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Abstract: The temperature fields in the laminated shells were studied, including open 

cylindrical shells and cylindrical shells, according to the thermal theory. Analytical 

solution of the temperature in the shells with the known temperature on the surfaces was 

present. The thinning layer approach was introduced to simplify the three-dimensional 

heat conduction equation. Firstly, the layered shell was divided into N thinner layers. The 

governing equation was simplified by replacing the variable r by r0 in the center line of 

every thin layer. The general solutions of temperature satisfying the simplified three-

dimensional governing equation in single-layered shell were deduced in the cylindrical 

coordinate system. Then, the temperature and heat flux relationships between the surfaces 

could be found by transferring matrixes. According to the continuities of temperature and 

heat flux in the interface of the laminates, the temperature and heat flux relationships of 

the surfaces were derived. With the temperature condition on the surfaces, the unknown 

coefficients in the general solution of temperature were obtained. Finally, the effects from 

the thinning layer approach were eliminated by analyzing different numbers of thin layers. 

The validity and accuracy of the proposal method were proved from the convergence and 

comparison studies. And several numerical examples were studied to investigated the 

temperature effects from surface temperatures, geometric size of the shells and 

composition of layers. 

 

Keywords: Analytical solution, temperature, laminated Shells, the analytical method, the 

transfer matrix method. 

1 Introduction 

The mechanical properties of layered cylindrical shells have attracted considerable 

research efforts due to their increasing applications in engineering. Owing to the 

inhomogeneous material properties among the layers, thermal stresses and 

inhomogeneous deformations emerge in the temperature environment. This is not 

beneficial to the structural safety.  

The research on temperature distribution in layered cylindrical shell attracts a lot of 
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interest. Ostrowski et al. [Ostrowski and Jędrysiak (2017)] studied the temperature 

distribution of a quarter-phase laminates with periodic distributions. Vidal et al. [Vidal, 

Gallimard, Ranc et al. (2017)] present a method to obtain the temperature distribution of 

laminates or sandwich beams in a temperature environment whose heat source in a 

certain position. Kantor et al. [Kantor, Smetankina and Shupikov (2001)] present a 

method for determination of thermal condition of laminated elements of structures. 

Norouzi et al. [Norouzi, Niya, Kayhani et al. (2012)] gave an analytical solution of 

temperature in a composite cylinder subjected to steady thermo-loads. Shupikov et al. 

[Shupikov, Smetankina and Svet (2007)] present an analytical solution of unsteady 

temperature filed in layered plate with complex planar shape. Kayhani et al. [Kayhani, 

Shariati, Nourozi et al. (2009)] proposed an exact solution of steady temperature filed in 

composite cylinders. Desgrosseilliers et al. [Desgrosseilliers, Groulx and White (2013)] 

present a model to predict the action under a constant temperature or heat flows in 

laminate films. Abdelal et al. [Abdelal, Abdalla and Gurdal (2010)] studied the thermal 

behavior of Variable Stiffness laminates with finite element method. Matysiak et al. 

[Matysiak and Perkowski (2011)] studied a regularly laminates with a cylindrical bore. 

They gave the temperature distribution and the distribution of heat flux on the basis of the 

Weber-Orr integral transforms. Tarn et al. [Tarn and Wang (2004)] studied heat-

conducting property of composite and functionally graded materials cylinders, especially 

the end effect. Nemirovskii et al. [Nemirovskii and Yankovskii (2008)] analyzed 

unsteady thermal conductivity in the inhomogeneous layered shell and studied the 

asymptotic properties of thermal conductivity. Kulikov et al. [Kulikov and Plotnikova 

(2014)] used the method of sampling surfaces to analyze the exact three-dimensional heat 

conduction of laminated orthotropic and anisotropic shells. Delouei et al. [Delouei and 

Norouzi (2015)] present an exact solution of unsteady-state heat transfer in spherical 

laminates reinforced with composite. Kaminski [Kaminski (2003)] studied the 

homogenization about transient heat conduction problems in some composite materials. 

