
Impact Damage Identification of Aluminum Alloy Reinforced Plate Based on
GWO-ELM Algorithm

Wei Li1,2, Benjian Zou1, Yuxiang Luo2, Ning Yang2, Faye Zhang1,*, Mingshun Jiang1 and Lei Jia1

1School of Control Science and Engineering, Shandong University, Jinan, 250061, China
2Communication Technology Division, Shandong Institute of Space Electronic Technology, Yantai, 264000, China
*Corresponding Author: Faye Zhang. Email: zhangfaye@sdu.edu.cn

Received: 09 August 2022 Accepted: 08 February 2023 Published: 17 November 2023

ABSTRACT

As a critical structure of aerospace equipment, aluminum alloy stiffened plate will influence the stability of space-
craft in orbit and the normal operation of the system. In this study, a GWO-ELM algorithm-based impact damage
identification method is proposed for aluminum alloy stiffened panels to monitor and evaluate the damage con-
dition of such stiffened panels of spacecraft. Firstly, together with numerical simulation, the experimental simula-
tion to obtain the damage acoustic emission signals of aluminum alloy reinforced panels is performed, to establish
the damage data. Subsequently, the amplitude-frequency characteristics of impact damage signals are extracted
and put into an extreme learning machine (ELM) model to identify the impact location and damage degree,
and the Gray Wolf Optimization (GWO) algorithm is employed to update the weight parameters of the model.
Finally, experiments are conducted on the irregular aluminum alloy stiffened plate with the size of 2200 mm ×
500 mm × 10 mm, the identification accuracy of impact position and damage degree is 98.90% and 99.55% in
68 test areas, respectively. Comparative experiments with ELM and backpropagation neural networks (BPNN)
demonstrate that the impact damage identification of aluminum alloy stiffened plate based on GWO-ELM algo-
rithm can serve as an effective way to monitor spacecraft structural damage.
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1 Introduction

In recent years, the rapidly developing aerospace industry and activities have led to a surge in space
debris [1–3], which not only increases the risk of space exploration, but also threatens the safety of
manned spacecraft and astronauts. Due to the ongoing requirements for the space capsule structure,
including high reliability, low quality and high performance, increasing efforts has been carried out to
improve the structural properties of materials. At present, featuring low density, high specific strength,
high specific stiffness, good corrosion resistance and plasticity, aluminum alloy has been widely
employed as structural material for large sealed tanks [4]. In addition, the stiffened structure also allows
for an excellent post-buckling bearing, serving as a critical part of the cabin structure. Although the
performance of aluminum alloy plates has been improved by adding these reinforcement structures, plate
waves, which may be impact signals, propagate through the aluminum alloy reinforcement plates and
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cause complex changes such as reflection, scattering, attenuation, and superposition when passing through
these reinforcement ribs and frames [5]. Consequently, it will affect the judgment of impact damage.

Time difference localization and intelligent algorithm are employed to identify the impact location
[6–8]. The former is to calculate the position of impact point using at least three sensors to detect the
arrival time of acoustic emission signals generated by impact events [9–11]. Wang et al. [12] managed to
determine the precise location of wind turbine blade (WTB) surface impact by employing fiber Bragg
grating (FBG) and time difference, where the Teager energy operator (TEO) was utilized to amplify the
instantaneous energy of the reconstructed signal to identify the time difference between FBGs. Then, the
impact location was confirmed after solving the hyperbolic mode with the time difference. Liu et al. [13]
proposed a newly generalized regression neural network-based acoustic emission (AE) source localization
method to improve localization accuracy. Ebrahimkhanlou et al. [14] suggested a deep learning-based
framework to locate and characterize the AE sources in plate-like structures with complex geometric
features, including multipliers and rivet connections. For isotropic plates, the wave velocity can serve as a
constant. However, in terms of the anisotropic plate or the stiffened plate with an irregular shape, the
propagation is accompanied by scattering and mode transformation of impact stress waves, in which the
wave velocity could not be treated as a constant. The time difference positioning will cause a severe error.

