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Abstract: Residual useful life (RUL) prediction is a key issue for improving 
efficiency of aircraft engines and reducing their maintenance cost. Owing to 
various failure mechanism and operating environment, the application of classical 
models in RUL prediction of aircraft engines is fairly difficult. In this study, a 
novel RUL prognostics method based on using ensemble recurrent neural network 
to process massive sensor data is proposed. First of all, sensor data obtained from 
the aircraft engines are preprocessed to eliminate singular values, reduce random 
fluctuation and preserve degradation trend of the raw sensor data. Secondly, three 
kinds of recurrent neural networks (RNN), including ordinary RNN, long short-
term memory (LSTM), and gated recurrent unit (GRU), are individually 
constructed. Thirdly, ensemble learning mechanism is designed to merge the 
above RNNs for producing a more accurate RUL prediction. The effectiveness of 
the proposed method is validated using two characteristically different turbofan 
engine datasets. Experimental results show a competitive performance of the 
proposed method in comparison with typical  methods reported in literatures. 

Keywords: Aircraft engines; residual useful life prediction; health monitoring; 
neural networks; ensemble learning 

1 Introduction 
With the application of a large number of highly sophisticated engineering equipment, residual useful life 

(RUL) prediction becomes an indispensable technique to improve the reliability of equipment and make 
accurate maintenance and utilization strategy [1-3]. Based on the analysis of historical sensor data, the method 
might deeply mine the degradation process of equipment performance state, and achieve the accurate prediction 
of its RUL. With the continuous development of intelligent algorithms, more and more new methods have been 
applied to the field of RUL prediction, and many good results have also been achieved. For example, Wang 
used an improved relevance vector machine (RVM) approach to accurately describe the degradation process 
from fault to failure [4]. Xu proposed a hybrid degradation model, which combines multiscale characteristic 
analysis (MCA) with modified Gaussian process regression (GPR), to predict the remaining useful life of a 
controller under various working conditions [5]. Li used a modified health index based hierarchical gated 
recurrent unit network for rolling bearing health prognosis [6]. However, due to different running conditions 
and operation environments, the health condition and RUL of each equipment might present differences 
inevitably [7-9]. In addition, environmental noise interference might affect the quality of monitoring data. Thus, 
the feasibility and accuracy of RUL prediction are still a problem to be solved.  

In order to solve the problem mentioned above, recurrent neural networks, which have proved to be a 
good performance in dealing with time series problems, has been widely used in the field of life prediction 
[10-14]. Guo proposed a recurrent neural network based health indicator (RNN-HI) for RUL prediction of 
bearings [15]. Lei proposed a deep learning network, namely multi-scale dense gate recurrent unit network 
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(MDGRU), which is composed of the feature layers initialized by pre-trained restricted Boltzmann machine 
(RBM) network, multi-scale layers, skip gate recurrent unit layers and dense layers [16]. Ahmed used an 
end-to-end deep framework based on convolutional and LSTM to deal with RUL estimation problems [17]. 
Zhang apply the LSTM networks to set up an architecture that is specialized in discovering the underlying 
patterns embedded in time series to track the system degradation and predict the RUL [18]. 

In this paper, a novel RUL prediction method is proposed by integrating several RNNs to automatically 
learn the historical data of the aircraft engine and predict its RUL. Three kinds of RNNs are built separately. 
Furthermore, a new ensemble method is applied to synthesize the established models.  

The rest of this paper is organized as follows. In Section 2, the concept of recurrent neural networks 
is descripted. In Section 3, the framework of proposed RUL prediction method is presented in detail. In 
Section 4, a practical experimental study is performed to demonstrate the effectiveness of the proposed 
method. Conclusions and future work of the research are discussed in Section 5. 

