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ABSTRACT

The requirement of fault diagnosis in the field of automobiles is growing higher day by day. The reliability of
human resources for the fault diagnosis is uncertain. Brakes are one of the major critical components in automo-
biles that require closer and active observation. This research work demonstrates a fault diagnosis technique for
monitoring the hydraulic brake system using vibration analysis. Vibration signals of a rotating element contain
dynamic information about its health condition. Hence, the vibration signals were used for the brake fault diag-
nosis study. The study was carried out on a brake fault diagnosis experimental setup. The vibration signals under
different fault conditions were acquired from the setup using an accelerometer. The condition monitoring of the
hydraulic brake system using the vibration signal was processed using a machine learning approach. The machine
learning approach has three phases, namely, feature extraction, feature selection, and feature classification. His-
togram features were extracted from the vibration signals. The prominent features were selected using the deci-
sion tree. The selected features were classified using a fuzzy classifier. The histogram features and the fuzzy
classifier combination produced maximum classification accuracy than that of the statistical features.
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1 Introduction

The brake is an essential control component that is responsible for the stability of the vehicle. The
primary function of a brake system is to decrease the speed of the vehicle and also to stop the vehicle
within a minimum distance under unfavorable conditions. An efficient brake system must ensure the
safety of the vehicle as well as the person driving the vehicle and people moving on the road. The brake
becomes faulty, due to various reasons like an air leak, mechanical fade, pad wear, reservoir leak, etc.
When such adverse things occur, the reliability of brake reduces, which results in accidents. Hence, it
must be monitored continuously.

The condition monitoring process is used for continuous monitoring and performing necessary actions
to avoid the consequences of failure. Controlling failures in the early stages of deterioration is much more
cost-effective and life-saving than after the brake failure. Many physical parameters like vibration signals
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[1,2], sound signals [3], acoustic emission [4], thermal imaging [5], oil particle analysis [6], etc. have been
used for the fault diagnosis study. Among them, vibration signals are commonly recommended for condition
monitoring studies. Vibration signals of a fault condition, as well as the excellent condition of the brake, can
be used for making a decision when intervention is required for maintenance.

As the faults grow, the characteristics of the vibration signal change. Thus, the analysis cannot be done
using conventional techniques to predict the brake faults accurately. The vibration signals can be analyzed
using advanced processing techniques like Fourier Transform (FT) [7], wavelet analysis [7], etc. The result
of such analysis is used to predict the main cause of the fault. In this study, the acquired vibration signals
were analyzed using a machine learning approach. Fault diagnosis through the Machine learning approach
can be implemented through the following sequential steps; feature extraction, selection, and classification
[8]. Features can be statistical [9], wavelet [1], and histogram [10], etc. In this study, histogram features
were extracted from the vibration signals. Feature selection is necessitated to reduce the computational
complexity. The contributing features must be selected for the classification through feature selection
approaches. In the feature selection process, a decision tree was used [11]. The main advantage of the
decision tree algorithm is that the decision tree can be used for both feature selection and rule generation.
The selected features were classified using a feature classifier. There are various types of feature classifiers
for diagnosing brake faults. Some prominent examples are best first tree classifier [12], support vector
machine [13], fuzzy classifier [14–16], Naive Bayes classifier [17], Bayes net classifier [18], decision tree
[19], K star algorithm [20], etc. However, the histogram, with fuzzy logic, has not been reported for brake
fault diagnosis. The combinations of histogram features and fuzzy logic give a better result than the
statistical features and fuzzy logic method. Hence, the fuzzy classifier was chosen for this study.

This paper demonstrates the feature classification using fuzzy logic. The faults in the brake system occur
due to the frequent application of the brakes. During the gradual progression of the defects, it is very difficult
to identify the fault condition. Hence an effort has been initiated for an investigation using the fuzzy logic
approach to diagnose the brake faults. Fig. 1 shows the methodology flowchart of the proposed brake
fault diagnosis study. The paper has been structured as follows.

Training data

Brake test rig with accelerometer

Data acquisition using vibration signal

Feature extraction and feature  selection

Testing data

Rule generation

Building fuzzy inference engine

Defuzzification

Fault Diagnosis System

Figure 1: Flow chart–brake fault diagnosis using fuzzy logic
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1. The experimental study and the experimental procedures have been described in Section 2.

2. Section 3 explains the feature extraction process.

3. Feature selection has been described in Section 4.

4. Section 5 details the feature classification procedure using Fuzzy.

5. The obtained results were discussed in Section 6.

2 Experimental Studies

The commercial vehicle hydraulic brake system with branded vehicle parts was fabricated, as shown in
Fig. 2. To experiment with the components used in the real world, brand new brake elements were used for
acquiring the vibration signals.