The booming computer technology witnesses prominent progress in intelligent algorithms [15–17].
Supported by signal processing technology and intelligent algorithm, the identified impact damage of
complex structures based on sensors-acquired acoustic emission signals could be achieved via neural
network [18,19], machine learning [20] and other algorithms [21]. Djemana et al. [22] realized the
damage location based on ELM algorithm with the damage data collected from piezoelectric sensors. Pan
et al. [23] proposed a two-stage rolling bearing life prediction method using the relative root mean square
value (RRMS) and ELM, where the correlation analysis could select the sensitive features and predict the
remaining service life by multivariable feedback ELM. Fu et al. [24] revealed the prediction of the impact
position of aluminum plate using the fast-learning characteristics of ELM, and the ELM had much faster
application efficiency in comparison with support vector machine (SVM) or back propagation neural
network (BPNN). Yu et al. [25] studied the motor rotor fault diagnosis based on ELM model by
employing the discrete Fourier transform (DFT) to extract fault features. In the study of Ghadimi et al.
[26] using Euler beam to identify the structures of cracks, the authors employed ELM to learn sensitive
features from such parameters as modal strain energy and natural frequency, and detected the structural
damage. Shu et al. [27] proposed the validity of variance and covariance calculated from the structural
dynamic response analysis to train the damage identification model as the input of artificial neural
network (ANN), and realized the evaluation of the location and damage condition of bridge structure.
Benefitting from the high adaptability and powerful function approximation capability of ANN, Qiu et al.
[28] explored wind turbines damage identification at different locations and levels, taking the dynamic
response parameters as the network input. Coelho et al. [29] employed the time-delay embedding feature
extraction to realize the accurate identification of low-speed impact damage based on SVM. Liu et al.
proposed a distributed dynamic load identification method based on a hierarchical clustering radial basis
function framework [30], as well as and a dynamic force reconstruction method under multi-source
uncertainty based on an artificial neural network (ANN)-Bayesian probability framework (BPF) [31],
which can be applied to identify the impact load localization. However, those methods mainly identify
the position of impact damage regarding the flat aluminum alloy plate, without obtaining the position
identification and the damage of aluminum alloy reinforced plate. In the plate, the accuracy of low impact
damage identification could fall.

Considering the complex characteristics of impact stress wave in aluminum alloy reinforced structure,
the traditional ways of damage identification could not be accurate, following the insufficient stability and
poor classification effect due to the randomly generated weights in the standard ELM algorithm-based
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methodology. To solve this problem, an impact damage identification for aluminum alloy stiffened plate
based on GWO-ELM algorithm is proposed. Firstly, an aluminum alloy stiffened plate was employed as
the carrier, and the acquisition system of impact damage signal was established by combining the ground
simulation with the numerical one. Afterwards, based on the analysis of the propagation characteristics of
impact acoustic emission signal, the acquired signals were utilized to establish the impact damage sample
library. Finally, the parameters of the ELM model were optimized with the Gray Wolf algorithm, and the
obtained impact damage intelligent identification model of the aluminum alloy stiffened plate was verified
for performance via experiments.

As for the framework of this paper, Section 2 mainly introduces the technical principle and
implementation process of impact damage identification method for aluminum alloy stiffened panels.
Section 3 describes the construction of impact damage signal acquisition system. Section 4 depicts the
experiments and experimental results analysis. Section 5 summarizes the paper.

2 Impact Damage Identification Algorithm

2.1 Impact Stress Wave Propagation Analysis of Aluminum Alloy Stiffened Plate
The complex structure of aluminum alloy stiffened plate will make changes in impact stress wave, such

as reflection, scattering, attenuation and superposition. Therefore, to understand the propagation
characteristics of stress waves in the aluminum alloy stiffened plate, the impact simulation model of the
spacecraft bulkhead aluminum alloy stiffened plate was established based on ANSYS, as depicted in
Fig. 1. The impact process was simulated using aluminum alloy projectile to impact the target plate with
high speed. Four observation points on the target plate were set to acquire the high-speed impact acoustic
emission signals. The specific parameters of the simulation model are shown in Table 1.

Fig. 2 shows the propagation process of impact stress wave generated by high-speed projectile impacting
aluminum alloy stiffened plate. In the plate, when the steel ball touches the aluminum alloy stiffened plate,
the stress wave is concentrated near the impact point. Then, the stress wave propagates uniformly around, and

Figure 1: The impact simulation model of aluminum alloy stiffened plate

Table 1: Model parameters

Parameter name Value Unit Parameter name Value Unit

Plate material Al 2017 Stiffener height 5 mm

Plate density 2.79 g/cm3 Stiffener width 4/7/15/18/25/37 mm

Plate length 2200 mm Projectile material Al 7075

Plate width 500 mm Projectile density 2.82 g/cm3

Plate thickness 10 mm Finite element 3D164 unit
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begins to reverse propagate when propagating to the boundary or the stiffener. Among them, the reflection,
scattering and attenuation aluminum of stress wave induced by complex stiffener structure and the varying
process of overlay are shown in Fig. 2.

