Copyright © 2018 Tech Science Press SDHM, vol.12, no.3, pp.129-147, 2018

Time Series Analysis for Vibration-Based Structural Health
Monitoring: A Review

Kong Fah Tee" "

Abstract: Structural health monitoring (SHM) is a vast, interdisciplinary research field
whose literature spans several decades with focusing on condition assessment of different
types of structures including aerospace, mechanical and civil structures. The need for
guantitative global damage detection methods that can be applied to complex structures
has led to vibration-based inspection. Statistical time series methods for SHM form an
important and rapidly evolving category within the broader vibration-based methods. In
the literature on the structural damage detection, many time series-based methods have
been proposed. When a considered time series model approximates the vibration response
of a structure and model coefficients or residual error are obtained, any deviations in
these coefficients or residual error can be inferred as an indication of a change or damage
in the structure. Depending on the technique employed, various damage sensitive features
have been proposed to capture the deviations. This paper reviews the application of time
series analysis for SHM. The different types of time series analysis are described, and the
basic principles are explained in detail. Then, the literature is reviewed based on how a
damage sensitive feature is formed. In addition, some investigations that have attempted
to modify and/or combine time series analysis with other approaches for better damage
identification are presented.

Keywords: Time series snalysis, structural health monitoring, structural damage detection,
autoregressive model, damage sensitive features.

1 Introduction

The science of continuous and online condition monitoring of structures using sensory
systems and analysis of measured signals to assess structural operating conditions is
known as Structural Health Monitoring (SHM) [Koh, Tee and Quek (2006); Tee (2004);
Tee, Koh and Quek (2009)]. In fact, Nondestructive Testing (NDT) is covered by
condition monitoring, and condition monitoring is covered by SHM. With advancement
in sensor and computer technology as well as the aging of many critical structures,
renewed efforts can be seen in the research area of SHM. The need for quantitative global
damage detection methods that can be applied to complex structures has led to research
into SHM methods that examine changes in the vibration characteristics of the structure
[Klepka, Staszewski, Uhl et al. (2012); Koh, Quek and Tee (2002); Tee, Koh and Quek
(2003)]. Vibration-based inspection is currently an active area of research in SHM, based
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on examining changes in the characteristics of a structure before and after damage
occurrence based on analysis of input and output signals due to dynamic excitation.

The approaches in vibration-based inspection can be roughly classified under time
domain, frequency domain and time-frequency domain. One main approach in time
domain health monitoring and damage detection methodology is through the use of time
series analysis. In the literature on the structural damage detection, many time series-
based methods have been proposed by Sohn et al. [Sohn, Worden and Farrar (2002); Gul
and Catbas (2011); Tee, Cai and Chen (2013)]. Statistical time series methods for SHM
form an important, rapidly evolving, category within the broader vibration-based methods
since their implementation for an automated SHM system is relatively more feasible
compared with other methodologies such as damage detection based on model updating
[Mottershed and Friswell (1993)] which rely on cumbersome finite element modelling
processes and/or linear modal properties for damage diagnosis [Chen, Tee and Ni (2012);
Wang, Zhang and Tee (2011)]. For practical applications, these methods have been
shown to be ineffective because of labour intensive tuning, excessive computational
effort and significant uncertainties caused by user interaction and modelling errors [Jenal,
Staszewski, Scarpa et al. (2009); Klepka, Staszewski, DiMaio et al. (2013)].

Time series analysis approach for performing SHM is to create a time series predictive
model to the vibration data known to be acquired from the structure in its undamaged
state. These models are then used to predict subsequent measured data and the residuals
(the difference between the model’s prediction and the observed value). These
methodologies usually make use of AutoRegressive (AR), AR with eXogenous inputs
(ARX), AutoRegressive Moving Average (ARMA) models, etc to detect the damage in a
statistical manner [Sohn and Farrar (2001); Nair, Kiremidjian, Lei et al. (2003)]. Due to
random and systematic variability in measured dynamic response data, statistical
approaches are necessary to ensure that changes in a structure’s measured dynamic
response are a result of damage and not caused by environmental and operational
variability. Some of these methodologies directly compare the time series models
whereas some of them use the residual errors when the new data are used with the
previously created model. These are known as damage sensitive features that are used to
check for anomalies.