Mityushev et al. [Mityushev, Obnosov, Pesetskaya et al. (2008)] described a method of 

heat conduction in various type of composite materials. Delouei et al. [Delouei, Kayhani 

and Norouzi (2012)] studied the problem of transient heat transfer in the composite 

cylinders and gave an analytical solution. Kayhani et al. [Kayhani, Norouzi and Delouei 

(2012)] proposed an analytical solution for steady heat conduction in composite cylinders. 

Beck et al. [Beck, Wright, Haji-Sheikh et al. (2008)] gave an efficient procedure to solve 

the problem of poorly-convergence in heat conduction solutions. Ma et al. [Ma and 

Chang (2004)] proposed an analytic method to solve heat transfer problem in anisotropic 

laminated media. Savoia et al. [Savoia and Reddy (1995)] considered the polynomial and 

exponential temperature distributions through the thickness and presented the 

temperature analysis for multilayered plates subjected to thermal loads. Hsieh et al. 

[Hsieh and Ma (2002)] provided the analytical solution of heat transfer problem in a non-

isotropic thin media with a heat source inside. Haji-Sheikh et al. [Haji-Sheikh, Beck and 

Agonafer (2003)] presented general solutions of temperature in laminates in a steady-

state temperature environment. Norouzi et al. [Norouzi, Amiri and Seilsepour (2013)] 

studied spherical laminates reinforced with the fiber and solved the heat conduction 

problems under different temperature boundary condition. Liu et al. [Liu, Zhang, Cheng 

et al. (2016)] studied the thermal deformation of copper-steel wall in the process of 
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smelting. Yang et al. [Yang and Liu (2017)] provided a general solution of heat transfer 

problems in composite cylinders in a temperature environment. Wang et al. [Wang, Miao 

and Zhu (2013)] proposed a new solution for thermal analysis of composites on the basis 

of hybrid boundary node method. 

In this paper, exact analytical solutions of temperature in laminated shells are present 

from the heat conduction equation. The thin layer approach is introduced to simplify the 

temperature governing equation in the cylindrical coordinate system. Firstly, the general 

solutions of temperature satisfying the simplified three-dimensional governing equation 

in single-layered shell were deduced. Then, the temperature and heat flux relationships 

between the surfaces could be found by transferring matrixes. According to the 

continuities of temperature and heat flux in the adjacent interface of the laminates, the 

temperature and heat flux relationships of the surfaces were derived. With the 

temperature condition on the surfaces, the unknown coefficients in the general solution of 

temperature were obtained. There are two novelties in this paper: (1) This paper 

introduced the thinning layer approach to simplify the heat conduction equation. Then the 

effect is eliminated by the layer analysis and the exact solution can be obtained. (2) The 

presented method is appropriate for cylinders with any number of layers. And the 

solutions are derived only by operating a second order system of primary equations. 

2 Solutions of temperature field in the open cylindrical shell 

2.1 The general solution of temperature in a single-layer shell 

An open cylindrical shell composed of H shelled laminations with radius rj (j=0, 1, 2... H) 

and the angle θ0 is considered, as shown in Fig. 1(a). The length of the shell is l. The 

known temperature value at the four edges of the open shell is same. We set the 

temperature as the baseline value of the temperature in the shell. The temperature of the 

outside surface in the laminated shell is tp(θ, z), while the temperature of the internal 

surface is t1(θ, z). 

Now, the single-layer in the open cylindrical shell is considered individually (see Fig. 

1(b)). In the cylindrical coordinate system r-θ-z, the three-dimensional equation of heat 

conduction is 
2 2 2

2 2 2 2

( , , ) ( , , ) ( , , ) ,1
0

)1 ( ,r z r z r zT T T T

r

r z

r r r z

   
+ + + =

   

   
                                           (1) 

Here, the thinning layer approach is introduced to simplify the equation. Each layer in the 

open shell is divided into Hj thinner layer. The laminated shell is divided into P 

(
1

H

j

j

P H
=

=  ) layers. And the material properties of every layer in the new laminated open 

cylindrical shell are can be obtained easily. The heat conductivity is ki (i=1, 2…P). In 

such case, the variable r in the governing equation can be approximately replaced by the 

center coordinate r of a layer. When the numbers of partitions increase, the accuracy of 

results increase. If the layer is thin enough, the solution required for accuracy can be 

obtained. 
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(a) multilayer shell                                         (b) an isotropic shelled layer 