As the impact velocity increases, the damage by the projectile to aluminum alloy stiffened plate changes
from cratering damage to perforation damage, as illustrated in Fig. 3. When the impact speed reaches over
200 m/s, the cratering damage begins to emerge in reinforced aluminum plate; and perforation damage when
reaching 1200 m/s.

(a) Generating (b) Diffusion

(c) Rebound (d) Superimposing

Figure 2: The propagation process of impact stress waves

Figure 3: The damage degree of aluminum alloy stiffened plate under high-speed impact
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2.2 Extreme Learning Machine
Extreme learning machine serves as an algorithm to solve single hidden layer feedforward neural

network [32,33], which allows faster learning speed on the premise of ensuring learning accuracy
compared with the traditional neural network. The learning parameters between the ELM’s input layer
and the single hidden one layer of ELM could be initialized randomly, with the obtained output layer’s
weights based on the least square method, which made it free from manual tuning. The schematic
diagram of ELM is depicted in Fig. 4.

For the single hidden layer feedforward neural network, assuming the length of the sample data set as n,
a data set composed of N arbitrarily different samples can be expressed as S ¼ ðxi; yiÞ xi 2 Rn;jf
yi 2 Rm; i ¼ 1; 2; . . . ;Ng. As shown in Fig. 4, the input layer, output layer and hidden layer are assumed
to involve n, m and s neurons, respectively. The connection weight between the input layer and the
hidden layer is set to a, and the offset of the hidden layer to b. a; bf g can be obtained by random
initialization. The activation function Gð�Þ is employed for feature mapping, then the output of hidden
layer can be expressed as:

hiðxÞ ¼ G aixþ bið Þ (1)

Assume that the connection weight between the hidden layer and the output layer is b, then the output
layer of ELM could be:

fsðxÞ ¼
Xs

i¼1

bihiðxÞ ¼
Xs

i¼1

biGðaixþ biÞ (2)

The above N equations are pieced together into a matrix form, denoted as:

Hb ¼ fs xð Þ (3)

wherein, H can be expressed as:

H ¼
Gða1x1 þ b1Þ . . . Gðasx1 þ bsÞ

..

. . .
. ..

.

Gða1xN þ b1Þ � � � GðasxN þ bsÞ

2
64

3
75
N�s

(4)

x1

x2

xn

···

x

h1

h2

hs

···

h3

o1

om

··· o

Figure 4: The schematic of ELM
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For the desired output value Y , the specific b is expected to minimize the error function value,
namely:

argmin
b

Y � Hbk k2 (5)

According to the least square method, the parameter b can be calculated as:

b̂ ¼ HTðHHTÞ�1Y ¼ HþY (6)

Therefore, a given test sample xtest, allows the prediction result by mapping model based on the
determined parameters, as shown in Eq. (7).

ytest ¼ HþðxtestÞb̂ (7)

2.3 Gray Wolf Optimizer
In 2014, Mirjalili et al. firstly proposed GrayWolf Optimization algorithm, which works by means of the

imitation of the predation process of the strictly hierarchical natural gray wolf population. The gray wolf
population involves four grades, namely a;b; d and x, respectively, as shown in Fig. 5a. Grade a enjoys
absolute dominance over grades b, d and x in the pecking order, grade b for absolute control over d and
x, grade d for absolute control over grade x.

Fig. 5b shows the position updating diagram of the Gray Wolf algorithm. First, the positions of a, b and
d are determined, depending on which the relative distances Da, Db and Dd from x to a, b and d can be
calculated. Because of the different travel distances and approaches of a, b, and d toward the target
position, the next position of x tends to the average position of a, b, and d. The definition of relative
distance is depicted by Eq. (8):

~D ¼ C � ~X pðtÞ � ~X ðtÞ�� �� (8)

wherein, C 2 ½0; 2� is a random number, ~Xp is the target position, ~X is the current position, and t is the
iteration number.