In this paper, time series analysis for SHM is reviewed. The rest of the paper is organised
as follows. The procedure of pre-processing of the data before creating time series
models is first discussed. Then, the different types of statistical time series methods for
SHM are introduced. Damage sensitive features that discriminate between damaged and
non-damaged states of a structure are also reviewed. Investigations that have attempted to
modify and/or combine time series analysis with other approaches for better damage
identification are also presented.

2 Pre-processing

Before fitting time series models to sensor data, it is important to pre-process the data in
order to compare acceleration time histories (at a sensor location) that may have occurred
due to different loading conditions (i.e. different magnitudes and directions of loads)
and/or different environmental conditions. After pre-processing the features extracted
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from the signals from undamaged cases would have similar statistical characteristics and
can be compared. The first step is referred to as normalization procedure by Nair et al.
[Nair, Kiremidjian, Lei et al. (2003)]. All the time signals are normalized as follows.

X () =B (1)

n
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where X, is the normalized signal and n is the number of data points of the signal. Then
signal is standardized prior to fitting an AR model such that
X, =
o}

X =

(2)

X

where X is the normalized signal, 4, and S, are the mean and standard deviation of X, ,

respectively. All signals are normalized so that they have zero mean and unit variance.
This standardization-normalization procedure should be applied to all signals employed.
It is worth noting that the time series data related to some types of damage can contain
sharp changes that could be misinterpreted in this standardization and cause incorrect
classification. However, this standardization permits the analysis of signals from a
structure in different environmental conditions.

The next step is to check for trends and stationarity in the data [Brockwell and Davis
[2002)]. This can be done by observing the autocorrelation function. For detrending the
data, a combination of the simple average window and the moving average window can
be used. The window sizes are chosen so that the residuals obtained from this process are
stationary. A review of the autocorrelation plot or the Ljung-Box statistic provides further
test that this condition is preserved. An alternative approach to remove trends using
weighted FIR filters is presented in Ganguli [Ganguli (2002)].

Furthermore, the data can also be reduced using Principle Component Analysis (PCA)
before it is classified, so that the classification procedure is speeded up considerably
[Silva, Junior, Junior et al. (2008)]. PCA is a linear transformation mapping
multidimensional data into lower dimensions with minimum loss of information. The
procedure compresses the data from multiple measurements by determining the principal

components of the dataset using PCA. The m time series vectors X, (n) are transformed
to d vectors X4 (n), where d << m by projecting onto the eigenvectors corresponding to
the d largest eigenvalues as follows.

X (M) =T %, () =[v;, -, V4T %, () ®)

where V; represents the ith eigenvectors which are the principal components. The loss of

information in this mapping can be assessed by remapping the projected data back to the
original space.
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% () =T"x%(n) @)
Then, the reconstruction error (residual error) matrix E is defined as
E =X(n) - X (n) ©)

The matrix T can be found such that the Euclidean norm of the residual matrix, ||E|| is

minimized for the given size of d. It is also possible to use nonlinear principal component
analysis (NLPCA) which generalizes the linear mapping by allowing arbitrary nonlinear
functionalities. NLPCA employs artificial neural networks to generate these arbitrary
nonlinear functions.

Random decrement (RD) method is also implemented to eliminate the effects of the
exogenous input by normalizing the ambient vibration data before constructing the AR
models [Gul and Catbas (2009)]. RD functions are used to obtain pseudo-free vibration
response from the ambient vibration data. Being developed by [Cole (1968)], random
decrement is used for transformation of random time series into a free decay response,
which in essence contains only the information about the structural dynamics properties.
RD is used to filter out the effect of the random loading from the signal. The random
response of a system at a particular moment contains three components, i.e. the step
response due to the initial displacements, the impulse response from initial velocity, and a
random part due to the load on the system. Triggering conditions are defined to determine
the data windows to be used in the averaging process. If the data are averaged every time
the response has an initial displacement bigger than a pre-set trigger level, the random
part due to random load will eventually vanish and become negligible. Additionally,
since the sign of the initial velocity can be assumed varying randomly in time, the
resulting initial velocity will also be zero leaving a pseudo-free response of the system.
Eqg. (6) shows the formulation for the averaging process as follows.

~ 1 &
hrq (T) = szr(tk :tk + TX{ai < Xq (tk) < az} (6)
k=1

where the un-scaled impulse responses are shown as hrq , N is the total number of trigger
crossings, X, (tk -1, +r) is the k th time segment of channel r (the values between X, (t,)
and X, (t, + 7)) when the response at channel g is in between the trigger levels (&, and
a,).

