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ABSTRACT

The method of time series analysis, applied by establishing appropriate mathematical models for bridge health
monitoring data and making forecasts of structural future behavior, stands out as a novel and viable research
direction for bridge state assessment. However, outliers inevitably exist in the monitoring data due to various
interventions, which reduce the precision of model fitting and affect the forecasting results. Therefore, the iden-
tification of outliers is crucial for the accurate interpretation of the monitoring data. In this study, a time series
model combined with outlier information for bridge health monitoring is established using intervention analysis
theory, and the forecasting of the structural responses is carried out. There are three techniques that we focus on:
(1) the modeling of seasonal autoregressive integrated moving average (SARIMA) model; (2) the methodology for
outlier identification and amendment under the circumstances that the occurrence time and type of outliers are
known and unknown; (3) forecasting of the model with outlier effects. The method was tested with a case study
using monitoring data on a real bridge. The establishment of the original SARIMA model without considering
outliers is first discussed, including the stationarity, order determination, parameter estimation and diagnostic
checking of the model. Then the time-by-time iterative procedure for outlier detection, which is implemented
by appropriate test statistics of the residuals, is performed. The SARIMA-outlier model is subsequently built.
Finally, a comparative analysis of the forecasting performance between the original model and SARIMA-outlier
model is carried out. The results demonstrate that proper time series models are effective in mining the charac-
teristic law of bridge monitoring data. When the influence of outliers is taken into account, the fitted precision of
the model is significantly improved and the accuracy and the reliability of the forecast are strengthened.
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1 Introduction

In recent years, bridge health monitoring (BHM) system has become an inseparable part in not only
super-major and major bridges but also small and medium-sized bridges. Vast amounts of monitoring
data, which contain a variety of characteristic information of the structure under the operation phase, flow
into BHM system every day. How to make effective use of the monitoring data for in-depth mining is of
vital importance for bridge early warning and assessment [1,2]. However, in the process of feature
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extraction, the complexity of the identification problem has far exceeded the traditional data processing
capability and understanding mode in the domain of structural engineering, due to its nonlinearity,
incompleteness, and noise interference, which brings huge challenges to bridge monitoring. The
phenomenon of “Rich data but poor knowledge” is widely observed in the existing BHM systems [3,4].
Big data theory, which has rapidly risen and improved of late years, provides a possible breakthrough for
the processing of massive monitoring data [5–8]. Sun et al. [9,10] investigated the research orientation
and application status of big data in bridge health monitoring, established the big data analysis framework
and pointed out that current research on big data in the field of bridge health monitoring is still at the
initial stage, but it has got a lot of potential.

Time series techniques, originally developed for analyzing long sequences of regularly sampled data, are
inherently suitable for BHM. Time series forecasting methods can be broadly classified into two main
categories, namely statistical methods and deep learning methods. The performance of each method
depends on multiple factors such as trend, seasonality and noise in the data, as well as external conditions
and internal damages [11,12].

Deep learning (DL) techniques, which can automatically learn the temporal dependencies present in
time series and effectively reduce the complexity of the forecasting pipeline, have proved to be an
effective solution in time series forecasting, and have gained considerable prominence [13,14]. Oh et al.
[15] proposed a CNN-based architecture to predict strain levels of tall buildings under wind loadings. The
training dataset containing displacements and wind speeds was collected from a wind tunnel test of a
model of a steel structure. Peng et al. [16] adopted piecewise linear least squares (PLLS) method, fully
connected neural network (FCNN) method, and long short-term memory neural network (LSTMNN)
method to predict the structural dynamic response of a six-story steel frame under periodic, impact, and
seismic loads. Results showed that the LSTMNN method performed better than the other two methods. In
addition, the PLLS method was sensitive to noise, while the FCNN and LSTMNN methods based on
deep learning were of highly robust and anti-noise performance. Zheng et al. [17] established an LSTM
neural network for modeling multiple temperature-displacement correlations. The results revealed that
compared with the BP neural network model, the proposed LSTM neural network model could
dramatically reduce the reproduction error and prediction error of the thermal displacement.

