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Abstract: This paper presents an evaluation of time-frequency methods for the analysis of 

seismic signals. Background of the present work is to describe, how the frequency content 

of the signal is changing in time. The theoretical basis of short time Fourier transform, 

Gabor transform, wavelet transform, S-transform, Wigner distribution, Wigner-Ville 

distribution, Pseudo Wigner-Ville distribution, Smoothed Pseudo Wigner-Ville 

distribution, Choi-William distribution, Born-Jordan Distribution and cone shape 

distribution are presented. The strengths and weaknesses of each technique are verified by 

applying them to a particular synthetic seismic signal and recorded real time earthquake 

data.  

 

Keywords: Time-frequency distribution, Seismic signals, Cross-term interference, Auto-
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1 Introduction 

The traditional method for analysis of the seismic signal is the discrete Fourier transform 

(DFT), which determines the frequency components of a time domain seismic signal. But, 

this method becomes inadequate when data point increases in the DFT. Further, Cooley 

and Tukey explained an efficient algorithm to compute the DFT and this algorithm is 

known as fast Fourier transform (FFT) [Lathi (1998); Proakis and Manolakis (2006)]. In 

the present scenario, it has become one of the most prominent tools to analyze the spectral 

components of the seismic signal in earthquake engineering. In the last few years, scientist 

and researchers have become attentive to the limitations of the Fourier transform. Spectral 

analysis using Fourier transform measures the frequency components of a signal, but does 

not provide the temporal information of time varying signal [Huang and Yu (2011)], [Black 

(1998)]. Another problem of the Fourier transform is that the same frequency of vibrations 

at two distinct time interval is not able to distinguish; such information shows as a single 

peak in the Fourier transform plots. 

Based on above inference, the joint time-frequency representation (JTFR) of the signals 

has been developed. JTFR is a prominent tool to analyze the spectral components of a 

signal and their temporal information. A few commonly employed time-frequency 
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techniques are short time Fourier transform (STFT), Gabor transform, Wavelet transform 

(WT), Wigner-Ville distribution, (WVD), Pseudo Wigner-Ville distribution and Choi-

William distribution (CWD). STFT is employed for frequency analysis of seismic signals. 

And, it can be defined as Fourier transform of the product of the signal and shifted version 

of the window function, which can be rectangular, Hanning, and Hamming window in 1998 

[Black (1998)] was applied this technique to the data recorded on the instrumented building 

to detect the change in frequency. The result of STFT suffers from the windowing effects 

due to the limitation is given by the uncertainty principle [Black (1998); Lingyu and Vector 

(2005); Trifunac, Ivanovic and Todorovska (2001); Chandra and Barai (2009, 2014); Roshan, 

Sumiti and Ashok (2015)]. And, another problem associated with STFT is the possible amount 

of leakage [Black (1998); Douglas and Thomas (1987)]. For this reason, Gaussian window is 

introduced in place of Hanning and Hamming window and it turns out to be a Gabor transform. 

The application of the Gaussian window in Gabor transform provides better resolution. 

Therefore, Gabor transform was used to determine the instantaneous frequency and damage 

detection of Imperial County services building for Imperial Valley earthquake (1979) 

[Todorovska and Trifunac (2007)]. But, the drawbacks associated with the Gabor transform is 

that the time and frequency resolution cannot achieve simultaneously since window function is 

involved. 

To overcome the fixed window length problem as discussed in case of STFT and GT, 

wavelet transform has been introduced, which is having variable window length. Because 

of this specialty i.e. adaptive window length, some of the researchers applied this technique 

in several fields such as structural damage detection, health monitoring in Taha e al. [Taha, 

Noureldin, Lucero et al. (2006)] detection of damage locations in a beam using the wavelet 

analysis in Rucka [Rucka (2011)]. The further wavelet transform analysis has also been 

used for the diagnosis of incipient faults in ball bearings, measurement of seismic 

attenuation [Li, Zhao, Cao et al. (2006)] and recently in Tsunami warning system [Kuenza 

(2010)] Similar to the STFT and GT, wavelet transform also suffer from time and 

frequency resolution problem since window function is involved [Li and Zheng (2007); 

Amy and Wiesław (2007); Christopher and Kyle (1998); Zhu, Wang and Shen (2012); 

Sinha, Routh, Anno et al. (2005)]. The S-transform is a hybrid combination of STFT and 

wavelet transform [Pinnegar and Mansinha (2003); Zhu, Wang and Shen (2012)] that takes 

the advantage of both. The prior research suggests that clarity of S-transform is worse than 

Wigner-Ville distribution which achieves higher resolution [Yang and Sergey (2013); 

Tobback, Steeghs, Drijkoningen et al. (1996)], but it is seldom used in practice due to the 

presence of cross-term interference. These cross-term interferences are undesirable, which 

are present in the middle of the two actual frequency components. And, it creates the 

misleading information [Shie and Chen (1999); Boashash (2003)]. This unwanted signal 

i.e. cross-term interference can be reduced by applying the low pass filter called Pseudo 

Wigner-vile distribution (PWVD), smoothed Pseudo Wigner-Vile distribution (SPWVD), 

Choi-William distribution, Born-Jordon distribution and Cone shape distribution. PWVD 

has been used for detection of events in seismic time series and detection problem consists 

in identifying the actual seismic signal [Gabarda and Cristoba (2010)] and this technique 

has also been applied in Electrical engineering for analysis of power quality [Szmajdaand, 

Górecki and Mroczka (2010)]. A smoothed pseudo-Wigner-Ville distribution is a precise 

http://journals.sagepub.com/author/Lucero%2C+J+L
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time-frequency method has been applied to the data recorded on the instrumented building 

to detect the frequency variation [Clotaire and Philippe (2010)]. 