3 Time series modelling
3.1 AR model

An AR model can be fit to the undamaged sensor output, and the residuals from predictions
of subsequent data using this baseline model are then monitored for statistically significant
changes that are assumed to be caused by damage. Specifically, an AR model with p
autoregressive terms, AR(p), using the time series obtained at the initial condition of the
structure (baseline model), can be written as [Box, Jenkins and Reinsel (1994)]
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KO = 34, x(t- D) +e, 0 @

where X(t) is the representation of the measured signal at discrete time t, ¢,; are the AR

coefficients or model parameters, and €, (t) is an unobservable noise term or residual

term. Thus, an AR model works by fitting a simple linear model to each point with the
previous p observed points as dependent variables. Note that an n point time series will
yield n-p equations that can be used to generate a least square estimate of the AR
coefficients or the Yule-Walker method can be used to solve for the coefficients
[Brockwell and Davis (1991)]. In general, the optimal order of the model is not known a
priori. There are several ways to estimate it. The two most widely used methods are
Akaike’s information criteria and Akaike’s final prediction error [Ljung (1998)].

3.2 ARMA model

The ARMA model is given by
p q

X(t) =D a; x(t—i)+ Y. B e, (t—j)+e.(t) (8)
i=1 j=1

where «; and f; are the kth AR (auto-regressive) and MA (moving-average)

coefficient, respectively; p and q are the model orders of the AR and MA processes. The
AR part of order p describes the system dynamics while the MA part of order q is related
to the external noise as well as to the white noise excitation, and ensures the stationarity
of the system response. The Burg algorithm (also known as the maximum entropy
method) is used for estimating the coefficients of the ARMA process [Brockwell and
Davis (2002)].

3.3 AR-ARX model
Employing a new segment y(t) obtained from an unknown structural condition of the
system. Here the new segment y(t) has the same length as the signal x(t) in Eq. (7).

YO = 36, vt )+e, ©

It is assumed that the error between the measurement and the prediction obtained by the
AR model (e, (t) in Eq. (7)) is mainly caused by the unknown external input. Based on
this assumption, an ARX model is employed to reconstruct the input/output relationship
between €, (t) and x(t).

KO = S a K-+ Y B et~ )+, (10
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where &, (t) is the residual error after fitting the ARX(a,b) model to the e, (t) and x(t)

pair. Note that this AR-ARX modelling is similar to a linear approximation method of an
auto-regressive moving average (ARMA) model presented in Ljung [Ljung (1998)]. Here,
a and b values of the ARX model are set rather arbitrarily. However, similar results are
obtained for different combinations of a and b values as long as the sum of a and b is
kept smaller than p.

It is investigated how well this ARX(a,b) model estimated in Eqg. (10) reproduces the
input/output relationship of e, (t) and y(t).

,0 =0 - Y ye-)- Y 5 e, t- ) 1)

where e, (t) is considered to be an approximation of the system input estimated from Eq.

(9). The «; and f3; coefficients are associated with X(t) and obtained from Eq. (10). An

extension to multivariate models of a two-stage AR-ARX model identification has also
been developed [Monroig and Fujino (2006)].

3.4 ARV model

ARV model allows a particular series to be described not only in terms of its own past
values, but also in terms of the past values of the other response locations. This provides
a thorough description of the interaction between response locations. The general ARV(p)
model is shown in Eq. (12).

p
Xy = Z(Dk Xix +€ (12)
k=1
where
T

X :[Xlt’XZt"“’th’Xlt—l’XZt—l"“’th—erl]

.
€ :[elt'e2t1""emt'elt—1’e2t—1""7emt—p+1]
?, :{¢ijk}; i J =12,---mk=12,---, p
The X, and €, are vectors of responses and residuals, respectively, m is the number of

output channels and ¢, are (m x m) matrices of autoregressive parameters.

3.5 ARMAYV model

Given a m-dimensional time series, the parametric ARMAV(p,q) model is described by
the following matrix equation [Piombo, Giorcelli, Garibaldi et al. (1993)].

p q
Xy = zak Xi t+ Z,Bk € T& (13)
k=1

k=1
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where ¢, and S, are (m x m) matrices of AR and MA coefficients.