Time series analysis is one of the statistical procedures applied to simulate the degradation mechanism of
bridge structures and make predictions by establishing various time series data mining models and algorithms
that can reflect the variation of variables in the time domain [18–20]. van Le et al. [21] used ARIMA model
for the analysis of the GPS time series data acquired in a cable-stayed bridge in Vietnam, and data were used
to predict the static responses and global deformation. Conclusions were drawn that the AR-MA coefficients
plots could be used as the base distributions for the statistical structural condition assessment. Zhu et al. [22]
proposed a combination forecast model based on CEEMDAN-NAR-ARIMA, and used it to predict the SHM
strain data of a cable-stayed bridge in Shanghai. Results showed that the proposed method was more accurate
than classical time series theory. Ahmadivala et al. [23] applied seasonal ARIMA on the mean values of
strain monitoring data on Chillon viaducts for every 12 h, so as to explore more details of the loading
scenario regarding the seasonal effects of traffic loading. Xin et al. [24] used the Kalman filter to reduce
the noise of the bridge’s raw deformation data and developed ARIMA-GARCH model to analyze and
predict the structure’s deformation. Shi et al. [25] decomposed the observed SHM time series into three
components, namely, level, seasonal and residual, and purged the influence of seasonality, in order to
obtain a more agreeable series that could reflect the characteristics of structural damage. Jiang et al. [26]
adopted ARIMA model integrated with singular spectrum analysis (SSA) for a more precise prediction of
stress monitoring data of Sutong bridge.
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It can be seen that an appropriate time series model or combination model does better explain the
characteristics of nonlinearity, non-stationarity, high dimensionality and heteroscedasticity of monitoring
data. However, these models were built on the assumption that the monitoring data were accurate and
reliable [27,28]. In a long-term continuous monitoring system, the regular data collection is inevitably
disturbed by accidental extreme loads, external forces on the sensors themselves, abnormal current or
voltage, power failure, sensor damage, etc. These external interruptive events, referred to as interventions,
may create spurious observations that are inconsistent with the rest of the series and interfere with the
identification of the time series model [29]. Therefore, identification and characterization of outlier
interventions are important from the point of view of BHM management as these events could probably
reduce the precision of the forecast results of structural behavior.

However, from the existing literature, most of the studies focus on the selection of the most convenient
type of time series model and its parameter recognition and estimation [30,31]. Research that discusses the
intervention effect of outliers on fitted precision of the models and on assessment of structural behavior is
rarely seen. Therefore, in this study, the possible abnormal conditions in bridge monitoring data are
investigated from the perspective of intervention analysis. First, a brief description of the SARIMA model
with outliers is outlined. The methodology of outlier detection and amendment then follows, and the
identification and prediction of time series model containing outliers are discussed. The proposed
procedure is then used to identify the outliers from strain data recorded by a BHM system and to predict
the structural future condition.

The main purpose of outlier correction is to optimize the data in such a way that the normality hypothesis
of the SARIMA model can be better accepted. Moreover, by containing outlier intervention effect in the
SARIMA model, the residual variance of the model is reduced, the fitting precision of the model is
significantly improved, and the accuracy and reliability of the forecast are strengthened.

2 Nonstationary SARIMA Models

Under the influence of external loads and structural performance degradation, the monitoring responses
of bridge structures exhibit randomness in a short period of time. However, from a longer time perspective,
the monitoring time sequences will present certain regularity, such as long-term trend, periodicity, random
fluctuation, and mutation. As can be seen from the sequence diagram of observed data, there exists
significant non-stationarity in some of the monitoring series, while others have conspicuous seasonal
characteristics due to the effect of seasonal temperature difference. Therefore, the seasonal ARIMA model
is introduced to fit and analyze the nonstationary bridge monitoring data [32].

Assume {Yt} is a time series observed from a certain sensor on BHM system, and {ε1, ε2, …, εt} is a
zero-mean multivariate Gaussian white noise series. If a stationary series can be obtained by taking a dth-
order nonseasonal difference rd and a Dth-order seasonal difference with period s rD

s , then the general
SARIMA model can be represented analytically as

�ðBÞ�ðBsÞrdrD
s yt ¼ �ðBÞHðBsÞet

EðetÞ ¼ 0; VarðetÞ ¼ r2e ; covðeh; etÞ ¼ 0; h 6¼ t
covðyh; etÞ ¼ 0; 8h, t

8<: (1)

The model in Eq. (1) is normally denoted as ARIMA (p, d, q) × (P, D, Q)s, where �ðBÞ ¼
1� f1 B� � � �fpB

p is the nonseasonal autoregressive (AR) operator of order p, �ðBÞ ¼ 1� h1
B� � � � hqBq is the nonseasonal moving average (MA) operator of order q, and polynomials �ðBsÞ ¼
1� w1B

s � w2B
2s � � � �wpB

Ps and HðBsÞ ¼ 1� g1B
s � g2B

2s � � � � gqBQs respectively describe the
seasonal AR and MA operators of orders P and Q with seasonal period s; fi, θi, ψi, ηi (i = 1, …, n) are the
coefficients of Φ(B), Θ(B), Ψ(Bs) and H(Bs), respectively; and B is the backward shift operator such that
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Bkyt = yt−k. E(εt) and Var(εt) are the mean function and the variance function of the Gaussian white noise series
{εt}, respectively, and cov(εh, εt) is the correlation function between εh and εt.