Eqs. (8) and (9) depict the mathematical model of gray wolf individual tracking prey position:

~Da ¼ C1 � ~X aðtÞ � ~X ðtÞ�� ��
~Db ¼ C2 � ~X bðtÞ � ~X ðtÞ�� ��
~Dd ¼ C3 � ~X dðtÞ � ~X ðtÞ�� ��

8><
>:

(9)

�

�

�

� updateC3

A3

C1
A1

C2
A2

R

(a) The rank classification of gray
wolf groups

(b) The gray wolf predation location
map

Figure 5: The gray wolf optimizer
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After obtaining the relative distance, the individual will update the position according to Eq. (10), where
a random number is in c 2 ½0; 1�.
~X ðt þ 1Þ ¼ ~XpðtÞ � Að2R� 1Þ � ~D (10)

Based on Eqs. (9) and (10), the next position of gray wolf individuals can be updated, which can be
expressed as:

~X 1 ¼ ~X aðtÞ � A1ð2R1 � 1Þ � ~Da
~X 2 ¼ ~X bðtÞ � A2ð2R2 � 1Þ � ~Db
~X 3 ¼ ~X dðtÞ � A3ð2R3 � 1Þ � ~Dd

8<
: (11)

After the location model is obtained, the position of x is updated for a, b and d:

~X ðt þ 1Þ ¼ 1

3
ð~X1 þ ~X2 þ ~X3Þ (12)

To optimize the performance of the algorithm, the gray wolf x changes are improved. When the change
condition n is met, the location of variation ratio (VR%) of total gray wolf x changes could be obtained by
Eq. (13).

~X ðt þ 1Þ ¼ ~Xp t þ 1ð Þ þ VR� unifrnd �1; 1ð Þ � ub� lbð Þ (13)

where, ub is the upper bound of variables, lb for the lower band of variables.

2.4 Damage Identification Algorithm for Aluminum Alloy Stiffened Plate
To summarize the above mentioned analysis, the impact damage identification algorithm flow of

aluminum alloy stiffened plate based on GWO-ELM can be depicted as Fig. 6.

(1) The aluminum alloy stiffened plate of the spacecraft cabin wall has 68 regions for identification. An
electric simulation gun launched the plastic projectile with a diameter of 7 mm to simulate low-speed impact,
and the generated acoustic emission signals were collected by the acoustic emission acquisition system as the
original non-damage signals. By utilizing ANSYS software and Lagrange algorithm, the simulation model of
aluminum alloy stiffened plate of a spacecraft bulkhead was established, and the original signals of cratering
and perforation damage were obtained.

(2) The amplitude-frequency of the original signals obtained by FFT transform was applied to construct
the data sample set, including the training set and test set with the ratio of 7:3.

(3) Depending on the training set and GWO algorithm, the impact damage identification model of the
aluminum alloy stiffened plate was established based on GWO-ELM.

(4) The performance of damage identification model was verified in the test set.

(5) The algorithm outstood ELM and BPNN methods.
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3 Construction of Impact Damage Signal Acquisition System

Impact damage signal acquisition systems have low-speed impact system as well as the high-speed one,
as shown in Fig. 7. The former involves electric simulation gun, aluminum alloy stiffened plate, acoustic
emission sensor, impact damage data acquisition device, computer and data acquisition software. The
electric simulation gun accelerates a plastic projectile to about 50 m/s by compressing gas without
damaging the stiffened plate. After impacting the stiffened plate, the plastic projectile will crack,
producing an acoustic emission signal. Then, the signal is collected by acoustic emission sensor and
converted into a voltage signal. Finally, the computer-manipulated data collection device acquires and
stores the emission voltage signal.

The high-speed impact signal acquisition system obtains the impact acoustic emission signals by
numerical simulation under cratering and perforation. Although more accurate high-speed impact acoustic
emission signal can be acquired by the two-stage light gas gun in a high-speed impact experiment, it is
challenging to design the damage data set due to the high expenditure. Target size is limited by the target

Figure 6: The flowchart of impact damage identification algorithm
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cabin size, and it is difficult for projectile velocity and trajectory to accurately control, and experimental
process to measure. Therefore, the selected data simulation methods are employed to achieve accurately
control on experimental parameters and various impact conditions. Based on the numerical simulation
platform of NVIDA Tesla V100 high performance computing GPU, the ANSYS is utilized to establish
the numerical simulation model of aluminum alloy stiffened plate to simulate the process of cratering and
perforation damage.

4 Impact Damage Signal Identification Experiment and Result Analysis

4.1 Impact Experiment of Aluminum Alloy Stiffened Plate
Taking the low-speed impact experiment as an example, the electric gun is adopted to shoot 68 areas on

the aluminum alloy stiffened plate (as shown in Fig. 8). Each plate involves 5 impact points, and each impact
point is hit for 150 times. The data collection process is as follows:

(1) Determine the first impact area A1, following the first impact point M1 within A1, and conduct
150 impacts on the first impact point. Then, move to the second impact point M2, and conduct
150 impacts. Repeat the above process until the 5 impact points are completed.