4 Damage sensitive features

It is shown that the change in coefficients associated to the input to the ARX models can
be attributed directly to the stiffness change in the structure for simple and noise free
models. Therefore, these coefficients can be selected as the damage features. This
practical analysis gives exact identification, localization, and quantification of damage.
However, it is also shown that when there is noise in the data, this approach will not work
as it is, and it needs to be modified. Another disadvantage of this damage feature is that it
does not work properly for complex models. Considering these shortcomings, it is clear
that the methodology will have limitations in real life applications.

4.1 Standard deviation of residual error

If the ARX model obtained from the reference signal block pair x(t) and e, (t) are nota
good representation of the newly obtained signal segment pair y(t) and e, (t), there will
be a significant change in the standard deviation of the residual error, &, (t), compared

to that of &,(t). In particular, the standard deviation ratio of the residual errors,
h=0o(¢,)/o(e,), is expected to reach its maximum value near the actual damage

sources revealing the location of damage. Therefore, this standard deviation ratio or
residual error ratio is defined as the damage sensitive feature and the increase of this ratio
is monitored to detect system anomalies. For example, if the unknown structural state is
undamaged, then the anticipated ratio will be near 1. However, if damage has occurred in
the structure, then the ratio is greater than 1. The remaining signals in the reference
database lead to a group of h. Thus, the mean value, x(h) and standard deviation, o (h)

can be evaluated.

Many statistical models have been developed for structural damage detection. It is seen
that the introduction of h and its probability distribution provides a more standard test for
damage detection and localization since it accounts for the effects of excitation variability
as well as the orders a and b in the prediction model. The probability density function of
h can be evaluated using kernel density estimation methods described in Scott et al.
[Scott and Sain (2004)], and integrated to obtain the cumulative distribution function.
From the empirical distribution of h, threshold limits corresponding to appropriate
confidence intervals can be ascertained. Damage detection and localization are based on
the comparison of these threshold limits with the value of h [Nair, Kiremidjian, Lei et al.
(2003)]. For instance, for normally distributed h, the threshold limit may be fixed as
1(h)+1.960(h) for a 97.5% confidence interval. If the value of h lies below this
threshold limit, then there is 97.5% confidence in stating that there is no damage to the

structure. Similarly, if the value of h is greater than this threshold limit, then there is a
97.5% confidence in stating that there is damage to the structure.
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4.2 F-statistic
Another statistical model has been developed with the primary objective to test the null
hypothesis, Hy:o?(e,)=0(¢,) , against the onessided alternative

H,:0%(¢,) <o’(e,). Here o®(e,) and o’(¢,) are the variances of &, and &,

respectively [Sohn and Farrar (2001)]. The null hypothesis H, is rejected when the F-

statistic in Eq. (14) exceeds the upper 100 x & percentile of the F-distribution as shown
in Eq. (15).

o’(e,)
F — y

(2, .
o’ (s,)
O_Z (gy) > I:n:,fl, n,-1 (15)
where

n,-1=d(n,-1) n-1=d(n, -1)
d :[1+%(b—3)}

(h+n, et )+ )
EACEDHO)

n, and n, are the numbers of samples of &, (t) and &, (t), respectively.

-1

4.3 Sequential probability ratio test

A Sequential Probability Ratio Test (SPRT) has also been used in time series analysis
which starts with observing a sequence of the residual errors as denoted as follows [Sohn,
Worden and Farrar (2002)].

E,=[e,@®,-.&,(n)] (16)

A simple two-class damage classifier is then constructed using the standard deviation of
the residual errors.

Hy:io(e,)<o, H,io(g)20, 0<o,<0;<w (17)
When the standard deviation of the residual error o(g,) is less than a user specified
lower bound o, the system in question is considered undamaged. On the other hand,

when a(gy) becomes equal to or larger than the other user specified upper bound o,

the system is suspected to be damaged. For the hypothesis test in Eq. (17), a SPRT makes
three distinctive decisions as follows [Ghosh (1970)].
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Accept H, if Z <b
Reject H, if Z >a
Continue observingif b<Z_ <a

where the transformed random variable Z  is the natural logarithm of the probability
ratio.

f(E,JH,) , f(Eo)
Z =In = forn>1 (18)
f(En|H0) f(En|O'O)

where f (En|HO) or f (En|0'0) is the conditional probability of observing the data set E,

given the assumption that the null hypothesis is true. f(En|H1) or f(En|al) is defined
in a similar fashion. Without any loss of generality, Z_ is defined to be zero when
f(En|Hl) = f(En|H0) = 0. b and a are the two stopping bounds for accepting and
rejecting H,, respectively.