In addition, SPWVD has also been used in the detection of characteristics of seismic signal 

whether it is a seismic signal or not [Rivero-Moreno and Escalante-Ramires (1996)]. 

Further, the author applied several time-frequency distributions on seismic signals namely 

WVD, PWVD, SPWVD, and CWD, to detect and predict the seismic wave through TFD 

and showed the efficiency of the SPWVD [Tseng (2014)]. CWD employed to identify the 

reflection pattern [Steeghs and Drijkoningen (1996)]. Further, the author showed a 

comparison between several signal analysis techniques including STFT, Pseudo Wigner-

vile distribution, smoothed Pseudo Wigner-vile distribution, Choi-William distribution, 

Born-Jordon distribution and Cone shape distribution [Samuel (2006); Saldaña (2008)]. 

They applied several methods to the data recorded on the instrumented buildings. The aim 

of this paper is to examine the theoretical basis of some of the methods and then apply 

them to synthetic seismic signals to show the merits and demerits of time-frequency 

methods. 

2 Time-frequency mathods 

2.1 Short time fourier transform 

Short time Fourier transform is used to analysis the seismic signal at a desire time t and 

suppressing it all other times that is accomplished by multiplying the actual time signal x(t) 

by a window function w(t), centered at time t [Black (1998)]. The mathematical 

representation of STFT is expressed as, 

                                                                                    (1) 

where x(t) is the signal to be analyzed, w(t) is a window function and  indicates the 

position of wthe indow. Eq. (1) provides a time-frequency representation of the windowed 

signal )()( * −twtx .  

Spectrogram or energy content of seismic signal can be defined by computing the square 

magnitude of the STFT [Amy and Wiesław (2007); Rucka (2011)]. 

The STFT spectrogram could be obtained from the following expression. 
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While using the STFT, choice of the window size is significant as it controls the time and 

frequency resolution. The problem associated with STFT is that the signal energy is 

scrambled with the window function and the energy of the signal appears on the time-

frequency plane which is not present in actual signal [Black (1998); Trifunac, Ivanovic and 

Todorovska (2001)]. Another problem associated with STFT is leakage due to the effect of 

the window. The Fourier transform of a rectangular window used in STFT is a “Sinc” 

function having narrow main lobe width but larger side lobes resulting in higher spectral 

“leakage” or the signal energy spreading from one spectral location to other by performing 
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the convolution operation of signal spectrum and window spectrum [Douglas and Thomas 

(1987)]. For an ideal window, essentially the main lobe width should be very small, and 

side lobes should fall offs rapidly so that high detection ability could be obtained. To reduce 

the effect of leakage, window with smaller side lob can be used such as Hanning [Proakis 

and Manolakis (2006)]. 

2.2 Gabor transform 

The mathematical representation of Gabor transform of signal x(t) is defined as, 





deetxftGT fj

t

22

)( 2

)(),( −

−−

=                                                                                  (3) 

Where x(t) is the input signal 
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2
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is Gaussian window and   indicates the time-shift of 

the window. Like STFT, Gabor transform also uses the running window for analysis of 

sthe ignal. The window being used in Gabor transform is Gaussian in nature, is broadly 

used due to its less spectral leakage. It has been shown in the application of Gaussian 

window in Gabor transform provides the better resolution [Todorovska and Trifunac 

(2007); Janssen (1991); Tomaz (2001)] 

Seismic signal energy is obtained by computing the square magnitude of the Gabor 

transform. The GT spectrogram is given by the equation,  
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Similar to the STFT, the Gabor transform also suffers from the time and frequency 

resolution problem since window function is involved. A narrow window gives good time 

resolution and poor frequency resolution. A window size becomes wide, time resolution 

becomes worse but the frequency resolution improves. 