The piezoelectric type accelerometer (100 mV/g sensitivity and 40 Hz resonant frequency) was used as a
transducer for obtaining vibration signals. The accelerometer was coupled to a signal conditioning unit,
which consists of an inbuilt charge amplifier and an analog-to-digital converter (ADC). The vibration
signals were taken from ADC, and a set of different features was extracted from the acquired vibration
signals. Fig. 3 shows the LabVIEW programme used for acquiring the required vibration signals. Initially,
the brake component is in good condition. From that, the vibration signals were acquired by using an
accelerometer with the following specifications [12].

1. Sample length–1024 (Arbitrarily selected).

2. Sampling frequency-24 kHz.

3. Number of samples per class is 55.

The seven fault conditions namely atmospheric air present in the brake liquid, spill of brake oil over the
disc, pad wear even and uneven inner, pad wear even and uneven inner & outer pad were simulated onto the
brake system. The sample vibration signals acquired under each fault condition are shown in Figs. 4a–4j.

a) Reservoir leak: The airtight seal of the reservoir is opened.
b) Drum brake mechanical fade: Brake fade means the stopping power of the brake is reduced due to

the continuous application of brakes, especially under high load or high-speed conditions. Already
used brake drums were chosen for this test.

1. Brake drum

5.   Accelerometer

3.   Belt drive

4.   Master cylinder

7.   Motor

8.   Brake pedal

9.   Accelerator pedal

6.   Chain link

2. Brake disc

Figure 2: Experimental setup–brake fault diagnosis
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Figure 3: LabVIEW graphical program
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Figure 4: (Continued)
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3 Feature Extraction

The vibration signals of both good and faulty brake conditions were considered, and the minimum value
and maximum value of all the signals were computed. Each signal may have a different minimum value and
maximum value. The difference between the maximum values and minimum values was considered as the
range. The range is divided into a suitable number of bins. For example, dividing a range into two sub-ranges
results in two bins. The number of data points of a vibration signal that fall within each bin forms a bin value.
The bins are named as ‘‘H1’’ ,‘‘H2’’, etc. If the range is divided into three sub-ranges, then three bins will be
there with names ‘‘H1’’, ‘‘H2’’, ‘‘H3’’, and so on. Totally 70 bin ranges were extracted from the raw vibration
signals. Figs. 5a–5j shows the sample histogram bins extracted from the raw vibration signals. Fig. 6 shows
the visual basic code used for extracting the histogram bins from the raw vibration signals.
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Figure 4: Vibration signal with (a) Good condition, (b) Air present in the brake liquid, (c) Spill of brake oil
on the disc, (d) Inner brake pad wear (even), (e) Inner & outer brake pad wear (even), (f) Inner brake pad
wear–uneven, (g) Inner and outer brake pad wear-uneven, (h) Mechanical fade on the drum brake,
(i) Drum brake pad wear, (j) Reservoir leak
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Figure 5: (Continued)
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4 Feature Selection

Feature selection is picking out the best features from the collected set. The main objective of feature
selection is to specify a group of input variables through features with negligible information. Manual
feature selection leads to time-consuming, and the in-effectiveness. Hence, an algorithmic approach is
used in the study for selecting features.
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Figure 5: Histogram of vibration signal with (a) Good condition, (b) Air present in the brake liquid, (c) Spill
of brake oil on the disc, (d) Inner brake pad wear (even), (e) Inner & outer brake pad wear (even), (f) Inner
brake pad wear-uneven, (g) Inner and outer brake pad wear-uneven, (h) Mechanical fade on the drum brake,
(i) Drum brake pad wear, (j) Reservoir leak

Figure 6: Classification accuracy vs. number of bins
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The range of the vibration signal was segregated into several bins. The classification accuracy was
computed with several bins (up to 70 bins). Fig. 6 shows the classification accuracy for each bin ranges.
Referring to Fig. 6, the decision tree classifier produces maximum accuracy at 59th bin range.

The histogram features of the fifty-ninth bin were used as input to the decision tree algorithm. The
decision tree, as shown in Fig. 7, was the output. Referring Fig. 7, the top six contributors (H22, H24,
H27, H28, H29, H30, and H33) were identified as dominant features. The theory of entropy and
information gain was used for selecting the features.