Figure 1: Geometry of the open cylindrical laminated shell 

The simplified governing equation of the ith (i=1, 2…P) layer is 

2 2 2

2 2 2 2

0 0

( , , ) ( , , ) ( , , ) (1 1
0

, , )i i i i

i i

rT T T T

r r r r z

z r z r z r z   



   
+ + + =

   
                                          (2) 

From the temperature condition at the four edges of the shell 

( ) ( )0,0, , , 0i iT r z T r z= = ,         ( ) ( ), ,0 , , 0i iT r T r l = =                                                  (3) 

According to condition of the temperature (3), the temperature distribution Ti(r, θ, z) can 

be derived 

( )
1 1 0

sin s n) i( , ,i mni

m n

m
tr z

n z
T r

l

 




 

= =

   
=    

  
                                                                     (4) 

Eq. (4) is substituted into governing Eq. (2), differential equation of tmn(r) can be obtained. 

( ) ( ) ( )
2 2 2 2

'' '

2 2 2

0 0 0

1
0mn mn mn

m n
t r t r t r

r r l

 



 
+ − + = 

 
                                                                    (5) 

Finally, we can derive Ti(r, θ, z) according to Eqs. (4) and (5): 

( )
1 1 0

( , , ) sin sinmni mnir r

i mni mni

m n

m n z
T r z e G e H

l

 
 



 

= =

   
= +    

  
                                             (6) 

where, 

2 2 22 2
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n rm
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+ + −

= ,    

2 2 22 2
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0
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44
1 1

2

i
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i

n rm

l

r






− + + −

=  

Gmni and Hmni are the undetermined constants. We can work out them with the 

temperature conditions on the surfaces of each layer. 
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2.2 Recursive formulae for temperature field 

With the interlayer continuities of temperature condition in the interface of the laminated 

open cylindrical shell, we can get 

1( , , ) ( , , ),i i i iT r z T r z + =  

1

1

( , , ) ( , , )

i i

i i

i i

r r r r

T r z T r z
k k

r r

 +

+

= =

 
=

 
  (i=1, 2, 3…P-1)                                                    (7) 

In order to facilitate the derivation, the temperature solution and the heat flux in the 

direction of r can be expressed as the matrix form from Eq. (6), i.e. 

( )

( )
1 1 0

sin s

, ,

( ) n, , i
i

i
m n

mn

i

i

T r z

rT r z
k

n z

l
r

m



 



 

= =

 
   

   
   =      




                                                        (8) 

where ( )i

mn r    is a matrix function about variable r with the undetermined coefficients, 

which can be expressed as from temperature distribution (6), 

( ) ( )i i i

mn mn mnr r      =                                                                                                        (9) 

in which, ( )i

mn r    and i

mn
    are 

( )
mni mni

mni mni

r r

i

mn r r

mni mnii i

e e

e
r

k k e

 

  


 
  =   

 
,    mnii

mn

mni

G

H

 
  =   

 
                                                (10) 

Taking r=ri and r=ri+1 in Eq. (9) respectively, the unknown coefficients 
i

mn
    in Eq. (10) 

can be eliminated. Therefore, one has 

1

1 1

1
1

1 1( ) ( ) ( ) ( )i

i i i i

mn mn mn mni i ir r r r   + + + +
−

+ +
       =                                                                          (11) 

The interlayer continuity in Eq. (7) is expressed as a matrix equation, 

1( ) ( )i i

i i

mn mnr r +   =                                                                                                           (12) 

The relationship of the undetermined coefficients between the qth layer (q=2…P) and the 

first layer can be recursively worked out with the interlayer continuity. 

1
1 1

1

1

1

0

1
( ) ( ) ( ) ( )

mnq mnq j j

q jmn mn mn mj

j

n

mnq nq m

G G
r r r r

H H
   

− −

−

=

     
       =            

      
                                   (13) 

2.3 Undetermined coefficients in the analytical solution 

Assume that the temperature distributions of the external surface and the internal surface 

of the layered shell are tp(θ, z) and t1(θ, z) respectively, i.e. 