4.4 First four central moments

The first four central moments, namely the mean, standard deviation, skewness and
kurtosis, are investigated as indicators of damage [Mattson and Pandit (2006)]. The
variance and the skewness showed well-expressed regular dependence on damage
whereas the mean value and the kurtosis demonstrated weak sensitivity and irregular
dependence on damage quantity. As mentioned above, an estimate of the autoregressive
model residual series standard deviation provides an accurate diagnosis of damage
conditions. Similar statistical analysis applied to the raw data necessitates the use of
higher-order moments that are more sensitive to disguised outliers, but are also prone to
false indications resulting from overemphasising rarely occurring extreme values.
Skewness provides the best indication of damage in the raw data. For a multidimensional
distribution, these characteristics (variance and skewness) can be defined by the
following scalar quantities.

o= L3S -7y sy, v @)

M ==

s= 1SS - sty v @)

i=l j=1
where M is the number of points in the vectors that characterises the attractor of the
response signal Y,,n=1,---,M , Y is the sample mean vector and S is the sample

covariance matrix. Instead of using the values for o and s one can introduce relative
changes compared to the non-damaged case.

4.5 First three AR components
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Another damage sensitive feature is defined as a function of the first three AR
components. The first three AR coefficients appear to be most promising because these
coefficients are statistically the most significant among all the coefficients of the model.
After testing several different combinations with the first three coefficients, it was found
that the first AR coefficient normalized by the square root of the sum of the squares of
the first three AR coefficients provides the most robust damage sensitive feature (DSF) as
follows [Nair, Kiremidjian and Law (2006)].

a,

DSF = (21)

\/ al +al+al
where «a,, a, and ¢, are the first three AR coefficients. It is found that the mean values

of the DSF for the damaged and undamaged signals are different. Thus, to test statistical
difference between the means of two groups of data, the standard t-test is used [Rice

(1999)]. I Lipse qamaged AN sk undamagea @€ defined as the mean values of the DSFs

obtained from the damaged and undamaged case, respectively, then a hypothesis test may
be set up as follows to determine if their differences are significant.

HO . /UDSF,undamaged = /uDSF,damaged

Hl . :uDSF,undamaged # :uDSF,damaged

H, represents the undamaged condition and H, represents the damaged condition. The
significance level of the test is set at 0.05.

4.6 Fit ratio

Another approach is to use the fit ratios of the models as the damage features [Gul and
Catbas (2011)]. The fit ratio (FR) of an ARX model is calculated as follows.

FR = [1—|y—_)_/|] x100 (22)
y-y

where y is the measured output, ¥ is the predicted output, y is the mean of y, and

|y — 9| is the norm of y — V. The DF is calculated by using the difference between the

FRs for healthy and damaged cases as given in Eqg. (23).

DSF = I:Rhealthy - FR
FRheaIthy

damaged % 100 (23)

4.7 Mahalanobis distance

Mahalanobis distance-based outlier detection has also been used to detect the novelty in
the data [Gul and Catbas (2009)]. The outlier detection problem for univariate data is
relatively straightforward, e.g. the outliers can be identified from the tails of the
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distribution. There are several discordance tests but one of the most common is based on

deviation statistics and it is given by the following.

7 _di-d (24)
O

where z, is the outlier index for univariate data, d, is the potential outlier and d and o

are the sample mean and standard deviation, respectively. The multivariate equivalent of
this discordance test for nx p (where n is the number of the feature vectors and p is the

dimension of each vector) data set is known as the Mahalanobis squared distance
[Mahalanobis (1936)]. The Mahalanobis squared distance is given as

Z = (Xi - )_()T 2_l(xi - 7) (25)
where Z; is the outlier index for multivariate data, x; is the potential outlier vector and

X is the sample mean vector and X is the sample covariance matrix. By using the above
equations, the outliers can be detected if the Mahalanobis distance of a data vector is
higher than a pre-set threshold level.

4.8 Anomaly measure

The behavioural changes from nominal condition are described as anomalies which can
also be characterized by a scalar called anomaly measure (). The anomaly measure at

slow-time epoch t, is obtained as [Khatkhate, Gupta, Ray et al. (2008)]

o s[iQpK(D— po(j>|)2} (26)

j=1
The above distance function is the standard Euclidean norm of the difference between the
state probability vectors, p,, p,,:--, p,--- Which are obtained at slow-time epochs

t,t,,---,t,,--- based on the respective time series data.
4.9 Relative state sequence histogram error

An index, the relative state sequence histogram error (RSSHe) has also been developed to
measure the distance between histograms [Li, Mita and Zhou (2013)].