5 Feature Classifications Using Fuzzy Logic

Fuzzy logic is a principle that has been developed to meet the need of uncertainty in day-to-day
applications [21,22]. In the real world, most of the data do not have sharp boundaries, and there was
always a problem analyzing those kinds of data sets. After the introduction of fuzzy logic, there has been
a revolution in the field of classification [23,24]. The fuzzy logic can be defined as a logic that will allow
us to classify parameters into or within a range. The fuzzy logic will usually be taking a few inputs like
input vector, some set of rules, and assigns values to an output vector. The rules are the ‘‘if and then’’
statements, which can also be called conditional statements of that particular data. The order of rules is
considered insignificant. For the problem under study, the condition of the brakes is good or faulty is
fuzzy. All the faults do not occur in the brake instantly. Most of them come gradually. The problems of
this kind can be modeled using fuzzy logic more closely. A membership function is a curve that defines
how each point in the input space is mapped to a membership value between 0 and 1. Trapezoidal
membership functions were used in this study. The rules generated from the decision tree algorithm
were used for the classification [25]. The membership functions of the selected features are shown in
Figs. 8–14 show the membership function of the output condition.

Figure 7: Decision tree with histogram features
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Figure 9: Membership function plot of frequency H27

Figure 10: Membership function plot of frequency H28

Figure 8: Membership function plot of frequency H24
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Figure 12: Membership function plot of frequency H30

Figure 11: Membership function plot of frequency H29

Figure 13: Membership function plot of frequency H33
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6 Results and Discussion

From the experimental setup, vibrations signals were acquired under different fault conditions. From the
extracted vibration signal, relevant histogram features were obtained. Using a decision tree, the most
important features were selected. The selected features were classified using Fuzzy logic.

6.1 Rule Generation from Decision Tree
The decision tree shows the relation between features and the condition of the brakes. Tracing a branch

from the root node leads to a condition of the brakes (Refer Fig. 6) and decoding the information available in
a branch in the form of ‘if-then’ statement gives the following rules:

Rule 1: If (H29 <= 8366) and (H28 <= 1815) and (H33 <= 0) then GOOD (1)

Rule 2: If (H29 <= 8366) and (H28 <= 1815) and (H 33 <= 0) then the condition is AIR (1)

Rule 3: If (H29 <= 8366) and (H28 <= 1181) and (H24 <= 0) and (H27 <= 2) and(H30 > 566) then the
condition is UDPWI (1)

Rule 4: If (H29 <= 8366) and (1181 < H28 <= 1815) and (H24 <= 0) then the condition is DPWI (1)

Rule 5: If (H29 <= 8366) and (H28<= 1815) and (H24 <= 0) then the condition is DPWIO (1)

Rule 6: If (H29 <= 8366) and (H28 <= 290) and (H30 <= 80) then the condition is DRPW (1)

Rule 7: If (H29 <= 8366) and (H28 <= 290) and (80 < H30 <= 263) then the condition is DRMF (1)

Rule 8: If (H29 <= 8366) and (H28 <= 290) and (H30 > 80) then the condition is RL (1)

Rule 9: If (H29 <= 8366) and (290 < H28 <= 588) and (H27 <= 2) then the condition is UDPWIO (1)

Rule 10: If (H29 <= 8366) and (H28 > 588) and (H30<= 516) then the condition is BOS (1)

Rule 11: If (H29 <= 8366) and (H28 > 588) and (H30<= 516) then the condition is UDPWIO (1)

Rule 12: If (H29 <= 8366) and (H28 <= 89) and (263 < H30 <= 287) then the condition is RL (1)

Rule 13: If (H29 <= 8366) and (89 < H28 <= 290) and (263 < H30 <= 287) then the condition is
DRMF (1)

Rule 14: If (H29 <= 8366) and (290 < H28 <= 588) and (H27 <= 2) then the condition is DRMF (1)

At the end of the rules, the number in the parenthesis indicates the weight or strength of the rule. It varies
from ‘0’ to ‘1’. This is a useful direction from designer to fuzzy inference engine, especially when it

Figure 14: Membership function plots of the output
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encounters a situation where the given data set satisfies two rules simultaneously (can be classified into two
different classes). This happens when two rules are met by input simultaneously. The weight will help the
fuzzy inference engine to choose a particular rule based on its strength or significance.

6.2 Fuzzy Inference Engine
The fuzzy inference engine was built after defining membership functions and generating the if-then

rules. Each rule was given as input to the fuzzy inference engine. The rules were derived from the
decision tree. Using the training/testing data, the fuzzy inference engine was evaluated and the result was
presented as a confusion matrix, as shown in Table 1.