In particular, when there is an additive relationship between the seasonal effect and other effects in the
series, the seasonal information can be fully extracted by taking a first difference with periodic step length. At
this point, the model can be simplified into Eq. (2), which is denoted as ARIMA (p, d, q) × (0, D, 0)s.

Nt ¼ �ðBÞ
�ðBÞrdrD

s

et (2)

Generally speaking, the measured responses of the structure can be considered as the linear
superposition of various load effects when the structure is in the normal operation state. Therefore, for the
observed time series with seasonal effect, the seasonal additive model shown in Eq. (2) is adequate to
describe the actual state of the structure.

Fig. 1 displays the procedure for the establishment of SARIMA models.

3 Time Series Analysis with Outlier Intervention

3.1 SARIMA Model Containing Outlier Effects
To consider the influence of different types of intervention outliers, the indicator function is introduced.

Thus, the general model of time series {Yt}, which contains outlier information, can be written as the
combination of various indicator functions shown in Eq. (3) [33].

Figure 1: Flow chart of SARIMA modeling process

326 SDHM, 2022, vol.16, no.4



Yt ¼ Gt þ Nt ¼ cþ
Xk
i¼1

xiðBÞBbi

diðBÞ Iti þ Nt (3)

where Gt represents the influence of interventions expressed in the form of indicator function using
deterministic intervention variables Iti; k is the total number of outliers; B is the delay operator; b denotes
the time delay for the intervention effects, and for bridge structure, b = 0, on account of the instantaneous
response to the external action; ω(B) reflects the intensity of intervention and δ(B) measures the behavior
of the permanent effect of the intervention. Additionally, the time series free of intervention is called
the noise series or the undisturbed series and is denoted by Nt. Nt can be various kinds of stationary or
non-stationary series. For a nonstationary process, the model in Eq. (3) normally does not contain a
constant term c.

When there are outliers detected in monitoring data, the abnormal behavior can be explained by
intervention analysis techniques if the timing and causes of interruptions are knowable. However, the
timing of interventions is usually unknown. So, it is necessary to detect and estimate the possible effects.
Here, two common outlier models, innovational outlier (IO) and additive outlier (AO), are introduced [34].

Let Nt be an undisturbed process free of interventions and follow an additive SARIMA process ARIMA
(p, d, q) × (0, D, 0)s defined in Eq. (2).

(1) If the error εt of Nt at time T is disturbed and turned into e0t ¼ et þ xPðTÞ
t , the post-disturbed series

can be described using an IO model

Yt ¼ �ðBÞ
�ðBÞrdrD

s

ðet þ xPðTÞ
t Þ ¼ Nt þ x

�ðBÞ
�ðBÞrdrD

s

� �
PðTÞ
t (4)

where PðTÞ
t is a pulse function taking place at T time period which can be written as

PðTÞ
t ¼ 0; t 6¼ T

1; t ¼ T

�
(5)

(2) If Nt is subject to additive disturbance at time T, the AO model is introduced as

Yt ¼ Nt þ xPðTÞ
t (6)

Hence, an AO affects only the Tth observation by the intensity ω when the interruption takes place.
While an IO describes the systematic dynamic behavior by �ðBÞ=�ðBÞrdrD

s , and affects all
observations YT, YT+1,… beyond time T.

(3) If a time series is influenced by k outliers of different types at different time periods T1, T2, … Tk, a
more general model containing various types of outliers is presented as follows:

Yt ¼ Nt þ
Xk
i¼1

xiLiðBÞPðTiÞ
t (7)

where, for SARIMA model

LiðBÞ ¼
�ðBÞ

�ðBÞrdrD
s

; IO

1; AO
� � �

8>><>>: (8)
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3.2 Outlier Mining
When outliers exist, the estimated parameters are biased. In this case, appropriate test statistics are

constructed from the residuals, which are the discrepancies between the observed and the estimated
values, for the detection and correction of outliers. Outlier mining based on time series analysis is to
identify the time, size and types of outliers, estimate their impacts, and modify the original time series
model affected by outliers so as to improve the accuracy of the model.

Let {Yt} be the original observed monitoring series, which can be fitted by an additive SARIMA model
as Eq. (2). The hypothesis test is performed as follows:

H0: yT is neither an IO nor an AO

H1: yT is an IO

H2: yT is an AO

The process of outliers detection is mainly discussed in the following two cases [35].

(1) Only one type of outlier is included, and the timing of the outlier occurrence is known.