(27)

where d!,, is the frequency of state i in state sequence histogram
SSH, =[d;, dZ,---,d"] or SSH, =[d;, dZ,---,d,"]. The elements in SSH, and
SSH, are obtained by symbolic time series analysis using raw acceleration data from a
healthy and unknown structure, respectively.
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4.10 Poincare map

A way to analyse the nonlinear time domain vibration response in a state space is to use
its Poincare map to extract damage sensitive features [Trendafilova and Manoach (2008)].
Poincare maps contain data for the displacements and the velocities of the structure in a
compact form, and since these two parameters are expected to be sensitive to damage,
these diagrams can be used to detect damage. Even when the damage is small, and the
responses of the damaged and the healthy structure are close to each other, the points
from the Poincare map are easier to use for comparison and identification purposes
because the number of these points is not comparable to the enormous number of points
in the time history. Accordingly, the following damage index can be introduced:
19 :.§f_ifﬁi
1 S.u

N,-1 prl 2 2
: L U d _ d _,d id o ad
where Siu - Z\/(Wiu,j+1_wiu,j)2 +(Wi,j+1_Wi,j)2 ) Si = Z\/(Wi,j+1 Wi,j) +<Wi,j+l Wi,j)
j=1 =1
fori=12,---,N N
Poincare map, (wﬁj,w;{j) and (Wi‘fj,v’vid’j) denote the jth point in the Poincare map for
the undamaged and damaged states, respectively. A small (close to 0) damage index will
indicate no damage, while a big damage index will indicate the presence of a fault at the
corresponding location. The above damage index depends on the location of the point on
the structure and consequently it is a function of the structure coordinates x and y. One
can expect that the maximums of the surface 1% will represent the location of damage in

the structure (x,, Y, )-

(28)

is the number of nodes, N o is the number of points in the

node ! node

4.11 Statistical process control

Statistical process control also provides a framework for monitoring future extracted data
features and for identifying new data that are inconsistent with past data. The X-bar and S
control charts can be employed to monitor the mean and variance of the selected features
[Fugate, Sohn and Farrar (2001)]. Control limits for the control charts are constructed
based on the features obtained from the initial undamaged structure. To detect a change
in the mean of residuals, a rational approach is to form subgroups of size n. The
centreline of the chart is the sample mean of the residuals and after the normalization is 0.
The sample variance of each subgroup is determined, and these variances are then
averaged to give a pooled estimate of variance. The square root of the pooled variance,

S, is used as an estimate of the population standard deviation. Control limits are drawn at
0+tz,, sp/\/ﬁ where z_ represents the 7 quantile of the standard normal distribution.

To monitor variability within each subgroup, an S control chart can be used. For each
subgroup the sample standard deviation of the (normalized) residuals is computed, s; .

The upper and lower control limits are
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UcL=§ /Zl—r/Z,n—l LCL=3§ [ Xer2,n1 29)
n-1 n-1

where ;(;n denotes the pth quantile of a Chi-square random variable and S is the

average of s;. A statically significant number of error terms outside the control limits
indicate a system transit from a healthy state to a damage state.

4.12 Sum of squares of residuals

A statistical classification algorithm has also been proposed. [Box, Jenkins and Reinsel
(1994)] demonstrated that approximate 1 — & confidence region of the ARMA parameters
are bounded by a contour on the surface of the sum of the squares of the residuals given
by Carden et al. [Carden and Brownjohn (2008)]

s(8)< s(ﬁ'){u @} (30)

where S(-) is the sum of the squares of the residuals function, £ are the ARMA
parameters estimated from a time series of length n and ﬁ’ are the previously known
ARMA parameters from a particular process. Generally, only an estimate of ,3 is known.

;(f (k) is the significance point exceeded by a proportion & of the ;(2 distribution and

k is equal to the order of the ARMA model. Eq. (30) allows the comparison of all the
ARMA parameters simultaneously. If it is postulated that the time series is generated by a

process with true ARMA parameters £, which means it is a structure in a healthy state,
then Eq. (30) tests whether the parameters S are significantly statistically similar or

different to ,3 in order words healthy or not healthy. Eqg. (30) will be used as the basis

for a classification algorithm for SHM assuming that ARMA models can be fitted to the
responses of the structure being measured.