GOOD: Brake with Good Condition; AIR: Air present in the brake liquid BOS: Spill of brake oil on the
disc; DPWI: Inner brake pad wear (even); DPWIO: Inner & outer brake pad wear (even); UDPWI: Inner
brake pad wear-uneven; UDPWIO: Inner & outer brake pad wear-uneven; DRPW: Drum brake pad wear;
DRMF: Mechanical fade on the drum brake; RL: Reservoir leak.

The misclassification and classification details were identified using the confusion matrix. The diagonal
elements represent the correctly classified data, and the non-diagonal elements represent the misclassified
data. The first element in the first row represents the signal under good condition. The other elements in the
first row represent the miscategorized elements. In the first row of Table 1, among the 55 data, all were
correctly classified. Similarly, the fourth element in the fourth row, belongs to Inner brake pad wear (even)
(DPWI). Among the 55 data, 53 were correctly classified. The remaining 2 data were misclassified as Inner
brake pad wear–uneven (UDPWI) condition. In the same way, all the conditions can be identified. It was
found that 3.09% of faulty brake conditions were misclassified as other faulty brakes. Hence, the overall
classification accuracy is 96.91% (533 data points out of 550). This classification accuracy with histogram
is more than that of the classification accuracy with the statistical features (95.09%) [26]. However,
misclassification is only 3.09%, which is good enough for many practical applications.

Classification summary:

Total Number of Instances 550

Correctly Classified Instances 533 96.91%

Incorrectly Classified Instances 17 3.09%

Table 1: Confusion matrix-fuzzy classifier

Category GOOD AIR BOS DPWI DPWIO UDPWI UDPWIO DRPW DRMF RL

GOOD 55 0 0 0 0 0 0 0 0 0

AIR 0 55 0 0 0 0 0 0 0 0

BOS 0 0 55 0 0 0 0 0 0 0

DPWI 0 0 0 53 0 2 0 0 0 0

DPWIO 0 0 0 0 55 0 0 0 0 0

UDPWI 0 0 0 1 0 53 1 0 0 0

UDPWIO 0 0 0 0 0 0 55 0 0 0

DRPW 0 0 0 0 0 0 0 54 1 0

DRMF 0 0 0 0 0 0 0 0 55 0

RL 0 0 0 0 0 12 0 0 0 43
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The result of fuzzy classifier with histogram features has been compared with various ML algorithms
such as rough set, best first tree, fuzzy rough nearest neighbor as summarized in Table 2. Referring to
Table 2, one can easily understand that, the fuzzy classifier with histogram outperforms the other
classifiers. Fuzzy has shown improved generalization capability along with enhanced computational
performance. Based on the categorization accuracy, a set of rules suggested by fuzzy was used for
classification. Using these rules a graphical user interface based on the LabVIEW model can be developed.

The best feature classifier model will be used for designing an onboard diagnostic tool (OBD) which can
be used to show the condition of the brake system during operation. The OBD model can be developed using
python coding, which is an ongoing development. Hence, this study suggests a suitable methodology for
making an OBD model for displaying the results instantly. The entire learning process can be
programmed in the existing engine control module through any suitable programming methods. The
study encourages to extend this study on a real vehicle with on-road conditions for monitoring the brake
condition. This will help the driver to know about the condition of the brake system without any prior
knowledge.

7 Conclusion

An algorithm-based calculation method for feature extraction, feature selection, and feature
classification has been presented in this paper. The decision tree was used to derive the rules for the fuzzy
classifier. The fault diagnosis of Hydraulic brake utilizing the combination of histogram features along
with the fuzzy classifier has brought out positive and encouraging results. As this particular combination
has not been tried for the fault diagnosis of Hydraulic brake, this paper will act as an option that could be
confidently selected for implementation in the field of fault diagnosis. Individually, the fuzzy classifier
with the histogram feature extraction has been widely used for the study of fault diagnosis in various
mechanical systems. As the results are encouraging, it can be used for developing an electronic fault
diagnosis module for diagnosing brake faults. The study can be extended under all possible speeds and
the same can be coded in the existing ECM. This gives the scope for future enhancement with the auto
component manufacturers.
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assistance and support for the study.
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Table 2: Comparative study

S. No. Name of the classifier Classification accuracy

1 Fuzzy (Histogram) 96.91

2 Fuzzy (Statistical) 95.09

3 Best firs tree 93.70

4 Rough set 92.00

5 Fuzzy rough nearest neighbor (FRNN) 94.20
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