1 0 1( , , ) ( , )T r z t z = ,       ( , , ) ( , )p p pT r z t z =                                                                 (14) 
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Substitute Eq. (6) into the temperature condition Eq. (14) and multiply Eq. (14) by 

0

sin( )sin( )
i j z

l

 


.  Finally, the equation is integrated over z and θ at two sides. We can 

get 

0 0

1 0 1
0 0 0 0

0 0

( , , )sin( )sin( ) ( , )sin( )sin( )
l li j z i j z

T r z d dz t z d dz
l l

    
   

 
=    , 

0 0

0 0 0 0
0 0

( , , )sin( )sin( ) ( , )sin( )sin( )
l l

p p p

i j z i j z
T r z d dz t z d dz

l l

    
   

 
=                      (15) 

According to temperature analytic formula (6), Eq. (15) can be written as 

1 0 1 0
0

1

00

1
0

1
0

( , )sin( )sin( )
4

,mn mnr r

mn mn

l m n z
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( , )sin( )sin(
4
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mnp m p pn

l

e G e H
l

m n z
t z d dz
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+ =                                       (16) 

Simultaneously solving Eq. (13) (taking q=P) and Eq. (16), 1mnG , 1mnH , 
mnpG  and 

mnpH  

can be uniquely determined. The undetermined coefficients 
mnqG and 

mnqH  of the qth 

layer (q=2…P) can be calculated by Eq. (13). Then, the temperature distribution in the 

laminated open shell is obtained by substituting the coefficients into the analytical 

solution (6). 

3 Solutions of temperature field in the cylindrical shell 

3.1 The general solution of temperature in a single-layer shell 

Consider a cylinder of radius rj (j=0, 1, 2... H) and the angle θ0, as shown in Fig. 2(a). 

The cylinder is composed of H layers. The length of the shell is l. The known temperature 

value at the two edges of the shell is same. We set the temperature as the baseline value 

of the temperature in the shell. The temperature of the outside surface in the laminated 

shell is tp(θ, z), while the temperature of the internal surface is t1(θ, z). 

Now, the single-layer in the open cylindrical shell is considered individually (see Fig. 

2(b)). In the cylindrical coordinate system r-θ-z, the three-dimensional equation of heat 

conduction is the same with Eq. (1). 

Here, the thinning layer approach is also introduced to simplify the equation. Each layer 

in the cylinder is divided into Hj thinner layer. The laminated shell is divided into P 

(
1

H

j

j

P H
=

=  ) layers. And the material properties of every layer in the new laminated 

cylinder are can be obtained easily. The heat conductivity is ki (i=1, 2…P). In such case, 

the variable r in the governing equation can be approximately replaced by the center 

coordinate r of a layer. When the numbers of partitions increase, the accuracy of results 

increase. If the layer is thin enough, the solution required for accuracy can be obtained. 

The simplified heat conduction equation is the same as Eq. (2). 
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(a) multi-layer cylindrical shell                           (b) an isotropic layer 

Figure 2: Geometry of multi-layer cylindrical shell 

From the temperature condition at the two edges of the shell 

( ) ( ), ,0 , , 0i iT r T r l = =                                                                                                  (17) 

According to condition of the temperature (17), the temperature distribution can be given 

in the complete Fourier series form of  

( ) ( ) ( ) ( ) ( ) ( )
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i n mn m

n n

n

n m m

a r m
n z n z n z

T r z t r
l

b m
l

r
l

  
 

    

= = = = =

     
= + +     

     
    

                                                                                                                                      (18) 

Eq. (18) is substituted into Eq. (2), differential equations of ( )i

nt r , ( )i

mna r  and ( )i

mnb r  

can be obtained. Finally, we can derive Ti(r, θ, z) according to Eq. (18). 
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where, 
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And 1

niH , 2

niH , 3

mniH , 4

mniH , 5

mniH  and 6

mniH  are the undetermined constants. We can work 

out them with the temperature conditions on the surfaces of each layer. 