4.13 Distance between centers of damaged and undamaged clouds

Based on the damaged and undamaged clouds in the AR coefficient space, two damage
localization indices can be defined as follows [Nair, Kiremidjian and Law (2006)].

d ddamcloud
LI, =—man ||, =———+ 31

undam cloud undam cloud

where d_..., is the distance between the centers of the damaged and undamaged clouds,
dgancioug 1 the distance from the origin to the center of the damaged cloud and
d,samcious 1S the distance from the origin to the undamaged cloud. At the sensor

locations where damage is introduced, the values of LI, and LI, appear to increase
from their values obtained at the undamaged baseline state.
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5 Variations and improvement of the existing time series models
5.1 Output-only problem

In many cases, damage detection and identification have to be based on vibration response-
only measurement (the output-only problem). This is so because the force excitation may
be due to various sources that are difficult or impossible to precisely isolate and measure.
TARMA models resemble their conventional, stationary ARMA counterparts with the
significant difference being that they allow their parameters to depend on time. Depending
on the nature of the mathematical structure imposed on the time evolution of their
parameters, TARMA models may be classified as unstructured parameter evolution,
stochastic parameter evolution and deterministic parameter evolution.

A TARMA (n,,n,) model with n_, N, designating its autoregressive (AR) and moving

average (MA) orders, respectively is given as follows [Spiridonakos, Poulimenos and
Fassois (2010)].

X(t) + _nzaai O x(t—i) =e,(t) + ici (Me(t- i), e ~NIDO,02 (1)) (32)

where t designating normalized discrete time, x(t) is the nonstationary vibration response
signal, e (t) is an unobservable uncorrelated (white) nonstationary residual signal

characterized by zero mean and time-varying variance afx (t), and &;(t),c;(t) are the
model’s time varying AR and MA parameters, respectively.

5.2 Sensor cluster

To identify local damage, it is important that the models correspond to dynamic
properties at the level of structural members. In this respect, it seems that exchanging
time histories between adjacent sensors could improve the results, assuming that
multivariate models more accurately describe the structural behaviour in the members
between sensors. A local physical model method has been developed by rewriting the
second order equation of dynamics of a node as an ARX (2, 2) model. This model can be
identified from acceleration measurements of the nodes that are connected by a structural
member to the current node.

The dynamics of node i are ruled by the following Eq. (33) [Monroig and Fujino (2006)].
m%; +C (Xi - Xi—1)+ Ci+l(Xi - Xi+1)+ ki (Xi - Xi—1)+ ki+1(xi - Xi+1) = f; (33)

After differentiating twice Eq. (33), the first and second derivatives of the accelerations
are approximated by finite differences and Eq. (34) can be thought of as a multivariate
ARX (2, 2) model.

yt)+ Ayt-1)+ Ayt -2)=Bu(t—-1)+ Bu(t—2) +e(t) (34)
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The core of the methodology is to create different ARX models for different sensor clusters
and then extract damage sensitive features from these models to detect the damage.

5.3 Symbolic time series analysis

While classical data analysis focuses on individuals, symbolic data analysis deals with
concepts, a less specific type of information. The original time series signals are
converted into sequences of discrete symbols, and the statistical features of the symbols
can be used to describe the dynamic statuses of a system. Data symbolization by using
symbolic TSA alleviates the effects of harmful noise in raw acceleration data [Li, Mita
and Zhou (2013); Khatkhate, Gupta, Ray et al. (2008); Rajagopalan and Ray (2006)].

The first step is to transform the raw acceleration data into a binary symbol series. A
binary code needs to be transformed into the decimal domain. Alternatively, symbolic
time series analysis can also take advantage of the information generated by partitioning
the time series data in its wavelet domain. A data sequence (time series data) is converted
to a symbol sequence by partitioning a compact region S of the phase space, over which
the trajectory evolves into finitely many discrete blocks. The occurrence number of
certain states in the state series varies. Then the statistics of the symbolic state can be
derived, i.e. compute the vector of the observed state frequencies. A bar graph used to
plot the occurrence number of every state in a state series is called “state sequence

histogram” SSH =[d*,d?,---,d™] where d' is the number of occurrences (Eg. (27)).

