., Saito, T. (2019). Vibration-based structural state identification by a 1-
dimensional convolutional neural network. Computer-Aided Civil and Infrastructure Engineering, 34(9), 822–
839. https://doi.org/10.1111/mice.12447

SDHM, 2023, vol.17, no.5 381

https://doi.org/10.21437/Interspeech.2013
https://doi.org/10.21437/Interspeech.2013
https://doi.org/10.1177/1475921718804132
https://doi.org/10.1177/1475921720918378
https://doi.org/10.1109/TPAMI.2019.2918284
https://doi.org/10.1109/TPAMI.2019.2918284
https://doi.org/10.1016/j.engstruct.2021.112871
https://doi.org/10.1016/j.engstruct.2021.112871
https://doi.org/10.1016/j.jsv.2016.10.043
https://doi.org/10.1016/j.jsv.2018.03.008
https://doi.org/10.1111/mice.12447

	Ensemble 1D DenseNet Damage Identification Method Based on Vibration Acceleration
	Introduction
	Ensemble 1D DenseNet Damage Identification Method
	Example: Damage Location of Cantilever Beam
	Result Analysis
	Conclusion
	flink6
	References