The residual series of IO and AO models can be written respectively as

et ¼ xIP
ðTÞ
t þ et; IO

xApðBÞPðTÞ
t þ et; AO

(
(9)

where pðBÞ ¼ �ðBÞrdrD
s

�ðBÞ ¼ 1� p1B� � � � pnB2 � � � �
According to the least-squares principle, when t = T, the least-square estimator of the disturbance ωI or

ωA (shown in Eq. (10)) is the residual at time T (IO) or the linear combination of the residuals (AO).

IO: x̂I;T ¼ eT

AO: x̂A;T ¼ � q2
Pn
t¼1

pt�Tet

8<: (10)

where q2 ¼ ð1þ p21 þ p22 þ � � �p2n�TÞ�1. Thus, the variance of the estimator is

Varð x̂I;TÞ ¼ VarðeT Þ ¼ VarðxIP
ðTÞ
t þ etÞ ¼ r2a

Varð x̂A;T Þ ¼ q2r2a

�
(11)

The test statistics for IO and AO at time T are

kI ;T ¼ x̂I;T

ra

kA;T ¼ x̂A;T

qra

8>><>>: (12)

Under the null hypothesis H0, ωI = 0 and ωA= 0, and both λI,T and λA,T are distributed as N(0, 1).
Let the significance level be α = 0.05, then the necessary condition for accepting hypothesis H1 or H2 is
respectively λI,T > 1.96 or λA,T > 1.96.

(2) The timing and type of the outliers are unknown.

Case (1) is applicable to situations where the timing and type of the outliers are known. However, more
often in practice, the type, timing and number of outliers are unknown and have to be estimated. An iterative
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detection procedure is proposed to handle the situation when an unknown number of AO or IO may exist
[36,37]. Specifically, the following four steps are included:

Step 1. Model the original monitoring series {Nt} with SARIMA supposing that there are no outliers.
The residual series can be derived as

et ¼ pðBÞNt ¼ �ðBÞrdrD
s

�ðBÞ Nt (13)

The initial estimate of the standard deviation of the residuals is

r̂e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
t¼1

ê2t

s
(14)

Step 2. Perform statistical tests of outliers using the initial residuals estimated at t = 1, 2, 3, … , n. The
test statistics for IO and AO refer to Eq. (12). Thus, λI,T and λA,T for each time period can be calculated.
Define

k̂t ¼ max
t

maxð kI;t
�� ��; kA;t

�� �� Þ� �
; t ¼ 1; 2; . . . ; n (15)

where k̂t denotes the maximum outlier at different times.

Bonferroni correction is used to control the overall error rate of multiple tests. Based on 0.05 significance
level, if the p-value of k̂t at time T is greater than the upper percentile of the standard normal distribution, or
k̂t .C, where C is a predetermined positive constant usually taken to be some value between 3 and 4, then
there is an outlier at time T with its type determined by λI,T or λA,T.

It should be noted that the maximum likelihood estimation of σε is on the high side in the presence of
outliers. Especially when the sample size is small, such deviation may become very great, resulting in a

reduction of k̂t. To eliminate the influence of outliers on σε, the robust estimation is adopted to replace the
maximum likelihood estimation. In the latter example, the absolute mean of the residual is multiplied byffiffiffiffiffiffiffiffi
2=p

p
to get a more robust estimate.

According to different types of outliers, the effect of IO/AO at time T can be removed by modifying the
data using Eq. (16) as

~Yt ¼ Yt � xI;TpðBÞPðTÞ
t ; IO

Yt � xA;TP
ðTÞ
t ; AO

(
(16)

where pðBÞ ¼ �ðBÞrdrD
s

�ðBÞ ¼ 1� p1B� � � � pnB2 � � � �, and the new residual sequence is defined as

~et ¼
et � x̂I ;T ; IO

et � xA;TpðBÞPðTÞ
t ; AO

�
(17)

The new estimate of the standard deviation of the residuals ~re can be recalculated from the modified
residuals.

Step 3. Re-compute λI,T or λA,T at every time point based on the modified ~et and ~re, and repeat Step 2 to
continue detection and modification of outliers until all outliers are identified. In this process, the initial
parameter estimates in SARIMA remain unchanged.
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Step 4. Suppose that k outliers have been identified at times T1, T2, …, Tk through the first three steps.
Treat these times as if they have already been known, then the k outlier parameters ω1, ω2, …, ωk as well as
Θ(B) and Φ(B) can be re-estimated. And a new model containing k outliers information can be written as

Yt ¼ �ðBÞ
�ðBÞrdrD

s

et þ
Xk
j¼1

xjLjðBÞPðTjÞ
t (18)

where Lj(B) is determined by Eq. (8). The new residual series can then be derived from the new fitted model

êt ¼ p̂ðBÞ Yt �
Xk
j¼1

x̂jL̂jðBÞPðTjÞ
t

" #
(19)

and a revised estimate of ~re can further be calculated.