2 Concepts of RNN 
RNN is a class of artificial neural network and is mainly used to deal with sequence problems [11]. A 

large number of studies have shown that RNN have a very strong ability to process data sequences with 
strong correlation. Herein, three kinds of RNN model architectures are shown in Fig. 1. 
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Figure 1: Three types of RNNs 

2.1 Ordinary RNN 
Ordinary RNN has a stack of non-linear elements in which at least one connection between the 

elements forms a directed loop [11]. Its main structure is shown in Fig. 1(a). It can be seen that the input of 
the main loop structure of the RNN is not only from the input layer, but also an output from the hidden 
layers at last time. At the same time, the state of the current moment will also be transmitted  to the following 
recurrent state. The equation expression of the network is as follows: 
𝐻𝐻𝑡𝑡 = 𝑓𝑓(𝐻𝐻𝑡𝑡−1,𝑥𝑥𝑡𝑡 ,𝜃𝜃)                                                                                                                                                       (1) 
where 𝑓𝑓 is the mapping relation, which is considered as the activation function, 𝜃𝜃 is parameter, 𝐻𝐻𝑡𝑡 is the 
output at current time, 𝐻𝐻𝑡𝑡−1 is the output of the previous time, and 𝑥𝑥𝑡𝑡  is the input of the current time. 
However, due to the limitations of its recurrent unit structure, Ordinary RNN is prone to the appear gradient 
vanishing problems during the backpropagation of model training. 
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2.2 LSTM 
Long short term memory (LSTM) neural networks, proposed by Hochreiter and Schmidhuber in 1997 

[19], may remember long-term information through special designed cell structure. Unlike the relatively 
simple repetitive units in RNN, LSTM can process information by using three well-designed gate structures 
in LSTM cell. The main structure of LSTM cell is shown in Fig. 1(b). 

The following formulas are used to describe the structure of the LSTM cells. First of all, the input gate 
is used to process the input of the current sequence position, determine the information that needs to be 
updated, and update the cell status. It can be mathematically expressed as: 
𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖 ∙ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)                                                                                                                                           (2) 
where 𝑖𝑖𝑡𝑡 is output of input gate, 𝑊𝑊𝑖𝑖 and 𝑏𝑏𝑖𝑖 represents the weight coefficients and bias of input gate and σ 
denotes the sigmoid activation function. Next, Forget gate controls the content of cell state at the last 
moment that needs to be discarded. Through sigmoid activation function, the information which needs to 
be removed or retained from the content of cell state at the previous moment is finally decided. It can be 
expressed as: 
𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑓𝑓[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓�                                                                                                                                            (3) 
where 𝑓𝑓𝑡𝑡 is output of forget gate, 𝑊𝑊𝑓𝑓 are weight coefficients of the input data 𝑥𝑥𝑡𝑡 and previous output ℎ𝑡𝑡−1 
of the LSTM cell, 𝑏𝑏𝑓𝑓 represents the bias. At the same time, the cell status is updated, It can be expressed as: 
𝐶𝐶𝑡𝑡� = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝐶𝐶 ∙ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝐶𝐶)                                                                                                                                  (4) 
where 𝐶𝐶𝑡𝑡�  is the cell states of time t, which is used to store important information. 𝑊𝑊𝐶𝐶 and 𝑏𝑏𝑐𝑐 are the weight 
coefficients and bias of input node. Finally, the output gate determines what to output based on the content 
saved by the cell state. It can be expressed as: 
𝑜𝑜𝑡𝑡 = (𝑊𝑊𝑜𝑜[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜)                                                                                                                                               (5) 
ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝐶𝐶𝑡𝑡)                                                                                                                                                        (6) 
where  ℎ𝑡𝑡 is the final output, 𝑜𝑜𝑡𝑡 is a value between 0 and 1 which determines how much information is 
output in cell state.𝑊𝑊𝑜𝑜 and 𝑏𝑏𝑜𝑜 are the weight coefficients and bias of input node. 