3.2 Recursive formulae for temperature field 

With the interlayer continuities of temperature condition in the interface of the laminated 

cylindrical shell, we can get 

1( , , ) ( , , ),i i i iT r z T r z + =  

1

1

( , , ) ( , , )

i i

i i

i i

r r r r

T r z T r z
k k

r r

 +

+

= =

 
=

 
     (i=1, 2,..., P-1)                                               (20) 

In order to facilitate the derivation, the temperature solution and the heat flux in the 

direction of r can be expressed as the matrix form from Eq. (19), i.e. 
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                             (21) 

where ( )i

n r   , 1( )i

mn r    and 2 ( )i

mn r    are the matrix functions about variable r with 

undetermined coefficients, which can be described as from temperature distribution (6), 

( ) ( )i i i

n n nr r      =       , 

1 1 1( ) ( )i i i

mn mn mnr r      =       , 

2 2 2( ) ( )i i i
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In the above equation, ( )i
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Taking, respectively, r=ri and r=ri-1, the unknown coefficients i

n
   , 1

i

mn
   and 2

i

mn
    

can be eliminated. Therefore, one has 

1

1 1( ) ( ) ( ) ( )i i i

i i i i

i

n n n nr r r r   
−

− −
       =        , 

1

1 11 1 1 1( ) ( ) ( ) ( )i i i i
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− −
       =        , 

1

1 12 2 2 2( ) ( ) ( ) ( )i i i i

mn mn mni i mi n ir r r r   
−

− −
       =                                                                        (24) 

The interlayer continuity in Eq. (20) is expressed as a matrix equation, 

( ) ( )+1, , , ,i i

mn i mn ir z r z     =                                                                                           (25) 

The relationship of the undetermined coefficients between the qth layer (q=2…P) and the 

first layer can be recursively worked out with the interlayer continuity. 
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                                                      (26) 

3.3 Undetermined coefficients in the analytical solution 

Assume that the temperature distributions of the external surface and the internal surface 

of the layered shell are tp(θ, z) and t1(θ, z) respectively, i.e. 

1 0 1( , , ) ( , )T r z t z = ,  ( , , ) ( , )p p pT r z t z =                                                                        (27) 

The temperature loads tp(θ, z) and t1(θ, z) can be expanded into the Fourier series, 

respectively: 
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Substituting the solution of temperature (19) into Eq. (28) gives 
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Simultaneously solving Eq. (26) (taking q=P) and Eq. (29), 1

1nH , 2

1nH , 3

1mnH , 4

1mnH , 5

1mnH , 

6

1mnH  and 1

npH , 2

npH , 3

mnpH , 4

mnpH , 5

mnpH , 6

mnpH  can be uniquely determined. Taking 1

1nH , 

2

1nH , 3

1mnH , 4

1mnH , 5

1mnH  and 6

1mnH  back to Eq. (26), 1

nqH , 2

nqH , 3

mnqH , 4

mnqH , 5

mnqH  and 6

mnqH  

of the qth layer (q=2…P) can be calculated by Eq. (26). Then, the temperature 

distribution in the laminated cylinders is obtained by substituting the coefficients into the 

analytical solution (19). 

4 Convergence and comparison studies, layer analysis 

Some numerical examples for the convergence and comparison studies of temperatures 

are performed to confirm the validity and accuracy of the proposal method. Consider a 

three-layer laminated open cylindrical shell with the parameters r0=1.7 m, r1=2.1 m, 

r2=2.5 m, r3=2.9 m, θ0=7π/8 rad, l=20 m. The materials of the open shells are that surface 

layer is steel and the middle is concrete, i.e k1=50 W/(m·oC), k2=2 W/(m·oC), k3=50  

W/(m·oC). The shell has prescribed temperatures on the surfaces: tp(θ, z)=100°C and t1(θ, 

z)=0°C. 

The series of number terms m and n are truncated up to N in Eq. (6), the approximate 

solution for temperature field can be obtained. We have focused on five series of number 

terms about the temperature solution. Tab. 1 shows the temperature values in the 

positions: z=12 m, θ=1.2, r=1.80 m; r=2.00 m; r=2.20 m; r=2.40 m; r=2.60 m; r=2.80 m, 

respectively. We can find that the convergence of the results is excellent from Tab. 1. 
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And the solutions for N=24 and N=30 are nearly same. So, we can fix the number of 

terms at N=24 in the coming calculation. 