Repeat Step 2 to Step 4 until no new outlier is identified.

3.3 Model Forecasting
One of the most important aims of time series analysis is to predict or forecast future development trends

of observed data using the fitted models. This is also an important purpose for bridge health monitoring, to
figure out the current state of the bridge structure and predict its future long-term development trends through
the observed monitoring data.

Consider the general additive seasonal ARIMA (p, d, q) × (0, D, 0)s model shown in Eq. (2). Let
��ðBÞ ¼ �ðBÞð1� BÞdð1� BsÞD ¼ 1� ~f1B� ~f2B

2 � � � � � ~fpþdþsDB
pþdþsD be the generalized

autocorrelation function. And the model can be rewritten in the form of a linear function expressed by the
disturbance term

yt ¼ �ðBÞ
��ðBÞ et ¼ �ðBÞet ¼ ð1þ c1Bþ c2B

2 þ � � �Þet ¼ et þ c1et�1 þ c2et�2 þ � � � (20)

Let time t be the forecast origin, l be the lead time for the forecast, and the forecast that will occur l time
units into the future be ŷtðlÞ. Then, the mean square error (MSE) of the forecast is

E ytþl � ŷtðlÞ½ �2¼ ð1þ c21 þ � � � þ c2l�1Þr2e þ
X1
j¼0

ðclþj � c�j Þ2r2e (21)

According to the minimum mean square error principle, the MSE shown in Eq. (22) is minimized if and
only if c�j ¼ clþj. Hence, we have the l-step ahead forecast

ŷtðlÞ ¼ Eðytþl yt; yt�1; � � �Þ ¼j clet þ clþ1et�1 þ clþ2et�2 þ � � � (22)

The forecast error is

etðlÞ ¼ etþl þ c1etþl�1 þ � � � þ cl�1etþ1 (23)

with the forecast error variance

Var ½etðlÞ� ¼ Varðytþl yt; yt�1; � � �Þ ¼j ð1þ c21 þ � � � þ c2l�1Þr2e (24)

It can be seen that the variance of the forecast is only related to step size l, and the forecast error becomes
larger and larger as the forecast lead time l increases. Assuming that the value of yt+l obeys the normal
distribution under the condition that yt, yt−1, …, are known, the confidence interval of the predicted value
yt+l at the confidence level of 1 − α can be obtained as
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ŷtðlÞ � z1�a=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ½etðlÞ�

p
; ŷtðlÞ þ z1�a=2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ½etðlÞ�

p	 

(25)

where z1−α/2 is the standard normal percentile, such that P(–z1−α/2 < Y < z1−α/2) = 1 – α.

4 Application Analysis and Results

4.1 Selection of Monitoring Data Samples
Kunshan Yufeng bridge, located in Kunshan city, Jiangsu Province, is a non-thrusting leaning-type arch

bridge with a main span of 110 m (see Fig. 2). In this structural system, the two vertical main arch ribs in the
middle and the rigid tie beams (main beams) under the main arch ribs are the major longitudinal load-bearing
members, while the inclined arch ribs outward mainly bear part of the dead and live loads and improve the
stability of the structure. According to the vulnerability analysis results of the bridge, a total of 43 monitoring
points are arranged in 13 sections or positions within the half span of the bridge, aiming at performing a real
time monitoring of strain, temperature and support displacement of the critical stressed members. Fig. 3
shows some of the sensors on the bridge and the data collection module.

The monitoring data, which are chosen as the modeling basis, are picked from the stress measuring point
at the bottom of the vault of the southwest main arch rib of Kunshan Yufeng bridge (Gauge S1-2), with the
date ranging from August 23rd, 2011 to February 28th, 2014. These data are presented in the form of weekly-
cycle mean value (M value). The weekly cycle here is not strictly measured by the traditional week. We
uniformly divide each month into four weeks, namely, 1st∼7th, 8th∼15th, 16th∼23rd and 24th∼30th
(31st) (For February, 7th, 14th and 21st are taken as the split nodes). In this way, a year is fixedly divided
into 48 weeks, giving a total of 117 sample data. The first 105 monitoring data are used for the model
calibration, while the remaining for verification. The weekly-cycle stress M-value of the first 105 data of
the sample series is drawn in Fig. 4.

Figure 2: Kunshan Yufeng bridge
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4.2 Establishment of SARIMA Model
The series shown in Fig. 4 implies a clear yearly (48-week) seasonal component, which indicates a

typical non-stationary series. Thus, a seasonal ARIMA model is adopted to fit the experimental data. The
original data are differenced using operators (1 − B) and (1 − B48) once each. Then, PP test and KPSS test
are implemented to the differenced series. The test results are shown in Table 1 at the 0.05 significance level.