5.4 Nonlinear time series analysis

As the physical long-term behaviour of a dynamic system is on the attractor, the system is
thereby characterized by its attractor. Therefore, the steady-state converging trajectories,
which represent the attractor, are very sensitive to any changes in the system. A number
of the nonlinear invariants are introduced as damage sensitive features from the state
space representation of the attractor of a vibrating system. The average mutual
information (AMI) can be used as a measure of correlation between two measurements
[Trendafilova and Manoach (2008); Trendafilova (2006)]. It has been found for some
investigated cases that the AMI increases with the introduction and with the increase of
damage. Thus, the relative change of AMI referred to the undamaged case can be used to
form a damage feature. The AMI is a quantity which is easy and straightforward to
compute directly from the measured acceleration data, which make it an attractive
candidate for damage diagnosis.

The correlation dimension is another invariant of the motion of a dynamic system which
can be estimated from data [Trendafilova (2006)]. The correlation dimension decreases
with the introduction of damage. Therefore, considering its sensitivity to damage and its
invariance for smooth changes of the coordinate system, the relative change of
correlation dimension can be introduced as a possible damage feature (index).
Unfortunately, the estimation of the correlation dimension is not an easy and
straightforward process. Thus, it is very difficult or rather impossible to find a true and
reliable estimate for the correlation dimension. Due to these difficulties, it should not be
considered a good candidate for a damage feature.
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For a linear vibrating system, the Lyapunov exponents (LES) are determined by the real
parts of the eigenvalues of the state space matrix of the system [Trendafilova (2006)].
Previous research has shown that damage will affect the eigen state of the structure, and
thus they are expected to affect the structure’s LEs and the geometry of the attractor. The
relative change in the largest LE can be suggested as a possible damage feature. Although
there is evidence that in some cases the Lyapunov spectrum changes with damage, in
many practical cases the eigenvalues of the structure remain rather insensitive to damage.
An alternative way to characterize the attractor of a dynamic system is to use its
probability density. The introduction of damage will change the vectors that characterises
the attractor of the response signal and its distribution. The new distribution will be
represented by a different set of coefficients. Thus, the average root mean square
difference between the coefficients representing the distribution of points on the
undamaged and unknown attractor can be used as a possible damage feature.

5.5 NARMAX

Another study is to make use of NARMAX (Nonlinear Auto-Regressive Moving
Average with eXogenous Inputs) modelling [Peng, Lang, Wolters et al. (2011)]. A study
to combine the NARX modelling and nonlinear output frequency response function
(NOFRF) based analysis was conducted to perform damage detection for structural
systems to overcome the problems and difficulties associated with the time domain
modelling and residual analysis based techniques. The technique first applies the
NARMAX modelling method to establish a NARX model from an inspected structural
system. Then, the NOFRFs and an associated index for the inspected structure are
determined from the established NARX model. Finally, structural damage detection is
conducted by comparing the values of the NOFRF index of the inspected structure and
the values of the index for an undamaged structure.

5.6 Combination with immune algorithm

A hybrid methodology combining immune algorithm and symbolic time series analysis
has been developed for structural health monitoring [Li, Mita and Zhou (2013)]. Real-
valued negative selection (RNS) is used to detect structural damages and adaptive
immune clonal selection algorithm (AICSA) is used to localise and quantify the damages
by minimizing the Euclidean distance between the SSH (Eq. (27)). The negative selection
algorithm is inspired by observation of the activity of the human immune system. RNS
tries to alleviate some of the drawbacks of NS while using the higher level of
representation real space to speed up the detector generation process. Inspired by the
clonal selection principle, the clonal selection algorithm (CSA) has been used to deal
with optimization problems. AICSA embodies three strategies: Secondary response,
adaptive mutation regulation and vaccination to speed up CSA’s convergence and ability
to find the global optimum.

6 Conclusions

This paper reviews the application of time series analysis for SHM. The different types of
time series analysis are described, and the basic principles are explained in detail.
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Depending on the technique employed, various damage sensitive features have been
proposed to capture the deviations. Damage sensitive features that discriminate between
damaged and non-damaged states of a structure are reviewed including residual error
ratio, hypothesis testing, SPRT, first four central moments, the first AR coefficient
normalized by the square root of the sum of the squares of the first three AR coefficients,
fit ratio, Mahalanobis distance, anomaly measure, RSSHe, Poincare map, statistical
process control, and statistical classification algorithm. In addition, some investigations
that have attempted to modify and/or combine time series analysis with other approaches
for better damage identification are presented including TARMA for solving output-only
problem, sensor cluster, symbolic TSA, nonlinear TSA, NARMAX, and combination
with immune algorithm.
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