Table 1: Convergence of temperature field 

N r=1.80 m r=2.00 m r=2.20 m r=2.40 m r=2.60 m r=2.80 m 

6 1.15 2.88 25.4 65.6 90.8 95.6 

12 1.19 3.11 27.5 69.8 92.5 96.8 

18 1.21 3.38 28.1 72.6 96.4 98.2 

24 1.21 3.44 29.0 74.8 97.0 98.4 

30 1.21 3.44 29.0 74.8 97.0 98.4 

Table 2: The influence of dividing method about temperature 

Position P r=1.80 m r=2.00 m r=2.20 m r=2.40 m r=2.60 m r=2.8 m 

θ=1.2, 

z=12 

6 1.15 3.33 27.9 73.8 96.3 97.5 

9 1.18 3.33 28.3 73.9 96.4 97.9 

12 1.19 3.35 28.5 74.5 96.5 98.2 

15 1.21 3.44 29.0 74.8 97.0 98.4 

  18 1.21 3.44 29.0 74.8 97.0 98.4 

Table 3: Comparative researches of the temperature solutions at z=12 m, θ=1.2 rad 

Position Method Temperature Position Method Temperature 

r=1.80 m 
Present 1.21 

r=2.40 m 
Present 74.8 

FE 1.19 FE 74.5 

r=2.00 m 
Present 3.44 

r=2.60 m 
Present 97.0 

FE 3.44 FE 96.5 

r=2.20 m 
Present 29.0 

r=2.80 m 
Present 98.4 

FE 28.8 FE 98.0 

To eliminate effects from the dividing method, the three-layer shell has been divided into 6 

layers, 9 layers, 12 layers, 15 layers and 18 layers. Tab. 2 shows the temperature solution in 
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six positions: z=12 m, θ=1.2 rad, r=1.80 m; r=2.00 m; r=2.20 m; r=2.40 m; r=2.60 m; r=2.80 

m, respectively. We can see form Tab. 2 that the solutions for P=18 have the same three 

figures as those for P=15. So, we can find the error can be eliminated by the layer analysis. 

In order to confirm the correctness of the results, ANSYS software is used to simulate the 

shell in the temperature environment with the element Shell57 and the data are obtained. Tab. 

3 gives the comparison studies of the temperatures at six points: z=12 m, θ=1.2 rad, r=1.80 

m; r=2.00 m; r=2.20 m; r=2.40 m; r=2.60 m; r=2.80 m, respectively. We can find the 

temperature results are very close to the data from the software in Tab. 3. 

5 Numerical examples 

In this part, several numerical examples are studied to investigated the effects to 

temperature distribution from surface temperatures, sizes of the shells, numbers of layers 

and the material properties. 

5.1 Effect of different surface temperatures 

In this section, the effect of surface temperature t0 on the distributions of temperature in the 

layered cylinders is discussed. The example is a three-layered cylindrical shell. The radii are 

r0=1.6 m, r1=2.0 m, r2=2.4 m, r3=2.8 m, respectively. The length of the shell is l=20 m. The 

materials of the cylindrical shells are that surface layer is steel and the middle is concrete. 

The shell has prescribed temperatures on the surfaces: t1(θ, z)=0°C and tp(θ, z) is as follows, 

( ) 0 0
,

0 0
p

t
t z

 


 

         
= 

     −  
                                                                                            (30) 

where t0=50°C, 100oC, 150°C, respectively.  

The distribution of temperature at θ=1.1 rad, z=8 m is plotted in Fig. 3 for different thermal-

loads. We can find the temperature solutions in the surface layer are almost the same, while 

the temperature variation is considerable in the concrete layer. That is because the heat 

conductivity of the steel is much larger than the concrete. The temperature distribution along 

the θ direction at r=2.1 m, z=8 m is given in Fig. 4. We can find the temperature of each 

point in the cylinders increases when the thermo-load increases. 
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Figure 3: The temperature distribution along the thickness at θ=1.1 rad, z=8 m for 

different boundary temperatures 
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Figure 4: The temperature in the radial direction at r=2.1 m, z=8 m for different 

boundary temperatures 

5.2 Effect of thickness and radius  

In this part, the example is a three-layered open cylindrical shell. The materials of the 

open cylindrical shells are that surface layer is steel and the middle is concrete. The 

thickness of the open cylindrical shell is h1=h2=h3=0.4 m (i.e. h=r3-r0=1.2 m). The open 

angle θ0 of the shell is π/2 rad. The inner radiuses of the open cylindrical shell are: r0=1.0 

m, 2.0 m, 6.0 m (i.e. h/r0=1.2, 0.6, 0.2), respectively. The shell has prescribed 

temperatures on the surfaces: t1(θ, z)=0°C and  tp(θ, z)=100°C. 