As illustrated in Table 1, the PP test p-values of differenced series under three test types are all ≤0.01,
and p-values of KPSS test are all ≥0.1, which indicates that the differenced series is significantly stationary.
This conclusion is further confirmed by the rapid decay to within ±2 standard deviations of the sample ACF
shown in Fig. 5.

Figure 3: Sensors on the bridge. (a) Strain gauges with protective coatings on the main arch rib; (b) Data
collection module

Figure 4: Weekly-cycle M-value of stresses at gauge S1-2

Table 1: Unit root stationarity tests for differenced series

Type of test PP test KPSS test Conclusion

Lag Stat p-value Lag Stat p-value

No drift no trend 3 −68.4 ≤0.01 1 0.0493 ≥0.1 Stationary

With drift no trend 3 −68.4 ≤0.01 1 0.0522 ≥0.1 Stationary

With drift and trend 3 −68.2 ≤0.01 1 0.0282 ≥0.1 Stationary
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The values of orders p and q can be preliminarily identified by the characteristics of sample ACF (Auto
Correlation Function) and PACF (Partial Auto Correlation Function) [38]. Table 2 summarizes the behavior
of ACF and PACF for selecting p and q.

From Table 2, it seems clear that when the ACF or PACF possesses the cutting-off behavior, the
identification of the order p of an AR model and the order q of an MA model is relatively simple. For a
mixed AR-MA model, however, the ACF and PACF all exhibit tapering off property, which makes the
identification of the orders p and q much more difficult. For more complicated models, Tsay et al. [39]
introduced the ESACF (Extended Sample Autocorrelation Function) to estimate the orders p and q. In the
ESACF table, an ARMA (p, q) will have a pattern of a triangle of zeros, with the upper left-hand vertex
at the (p, q) position. However, in the actual identification process, the characteristics of ACF, PACF or
ESACF are not always so clear-cut. Therefore, multiple possible models are normally picked according to
pertinent information, and the model, of which the statistical indicator is in line with the evaluation
criteria, is finally selected. The sample ACF and PCF are plotted in Fig. 5. Table 3 shows the ESACF
with indicator symbols.

Note from Fig. 5 that the sample ACF exhibits an alternating decreasing pattern and the sample PACF
cuts off after lag 2. In the ESACF, the vertex of the zero triangles is located at the (2, 0) position. All these
above give a preliminary indication of an ARIMA (2, 1, 0) × (0, 1, 0)48 model. In addition, several adjacent
models are also considered. After eliminating the models with insignificant parameters, four adequate
models are finally retained for further optimization, which are ARIMA (2, 1, 0) × (0, 1, 0)48, ARIMA
(0, 1, 1) × (0, 1, 0)48 and sparse parametric models ARIMA (1, 1, (2)) × (0, 1, 0)48 and ARIMA (1, 1,
(2, 3)) × (0, 1, 0)48.

Figure 5: Sample ACF and PCF of differenced series: (a) Sample ACF; (b) Sample PACF

Table 2: Characteristics of the ACF and PACF for stationary process

AR (p) MA (q) ARMA (p, q)

ACF Tails off as exponential decay of
damped sine wave

Cuts off after lag q Tails off after lag
(q – p)

PACF Cuts off after lag p Tails off as exponential decay of
damped sine wave

Tails off after lag
(p – q)
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To quantitatively evaluate the accuracy and stability of the preliminary proposed models, the residual
sum of squares (RSS), sigma2 (r̂2e ), log likelihood (ln L̂), Akaike’s Corrected Information Criterion
(AICc), Bayesian Information Criterion (BIC), adjusted R-squared (�R2) are utilized for model selection
[33]. The calculation formulas are shown as follows:

RSS ¼
Xn
t¼1

e2t ¼
Xn
t¼1

ðyt � ŷtÞ2 (26)

r̂2e ¼
RSS

n� p� ðpþ qþ 1Þ (27)

ln L̂ ¼ � n

2
ln r̂2e �

n

2
ð1þ ln 2pÞ (28)

AICc ¼ AICþ 2ðmþ 1Þðmþ 2Þ
n� m� 2

; AIC ¼ �2 ln L̂þ 2m (29)

BIC ¼ �2 ln L̂þ m ln n (30)

�R2 ¼ 1� RSS=ðn� m� 1Þ
TSS=ðn� 1Þ ; TSS ¼

Xn
t¼1

ðyt � �yÞ2 (31)

where yt is the observed series; ŷt is the predicted value of yt; et is the residual series; n is the effective number
of observations; m is the number of parameters in the model; TSS represents the total sum of squares and �y
denotes the sample mean.