2.3 GRU 
GRU is essentially a variant of LSTM network. It is proposed by Kyunghyun Cho in 2014 [20]. In 

general, while keeping the main characteristics of LSTM, the GRU becomes more simple. Its main structure 
is shown in Fig. 1(c): 
The main characteristic of this network is the merging of cell state and hidden layer state. It utilizes reset gate 
and update gate to process and output information. The reset gate is used to determine the weight of the hidden 
state ℎ𝑡𝑡−1 at the last time point in the new hidden state ℎ𝑡𝑡, which is expressed in Eq. (7) and Eq. (8): 
𝑟𝑟𝑡𝑡 = σ(𝑊𝑊𝑟𝑟 ∙ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡])                                                                                                                                                  (7) 
ℎ𝑡𝑡� = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊 ∙ [𝑟𝑟𝑡𝑡 ∗ ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡])                                                                                                                                      (8) 
where ℎ𝑡𝑡�  is output of reset gate, which represents the hidden layer state after reset,  𝑟𝑟𝑡𝑡 is the proportion of 
ℎ𝑡𝑡−1 in ℎ𝑡𝑡� , 𝑊𝑊𝑟𝑟 are the weight coefficients of input node. 
The update gate is used to determine the current state of the hidden layer of ℎ𝑡𝑡 in the new state of hidden 
layer ℎ�𝑡𝑡 held by weight 𝑧𝑧𝑡𝑡, which is expressed in Eq. (9) and Eq. (10): 
𝑧𝑧𝑡𝑡 = σ(𝑊𝑊𝑧𝑧 ∙ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡])                                                                                                                                                  (9) 
ℎ𝑡𝑡 = (1 − 𝑧𝑧𝑡𝑡) ∗ ℎ𝑡𝑡−1 + 𝑧𝑧𝑡𝑡 ∗ ℎ𝑡𝑡�                                                                                                                                       (10) 
where ℎ𝑡𝑡 is the final output of update gate,  𝑧𝑧𝑡𝑡 is the proportion of ℎ𝑡𝑡�  in ℎ𝑡𝑡, 𝑊𝑊𝑧𝑧 are the weight coefficients 
of input node. 
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3 Proposed Ensemble Model for RUL Prediction 
Although single RNN model has good performance, the generalization of the single RNN rarely 

performs well in a variety of applications [19]. The integration of multiple models and the appropriate 
combination of the multiple models’ output have proved to be very effective for improving the 
generalization. In this paper, an ensemble model is proposed for predicting the RUL of aircraft engine by 
integrating multiple RNNs. In order to ensure the diversity of sub-learners and sufficient prediction 
accuracy, three different RNNs are adopted for integration. 

However, it is not easy to set up a good ensemble. The most critical task is to obtain sub-learners with 
good individual performance and little correlation among the training errors. Previous literature has pointed 
out that the ideal integration should consist of base learners, which have good diversity and can produce 
smaller errors [21-24]. 

The widely used ensemble mechanism include bagging, boosting and stacking [25-27]. However, 
stacking has a better ensemble performance than other mechanisms, for its multiple sub-learners run in 
parallel [28-31]. In this paper, the stacking mechanism of ensemble learning is adopted to fuse different 
neural network models. 
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Figure 2: Schematic diagram for the proposed prediction method 

The RUL prediction system proposed in this paper is shown as Fig. 2. It contains the process of modeling 
the history data and using online data to predict RUL. It is mainly divided into the following three steps: 

Step 1: Feature Extraction  
In the first step, the sensor data is preprocessed. The exponential smoothing algorithm is used to 

remove noise from original sensor data. By comparing the monotony and the correlation, the suitable 
sensors are selected. 

Step 2: Model Structure 
In the second step, model structure is built, which include three main processes. Initially, three neural 

network models are trained using that historical sensor data selected out by step 1. Then, the prepared data 
is used to verify the network models. Finally, the three verified network models are integrated by ensemble 
learning algorithms, and an ensemble model is obtained.  

Step 3: Online RUL Prediction 
After obtaining the model that conforms to the precision requirement, the online sensor data that have 
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been preprocessed and filtered are inputted into the trained RNN model. Finally, the RUL prediction of the 
aircraft engine is acquired. 