The distribution of temperature along the thickness direction at z=7 m, θ=π/5 rad are 

plotted in Fig. 5. We can find that temperatures along the thickness direction are almost 

the same to different h/r0. The distribution of temperature along the radial direction at r-

r0=0.7 m, z=7 m is shown in Fig. 6. It is seen that the figure is symmetrical in the radial 

direction. We can find from Fig. 6 that the temperature variation near to the edges is more 

remarkable than that within the interior. 
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Figure 5: The temperature in the thickness direction at z=7 m, θ=π/5 rad to different h/r0 
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Figure 6: The temperature in the radial direction at r-r0=0.7 m, z=7 m to different h/r0 

5.3 Effect of shell composition 

In this part, the numerical example is three different layered open cylindrical shells. Here, 

there are three different materials: the wood with k1=0.1 W/(m·°C); the steel with k2=50 

W/(m·°C); the concrete with k3=2 W/(m·°C). All the shells have the same inner radius 

r0=2.0 m, the same thickness h (i.e. r3-r0)=1.2 m and the same angle θ0=π/2. The length of 

the shell is l=20 m. The shell has prescribed temperatures on the surfaces: t1(θ, z)=0°C 

and  tp(θ, z)=100°C. 

The three-layered open cylindrical shells are two-layer shell, three-layer shell and four 

layer shell, respectively. The material properties of two-layer shell with the radii r1=2.6 m, 

r2=3.2 m are: The inner layer is steel and the outer layer is wood. The material properties 

of three-layer shell with the radii r1=2.4 m, r2=2.8 m, r3=3.2 m are: The inner layer is 

concrete, the outer layer is wood and the middle is steel. The material properties of three-

layer shell with the radii r1=2.3 m, r2=2.6 m, r3=2.9 m, r4=3.2 m are: The surface layer is 

wood, the second layer is concrete and the third layer is steel.  

The temperature distribution along the thickness direction at θ=0.9 rad, z=9 m are plotted 

in Fig. 7. We can find that the temperature distributions are different although the exterior 

dimensions of the three shells are the same. The distribution of temperature in the radial 

direction at r=2.7 m, z=12 m is presented in Fig. 8. It can be found from Fig. 8 that the 

composition of the shell has a strong impact on the temperature variation. The 

temperature of two-layer shell is much higher than the other two shells. That is because 

the coefficient of heat conduction of wood is the lowest one among the three materials. 
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Figure 7: The temperature in the thickness direction at θ=0.9 rad, z=9 m for the open 

shell made up of different materials 
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Figure 8: The temperature in the radial direction at r=2.7 m, z=12 m for the open shell 

made up of different materials 

6 Conclusions 

The three-dimensional temperature field within a laminated shell, including the open 

cylindrical shell and the cylindrical shell, has been investigated on the basis of the exact 

thermal theory. An exact solution is present to get the three-dimensional temperature 

field. We introduce a thinning layer approach to simplify the calculation of differential 

equations. Firstly, the layered shell is divided into N thinner layers. The governing 

equation was simplified by replacing the variable r by r0 in the center line of every thin 

layer. The general solutions of temperature satisfying the simplified three-dimensional 

governing equation in single-layered shell are deduced in the cylindrical coordinate 

system. Then, the temperature and heat flux relationships between the surfaces can be 

found by transferring matrixes. According to the continuities of temperature and heat flux 
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in the interface of the laminates, the temperature and heat flux relationships of the 

surfaces are derived. With the temperature condition on the surfaces, the unknown 

coefficients in the general solution of temperature are obtained. Finally, the effects from 

the thinning layer approach are eliminated by analyzing different numbers of thin layers.  

The ANSYS software is applied to simulate the structure in the thermal environment. The 

validity and accuracy are proved from the comparison of results. And several numerical 

examples are studied to investigated the temperature effects from surface temperatures, 

geometric size of the shells and composition of layers. 
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