These statistics are normally based on summary statistics from residuals computed from the fitted model.
For RSS, sigma2, log likelihood, AICc and BIC, lower values specify a better model. Adjusted R-squared
values range from 0 to 1. A higher adjusted R-squared value closer to 1 indicates a superior. The
statistics of the four models are estimated in Table 4.

Table 3: The ESACF with indicator symbols

AR MA

0 1 2 3 4 5 6 7

0 X 0 X 0 0 0 0 0

1 X X X 0 0 0 0 0

2 0 0 0 0 0 0 0 0

3 X 0 0 0 0 0 0 0

4 X X 0 0 0 0 0 0

5 X X X 0 0 0 0 0

6 X 0 0 0 0 0 0 0

7 X 0 0 0 0 0 0 0
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According to the statistical information illustrated in Table 4, the ARIMA (2, 1, 0) × (0, 1, 0)48 model
gives the smallest values of AICc and BIC among the four models chosen, while the optimal sigma2, Log
likelihood, Adjusted R-squared and RSS indices are coming from the ARIMA (1, 1, (2, 3)) × (0, 1, 0)48
model. After comprehensive comparisons, the relatively concise model ARIMA (2, 1, 0) × (0, 1, 0)48 is
selected for final data fitting. The estimation of this model gives

ð1� BÞð1� B48Þyt ¼ et
1þ 0:6896Bþ 0:4919B2

; VarðetÞ ¼ 1:294 (32)

Fig. 6 gives the residual ACF and the Ljung-Box Q (LB-Q) statistics. Results show that the residual
ACFs are all within ±2 standard deviations, and the p-values of LB-Q statistics are all >0.05, which
indicates no relevant information is contained in the residuals any longer and the residual series is a white
noise process. Thus, the fitted model ARIMA (2, 1, 0) × (0, 1, 0)48 is judged adequate for the data.

4.3 Detection of Outliers
The residual series of the fitted model (see Eq. (26)) is plotted in the legend “Residual of the original

model” of Fig. 7. The outlier detecting procedure is then carried out on this residual series. The robust
estimator is adopted for the standard deviation of the residuals with the critical value c = 3.5. As a result,
a total of 2 AOs and 4 IOs are identified at the significance level 5%, as shown in Fig. 7. The iterative
procedure for outlier detection and the details of outliers are listed in Table 5.

The fitted SARIMA-outlier model can be presented as follows in the form of the main SARIMA model
plus outlier interventions:

Table 4: The statistics of fitted models

AICc BIC sigma2 Log likelihood Adjusted R-squared RSS

ARIMA (2, 1, 0) × (0, 1, 0)48 178.25 184.20 1.294 −86.06 0.9626 69.898

ARIMA (0, 1, 1) × (0, 1, 0)48 180.28 184.29 1.370 −88.12 0.9612 75.368

ARIMA (1, 1,(2)) × (0, 1, 0)48 181.47 187.31 1.319 −87.61 0.9614 73.883

ARIMA (1, 1,(2, 3)) × (0, 1, 0)48 179.30 187.00 1.193 −85.45 0.9636 66.816

Figure 6: Model adequacy checking results: (a) Residual ACF; (b) p-value of LB-Q statistics
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yt ¼ 1

ð1� BÞð1� B48Þð1þ 0:5478Bþ 0:4078B2Þ�

½2:3443Pð63Þ
t � 3:5260Pð87Þ

t þ 3:5541Pð88Þ
t � 2:3106Pð98Þ

t þ et� � 0:7850Pð77Þ
t þ 1:2286Pð91Þ

t

(33)