(2) Carry out the same test on the 5 points in the second impact area A2 until the 68 impact areas are
completed. Finally, a total of 68 × 5 × 150 = 51000 groups of non-damage data are obtained.

(3) The data acquisition process of cratering and perforation in high-speed impact is continuously carried
out to the low-speed one, and 51000 groups of cratering and perforation data are obtained, respectively.

Figure 7: The impact damage signal acquisition system

m
5.0

2.2 m

1

2

3

4

5
6

7
8

9

10
11

12

13
S1

14
15

16
17
18

19

20
21

22

23
24

25

26

27
28S2

S4

S3

29
30

31

32

33
34

35
36

37

38

39
40

41
42

43

44

45
46

47

48
49

50

51
52

53
54

55
56

57

58

59
60

61

62

63
64

65
66

67
68

Figure 8: The area division of aluminum alloy stiffened plate
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The data samples of each damage degree are divided into training sets and test sets in a ratio of 7:3,
namely 35700 groups and 15300 groups, respectively, as listed in Table 2. In terms of the total data set,
the training set contained 107100 groups of data, and the test set of 45900 groups.

4.2 Impact Damage Signal Analysis of Aluminum Alloy Stiffened Plate
Under three damage degrees, the FFT transform is to convert time-domain impact signals into

frequency-domain signals. To clearly explore the relationship of amplitude-frequency with impact areas,
Fig. 9 illustrates the frequency-domain signals of different impact areas under the same damage degree
acquired by sensor S1 in the same coordinate system.

Fig. 9 depicts the amplitude-frequency of no damage, cratering and perforation respectively, in which
(I), (II), (III) and (IV) represent the amplitude-frequency of area 1, 24, 42, and 64, respectively. For
different damage areas, the signal amplitude differs at the same frequency. For example, in the non-
damage state, the amplitudes of the four impact areas at 21 kHz are 0.02552, 0.05997, 0.11495, and
0.08624 dB, indicating the relation of the monitored amplitude-frequency by the acoustic emission sensor
to the impact area. Hence, the amplitude-frequency characteristics of the impact signal can be adopted to
identify the impact area.

To estimate the frequency characteristics with different damage degrees in the same impact area, the
amplitude-frequency of the three damage degrees is represented in the same coordinate system. The
amplitude-frequency characteristics of area 1, 32 and 65 are depicted in Figs. 10a–10c, respectively. Here,
(I), (II) and (III) represent the amplitude-frequency characteristics of the aluminum alloy stiffened plate in
no damage state, cratering and perforation state, respectively. It shows the varying amplitude-frequency
characteristics with different damage degrees in the same area and suggests that the amplitude-frequency
characteristics of the impact signal can identify the damage degree.

Table 2: The composition of the data set

Degree of damage Training set Test set Total

No damage 35700 15300 51000

Cratering damage 35700 15300 51000

Perforation damage 35700 15300 51000

Total 107100 45900 153000

Frequency/kHz Frequency/kHz Frequency/kHz

(a) No damage (b) Cratering (c) Perforation

(I)

(II)

(III)

(IV)

21kHz

Figure 9: The comparison of signal amplitude-frequency characteristics in different areas under the same
degree of damage
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4.3 Impact Damage Identification Based on GWO-ELM Aluminum Alloy Stiffened Plate
The optimizing idea of the Gray Wolf algorithm is to initialize ELM from the population parameter and

avoid the limitation of ELM, in order to make the model with randomly generated initial weight matrices and
bias matrix. The wolves are updated by spatial position error feedback to achieve the continuously optimized
fitness of the Gray Wolf until getting a qualified global optimal solution, that is, obtaining the optimal weight
matrix and deviation matrix of ELM impact damage identification, and the optimal damage identification
model. Fig. 11 depicts the flow chart of GWO-ELM algorithm with the following specific steps:

(1) Parameter initialization. The coordinate and displacement parameters of the Gray Wolf population
are randomly set, following a random initialization of the weight matrix and bias matrix of ELM.

(2) Fitness calculation and prey search. The fitness value is calculated as the training error of the initial
ELM network, and the lowest error network object rounded up as the prey.

(3) Update of ELM weights. The weights of ELM are updated according to the prey rounded up by gray
wolves, followed by retraining of the ELM network.

(4) Iterative update. The new network is rounded up as the new prey object, and the calculated fitness
value is returning to step (2). If the updated fitness value is below the previous generation, step (3) is
performed. The update is stopped, when the fitness value is below the set value or the number of
iterations reaches the maximum.