4 Experimental Study 
4.1 Experimental Setup and Data Description 

To verify the effectiveness of the proposed method, the data set of NASA turbofan engine is used in 
this paper. This data set is generated by a simulation model of turbofan engines built on the Commercial 
Modular Aero-Propulsion System Simulation (C-MAPSS), which was used as challenge data for the 
Prognostics and Health Management (PHM) data competition at PHM’08 [32]. Fig. 3 shows the main 
components of the turbofan engine simulation model. It mainly contains fan, low pressure compressor 
(LPC), high pressure compressor (HPC), high pressure turbine (HPT) and low pressure turbine (LPT). 
During the test, the turbofan engine in a healthy state was running until there was a failure that caused the 
system to fail. In addition, input parameters such as speed and pressure are changed to simulate different 
faults and degradation processes of the various rotating components of the turbofan engine.  

As shown in Tab. 1, there are four different operating conditions, resulting in four datasets: 
FD001~FD004. Each dataset includes training and testing subsets. The training set contains all the 
sequences that run until it fails, while the testing set only contains multiple sensor data of the engine which 
stop running before failure. In this paper, the dataset of FD001 is adopted to test the ensemble RNN model 
presented above. Tab. 2 shows all the 21 sensor signal categories in the turbofan engine dataset, including 
temperature, pressure, speed, etc. 

 

Figure 3: Structure of turbofan engine in C-MAPSS simulation 

Table 1: Description of C-MAPSS dataset 

Sub-datasets Training Engines Testing Engines Fault Modes Conditions 

FD001 100 100 1 1 

FD002 260 259 1 6 

FD003 100 100 2 1 

FD004 248 248 2 6 
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Table 2: Sensor data type 
Index Symbol Description Units 

1 T2 Total temperature at fan inlet °R 
2 T24 Total temperature at LPC inlet °R 
3 T30 Total temperature at HPC inlet °R 
4 T50 Total temperature at LPT inlet °R 
5 P2 Pressure at fan inlet psia 
6 P15 Total Pressure in bypass-duct psia 
7 P30 Total Pressure at HPC outlet psia 
8 Nf Physical fan speed rpm 
9 Nc Physical core speed rpm 
10 epr Engine pressure ratio (P50/P2) -- 
11 Ps30 Static pressure at HPC outlet psia 
12 phi Ratio of fuel flow to Ps30 pps/psi 
13 NRf Corrected fan speed rpm 
14 NRc Corrected core speed rpm 
15 BPR Bypass Ratio -- 
16 farB Burner fuel-air ratio -- 
17 htBleed Bleed Enthalpy -- 
18 Nf_dmd Demanded fan speed rpm 
19 PCNfR_dmd Demanded corrected fan speed rpm 
20 W31 HPT coolant bleed lbm/s 
21 W32 LPT coolant bleed lbm/s 

4.2 Data Preprocessing and Sample Labeling 
According to the method described in Section 2, the experimental data are preprocessed. Exponential 

algorithm is adopted to smooth the raw sensor signals. And, the window width is set to be 7 [33,34]. 
In order to control the scale of features in the same range, the selected sensor data need be normalized. In 
this experiment, min-max standardization is used to conduct linear transformation of the original data to 
make the data mapped between 0 and 1. The transformation function is descripted as: 
𝑥𝑥∗ = 𝑥𝑥−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
                                                                                                                                          (11) 

where 𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 is the maximum value of the selected data, and 𝑥𝑥𝑚𝑚𝑖𝑖𝑚𝑚 is the minimum value. 
Then the monotonic and correlation of each sensor are calculated respectively and the composite index 
selection criteria (SC) is obtained. Mon and Corr are expressed as: 

�
Mon = �∑ 𝛿𝛿�𝑓𝑓𝑇𝑇(𝑡𝑡+1)−𝑓𝑓𝑇𝑇(𝑡𝑡)�𝑘𝑘 −∑ 𝛿𝛿�𝑓𝑓𝑇𝑇(𝑡𝑡)−𝑓𝑓𝑇𝑇(𝑡𝑡+1)�𝑘𝑘 �

𝐾𝐾−1

Corr = |(𝐾𝐾∑ 𝑓𝑓𝑇𝑇(𝑡𝑡)𝑘𝑘 𝑡𝑡−𝐾𝐾∑ 𝑓𝑓𝑇𝑇(𝑡𝑡)∑ 𝑡𝑡𝑘𝑘𝑘𝑘 )|
�[𝐾𝐾∑ 𝑓𝑓𝑇𝑇(𝑡𝑡)2−(∑ 𝑓𝑓𝑇𝑇(𝑡𝑡)𝑘𝑘 )2𝑘𝑘 ][𝐾𝐾∑ 𝑡𝑡2−(∑ 𝑡𝑡𝑘𝑘 )2𝑘𝑘 ]