Figure 7: Residual series before and after the identification of outliers

Table 5: Iterative procedure for outlier detection

The first
iteration

Model
parameters

f1 f2 —— —— br2e
−0.6896 −0.4919 1.2481

Detected
outliers

Time Type k̂t Time Type k̂t

91 AO 3.564134 88 IO 5.226359

63 IO 4.256304 9 IO −4.007655

87 IO −6.214973 ——

The second
iteration

Model
parameters

f1 f2 ωA,91 ωI,63 r̂2e
−0.5461 −0.4204 1.2106 2.3466

ωI,87 ωI,88 ωI,98 0.6093

−3.5170 3.5502 −2.3406

Detected
outliers

Time Type k̂t ——

77 AO −4.088277 ——

The final
results

Model
parameters

f1 f2 ωA,91 ωI,63 r̂2e
−0.5478 −0.4078 1.2286 2.3443

ωI,87 ωI,88 ωI,98 ωA,77 0.5945

−3.5260 3.5541 −2.3106 −0.7850

Detected
outliers

None

Model statistics with outlier
interventions

AICc BIC Log
likelihood

Adjusted
R-squared

RSS

149.83 166.56 −65.16 0.9793 33.30
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After two rounds of iteration, as shown in Table 5, no new outliers are identified. The recognized 2 AOs
are from time 77 and 91, and the 4 IOs come from times 63, 87, 88, and 98, respectively. The model
parameters f change a lot after the adjustment of outliers on the premise of not changing the structure
and the order of the fitted model. The value of r̂2e is reduced by about 50%, and other statistics, such as
AICc, BIC, RSS, etc., are all optimized greatly. The comparison of the model residuals before and after
outlier elimination is illustrated in Fig. 7. It can be seen that the residuals of the two models are basically
the same at most of the time points. In the region close to the outliers, the residuals of the SARIMA-
outlier model are obviously smaller than those of the original model, and thus r̂2e gets a significant
decrease, indicating that the adjustment of outliers has a significant impact on the model fitted results.
The precision of model fitting improves after including the intervention influence of outliers.

The fitted results of the original model and SARIMA-outlier model are illustrated in Fig. 8 (Note: the
first 51 data of the fitted curve are lost due to the differences). Compared with the original model, the
SARIMA-outlier model shows a better fitting performance.

4.4 Forecasting Results and Discussion
Use the original model (Eq. (26)) and the SARIMA-outlier model (Eq. (27)) respectively to forecast the

weekly mean stress values of measuring point S1.2 in the next 8 weeks. The prediction results are shown in
Fig. 9, and the comparison of the accuracy measurement indices of the prediction errors of the two models is
presented in Table 6.

Figure 8: Comparison of the fitted models

Figure 9: Results of the forecast: (a) Forecasts of the original model (Eq. (26)); (b) Forecasts of the
SARIMA-outlier model (Eq. (27))
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As can be seen from Fig. 9, the width of the 95% confidence interval for the prediction values gradually
grows in a trumpet shape, indicating a gradual decrease in the reliability of the prediction. Compared with the
original model, the 95% prediction confidence interval of the SARIMA-outlier model is narrower, that is, the
prediction reliability remains at a higher level. In terms of the accuracy measurement indices of the prediction
errors (see Table 6), the indices of the SARIMA-outlier model are smaller, which also shows a better
prediction accuracy. In view of the absolute error of the forecasts, errors of the short-term forecast results
fluctuate within a reasonable range, which can meet the needs of forecasts and assessment of bridge
structures.

On the other hand, the difference between the predicted values of the two models at each time point is
not significant, and the maximum absolute value of the difference is only 0.036. The overall prediction results
of the two models are quite close. Therefore, although the existence of outliers has a significant impact on the
parameter identification and fitted precision of the time series models, it is insensitive to the forecasting
results when there are only a small number of outliers and the value of outlier effect λ is not big. The
original model is of strong robustness.

5 Conclusions

In order to ensure the reliability of monitoring data and improve the accuracy of forecasts, the time series
model with outliers for bridge monitoring is established using the intervention analysis theory. IOs and AOs
are diagnosed and extracted from observed data. Through comparative analysis with the original model
without considering outliers, some conclusions are drawn as follows:

(1) The additive seasonal ARIMA model is suitable for the fitting of bridge monitoring data with
obvious seasonal effects. The residuals of the fitted model are white noise, which indicates that
the fitted model is of significant effectiveness. Use this model for forecasts, the errors of which
can meet the demand for prediction and assessment of bridge structures.

(2) The outlier detection algorithm presented can rapidly and efficiently identify the outliers existing in
BHM data. The detected IOs and AOs are sensitive to the model parameter estimation. After
considering the influence of IOs and AOs, the model parameters vary greatly and the fitting
accuracy improves significantly, which also verifies the effectiveness and accuracy of the outlier
identification.

(3) In comparison with the original model, the prediction confidence interval of the SARIMA-outlier
model is narrower, indicating a more reliable forecasting result. In the meantime, the accuracy
measurement indices are smaller and the prediction accuracy is higher.

(4) The existence of outliers is insensitive to the forecasting results under the condition that the number
of outliers is small and the test statistics for outlier effects are not big. The original time series model
has strong prediction robustness.

Table 6: Iterative procedure for outlier detection

Indices Mean Absolute
Error (MAE)

Root Mean Squared
Error (RMSE)

Mean Absolute
Percentage Error
(MAPE)

Theil Inequality
Coefficient (TIC)

Original
model

0.5594 0.7678 5.8111% 0.0492

SARIMA-
outlier model

0.5481 0.7566 5.6864% 0.0485
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