(5) Finally, test the trained ELM model to identify the location and degree of impact on the aluminum
alloy stiffened plate.

After the intelligent damage identification model was established, the damage identification of the model
became more accurate after optimizing such parameters as the activation function, the hidden layer and the

Frequency/kHz Frequency/kHz Frequency/kHz

(a) Area1 (b) Area32 (c) Area65

(I)

(III)

(II)

Figure 10: The comparison of signal amplitude-frequency characteristics of different levels of damage in
the same area
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Figure 11: The flow chart of GWO-ELM
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model parameters (weight matrix, bias matrix, etc.). First, the experiment estimated the activation function
and hidden layer, taking three damage degrees of aluminum alloy stiffened plates and the amplitude and
frequency characteristics of 68 impact areas as the input. The experimental procedure and results are
shown in Table 3 and Fig. 12, respectively.

According to Fig. 12, taking the sigmoid or sine function as the activation function, the similar damage
identification of the ELMmodel turns out to be accurate, overrunning the model with a hard limit function. In
the same model, the damage identification’s accuracy is elevated in line with the increasing number of hidden
layers. When the hidden layers exceed 100, changes in damage identification accuracy of the model are not
significant and tend to be stable. As a result, the activation function is set to sigmoid and the hidden layer
to 100.

Further, the Gray Wolf algorithm is adopted to optimize the model parameters, with the Wolf size of the
GWO algorithm set to 30. Figs. 13a and 13b depict iterative convergence curve of the fitness training of the

Table 3: Activation function and hidden layer setup

Activation function Hidden layer

Sigmoid 25 50 75 100 150 200

Sine

Hard limit

(a) Sigmoid (b) Sine

(c) Hard limit

Figure 12: Activation function and hidden layer optimization experiment results
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GMO-ELMmodel. According to Fig. 13, as the iteration times exceeds 1000, the iterative convergence curve
tends to be stable. As a result, the maximum iteration times is set to 1000.

In terms of impact location, Fig. 13c shows the Precision, Recall and F1-score index curves of each
impact location, and Fig. 13d identifies confusion matrix of damage degree. Compared with the standard
ELM and BP neural network, the Precision, Recall and F1-score values of impact damage identification
based on GWO-ELM are 98.90%, 98.90% and 98.88%, respectively. They outreach those of standard
ELM and BP neural network. Table 4 and Fig. 14 display the details.

As Fig. 14 shows, as for location identifying, the Precision, Recall and F1-score of BP and GWO-ELM
all exceed 95%, with an accuracy of GMO-ELM model 5.53% and 3.62%, higher than that of ELM and BP

(a) The convergence curve of
impact location

(b) The convergence curve of
damage degree identification 

(25,84.78%)

(c) The classification results for
each impact location

(d) The confusion matrix for
damage degree identification

Figure 13: The iterative convergence curve and impact damage identification results of GMO-ELM

Table 4: Model performance evaluation results

Model Impact location Degree of damage

Precision Recall F1-score Precision Recall F1-score

ELM 93.37% 93.37% 93.34% 99.12% 99.12% 99.11%

BP 95.28% 95.28% 95.27% 99.55% 99.55% 99.55%

GWO-ELM 98.90% 98.90% 98.88% 99.55% 99.55% 99.55%
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neural network, respectively. For damage degree identification, the Precision, Recall and F1-score of the
three methods all exceed 99%, while the GWO-ELM model’s accuracy was 0.43%, higher than that of
ELM and indicating the relatively better outcomes by CNN model.

5 Conclusion

To effectively monitor the engineering requirements of spacecraft structure, reverse the inaccurate
traditional damage identification methods with the complex impact stress waves of aluminum alloy
reinforced structures, and optimize ELM algorithm-generated random weights and its instability and poor
classification effect, an impact damage identification method based on GWO-ELM for aluminum alloy
stiffened plate is proposed. This method works in the impact location and damage degree identification of
the ELM model, where the impact damage characteristics are extracted from the model, and its weight
parameters are optimized by the GWO algorithm. The experimental results show the GWO-ELM model’s
advantages to ELM and BP neural network in identification accuracy, with a higher accuracy of 5.53%
and 3.62%, respectively. For damage degree identification, GWO-ELM and BP achieve the similar
accuracy, but the GWO-ELM model overran ELM by 0.43%. The comparison shows that the GWO-ELM
model is a practical with considerable generalization capability, which makes impact damage
identification stable.
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