 
                                                                                                          (12) 

where K is the total number of the sampling points and (⋅) is the sign function. 𝑓𝑓𝑇𝑇(𝑡𝑡) is trend value that can 
be obtain by the mean of upper and lower envelope of sensor data at time 𝑡𝑡. 

Arrange them in order from small to large. As shown in the Fig. 4, since the SC value is greater than 
the threshold value, S2, S3, S4, S7, S8, S11, S12, S13, S15, S17 S20 and S21 are picked up to continue the 
next steps.  
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Figure 4: Mon, Corr and SC of 21 sensors in FD001 

The final step is to label the life of each engine for the next model training. A large number of cases 
indicate that the label value has a significant impact on prognostic performance [35]. For this dataset, a 
piece-wise linear degradation model has proven to be appropriate and effective [36]. This model divides 
the running process of each engine into two stages. In the first stage, the engine is considered to run in a 
healthy state, so the label is a constant value. In the second stage, the engine begins to degenerate until it 
fails. The RUL label begins to degrade linearly. This paper is finally set to a constant value of 125 as the 
target label for the first stage. Fig. 5 shows the steps of data preprocessing. 
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4.3 Performance Evaluation Metrics 
Three evaluation indicators are adopted to assess the performance of the proposed method.  
The first indicator is Score. It is employed by the international conference on prognostics and health 

management (PHM08) data challenge, and has been applied to experiments by many researchers [37]. 
Compared with early prediction, the scoring function tends to penalize late prediction since late prediction 
may have more serious consequences in practice. Besides, higher prediction errors are also penalized more 
severely. The scoring function is express as: 

𝑠𝑠𝑖𝑖 = �
exp �−𝑅𝑅𝚤𝚤�−𝑅𝑅𝑚𝑚

13
� − 1   𝑖𝑖𝑓𝑓 𝑅𝑅𝚤𝚤� − 𝑅𝑅𝑖𝑖 < 0

exp �𝑅𝑅𝚤𝚤
�−𝑅𝑅𝑚𝑚
10

� − 1  𝑖𝑖𝑓𝑓 𝑅𝑅𝚤𝚤� − 𝑅𝑅𝑖𝑖 ≥ 0
                                                                                                   (12) 

Score = ∑ 𝑠𝑠𝑖𝑖𝑚𝑚
𝑖𝑖=1                                                                                                                                                                (13) 

where 𝑅𝑅𝚤𝚤�  represents the predicted RUL and 𝑅𝑅𝑖𝑖 indicates the real RUL, 𝑠𝑠𝑖𝑖 represents the score of a single 
engine, 𝑡𝑡 is the total number of testing engines. The sum of the scores of all engines is the final total score. 
The second indicator to evaluate prediction accuracy is RMSE [38]. This measure has also been widely used 
although it penalizes both early and late predictions equally, which is expressed as: 

RMSE = �1
𝑚𝑚
∑ (𝑅𝑅𝚤𝚤� − 𝑅𝑅𝑖𝑖)2𝑚𝑚
𝑖𝑖=1                                                                                                                                               (14) 

Fig. 6 shows the function image of scoring function and RMSE. 

 

Figure 6: RMSE and Scoring function 

The third evaluation index is RUL error range, which represents the error range of all RUL predictions 
compared with real values. Smaller RUL error range indicate higher accuracy and stability of the proposed 
ensemble model. 

4.4 Results and Discussion 
After the raw sensor data collected from 100 engines is preprocessed, these sensor data is selected to 

establish the training dataset. The 90 engines among them are randomly chosen for the ensemble model 
training, and the remaining 10 engines are used to verify the effectiveness of the trained ensemble model. 

Next, based on the characteristics of the sensor data, a number of RNNs begin to be constructed. The 
constructed neural network model will be trained and verified. The neural network model having the best 
performance will be selected for the final integration. 

In the training process of the neural network models, the number of neurons has a great impact on the 
performance of the model. In order to explore the optimal network structure, all three kinds of RNNs with 
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the number of neurons set to 50 to 300 are trained. The validation engines are used to verify each model 
and RMSE are adopted for comparing model training results. Fig. 7 shows the training results of different 
RNNs. It can be seen from Fig. 7 that when the number of neurons in the three neural networks (RNN, 
LSTM, GRU) is 50, 150 and 200, respectively, the network model has the smallest RMSE, which means 
the best performance. 

Fig. 8 shows the final verification result of the three kinds of neural networks. It can be seen from Fig. 
8 that all of them have a good fitting ability to predict the degradation process of the engines, which means 
that the training of the model is satisfactory. 

 
Figure 7: Training results of RNN with different neuron numbers 

 

Figure 8: Prediction of validation engines. (a) RNN. (b) LSTM. (c) GRU 

Then, the three RNN models are integrated using ensemble learning algorithm. Herein, the framework 
of stacking is used, and the RNN is relearned by random forest algorithm. The testing set of 100 engines is 
used to predict the RUL of the engines using trained ensemble model. Fig. 9 shows the comparison between 
the predicted results and the real RUL. Their correlation is up to 0.91, which shows the good prognostic 
performance of the ensemble model. 
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Figure 9: True RUL versus predicted RUL for 100 engines 

Fig. 10 shows the box plot of the score for the ensemble model and the three kinds of  RNNs. Compared 
with the three single network models, the score of the proposed ensemble model is more concentrated, 
which shows the better stability of RUL prediction. 

 

Figure 10: The boxplots of RUL error and RMSE of five models 

 

Figure 11: The boxplots of RUL error and RMSE of five models 

Fig. 11 shows the box plot of the RUL error and the line chart of RMSE obtained by four models on 
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the testing set. As can be seen from Fig. 11, the proposed method has smaller RUL error range and lower 
RMSE than the other three RNN. This shows that the model constructed by this method can learn and fit 
the engine’s historical data better, and the result is more accurate and has less bias. 

Tab. 3 shows the performance of models based on LSTM, GRU, RNN, and Ensemble model. As can 
be seen from Tab. 3 that all the evaluation indexes of the ensemble mode have been improved on the basis 
of the three recurrent networks, which means that the model successfully integrates the features extracted 
from the previous three networks and shows excellent life prediction performance. 

Table 3: Comparison result 

Indicator Score RMSE RUL error range 
LSTM Model 788.54 19.39 [-36,40] 
GRU Model 838.99 19.64 [-38,44] 
RNN Model 911.58 19.78 [-34, 39] 
Ensemble Model 699.99 18.82 [-29,38] 

5 Conclusion 
In this paper, a new ensemble recurrent neural network-based RUL prediction method for aircraft 

engines is proposed. Multiple sensor data are preprocessed and selected to form the input of the ensemble 
RNN model. Then, three kinds of RNN models with different structures are constructed using LSTM, GRU 
and Ordinary RNN neurons, respectively. Next, the three RNN models are trained by the sensor data 
processed in the first step, and these models are combined with the stacking framework of ensemble 
learning. The random forest algorithm is used as the second-level meta-learner of the stacking framework. 
Finally, an ensemble recurrent neural network model which can utilize the features extracted by three 
recurrent neural networks is established.  

The performance of the proposed RUL prediction method was evaluated by an experimental study of 
NASA’s aeroengine dataset. The experimental results show that the prediction results of the ensemble 
model are better compared with the single current neural network model, which proves the superiority of 
the proposed method. 

In the future, we will continue to explore the impacts of different neural network structures for the 
multiple sensor data’s feature extraction. The comparative analysis will also be conducted on different 
ensemble methods to achieve higher prediction accuracy. 
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