2.3 Wavelet transform 

A wavelet is limited duration signal that has an average value of zero. In order to overcome 

the shortcomings of the fixed window techniques (e.g. STFT, GT), Morlet and Grossman 

introduced the concept of wavelet transform in 1980 and proposed the theory of multi-

resolution in wavelet transform which offers different resolutions at different frequencies 

[Christopher and Kyle (1998)]. The mathematical equation of wavelet transform defined 

as, 

                                                                       (5)                                                                                                                                                                                           

 

Where x(t) is a signal to be analyzed, ( )t  is mother wavelet,   indicates translation (or 

time shift) of the window and s is the scale (or dilation) of the mother wavelet. The wavelet 

transform is a time-scale representation called scalogram which does not provide a direct 
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interpretation of frequency. There is a reciprocal relationship between scale and frequency 

that converts the time-scale to the time-frequency spectrum [Qiang (2012)]. Similar to 

STFT and GT, uncertainty principle also affects the wavelet transform [Li and Zheng 

(2007); Sinha, Routh, Anno et al. (2005)]. Since at high scale, it gives poorer time 

resolution and better frequency resolution, and at the low scale, it gives better time 

resolution and poorer frequency resolution. Hence, time and frequency resolution cannot 

be represented simultaneously due to window effect. 

2.4 S-transform 

S-transform a time-frequency technique was proposed by Stockwell and his coworkers 

[Pinnegar and Mansinha (2003)]. S-transform is fusions of short time Fourier transform 

(STFT) and wavelet transform that takes the advantage of STFT and wavelet [Pinnegar and 

Mansinha (2003); Zhu, Wang and Shen (2012)]. The mathematical representation of S 

transform is expressed as, 

dtee
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S represents the S-transform of the signal, h is a continuous function of time t , the frequency 

is denoted by f  and the quantity  is a parameter which controls the position of the Gaussian 

window on the y-axis. Because of use of frequency-dependent window function, S-transform 

provides a good frequency resolution at low frequency and a good time resolution at a higher 

frequency. Hence, it can be said that time and frequency resolution cannot achieve 

simultaneously since window function is involved. And, the clarity of S-transform is poorer 

than the Wigner-Ville distribution [Yang and Sergey (2013)]. 

2.5 Wigner distribution 

The Wigner distribution (WD) has been introduced to overcome the limitations of time-

frequency distribution as discussed before. The advantage of Wigner distribution over 

other transforms, such as the wavelet transform STFT, and GT is having sharp localization 

properties in the time-frequency plane [Tobback, Steeghs, Drijkoningen et al. (1996)]. WD 

is the Fourier transform of the input signal’s autocorrelation [Qian and Chen (1999); 

Boashash (2003)]. WD could be expressed by the following equation, 


  detXtXftWVD fj
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Where, ( )x t is a real signal. 

WD increases the time-frequency resolution, but the unwanted signal i.e. cross-term 

interference creates due to the non-linearity of the WD causes interaction between the 

positive and negative frequency components. These cross-term interference, which reduces 

the worth of the WD for real signals, can be reduced by modifying the WD with the analytic 

signal [Qian and Chen (1999); Boashash (2003)]. 
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2.6 Wigner-Ville distribution 

WVD is an expansion of WD [Boashash (2003, 1996)]. WVD is the Fourier transform of 

the input signal’s autocorrelation. WVD could be expressed by the following equation, 

* 2( , ) ( ) ( )
2 2

j f

zWVD t f z t z t e d  


+

−

−

= + −   (8)   

Where, ( )z t  is analytic signal of ( )x t . The real signal first converted into an analytic form 

by computing the Hilbert transform in order to give a positive spectrum. The benefit of 

analytic signal is that it removes the negative frequency component and reduces the cross 

term interference arises due to the positive and negative frequency terms. But, the cross 

term interference created between the actual frequency components cannot be removed. 

For example,  

WVD of the signal 
1 2( ) ( ) ( )z t x t x t= + from Eq. (8) is 
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The WVD of the signal z (t) does not simply sum of the WVDs of the signals 
1( )x t  and 

are the actual signal components and, there is present one more signal component, which 

is the cross term
2

2Re ( , )x xWVD t f 
  . The cross term interference can have a peak value 

of as high as twice of that of the actual signal. . If a signal consists of two sinusoids at 

frequencies 1x and 2x , and cross-term interference occurs over the Wigner time-frequency 

distribution at a frequency equal to 1 2( )
2

x x+ . In general, for n sinusoids there exists n 

(n−1)/2 such interference terms. Note that, cross term interference increases quadratically 

with a number of signal components. This cross term creates the misleading information 

particularly if WVD outcome is to be visually analyzed by a human analyst. This 

distribution provides the best time-frequency resolution, but due to the presence of cross 

term interference make the interpretation of WVD is impossible [Qian and Chen (1999); 

Boashash (2003)]. 

2.7 Pseudo Wigner-Ville distribution 

Pseudo Wigner Ville distribution (PWVD) is a windowed version of WVD [Gabarda and 

Cristobal (2010); Szmajdaand, Górecki and Mroczka (2010)]. On the other hand, PWVD 
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is sliding version of WVD obtained by inserting a time domain window, ( )w  . PWVD 

could be expressed by the following equation 

 

                                                (12)                                                                                                                                                                                                            

 

The window function determines how to suppress the cross-terms. By selecting the 

appropriate window function, it can be reduced the cross-term interference and keep some 

constructive properties of the WVD. But the drawback is that it also reduces the time-

frequency resolution [Yang and Sergey (2013)]. 

2.8 Choi-William distribution 

Choi-William distribution (CWD) overcomes the WVD limitation by reducing the cross 

term interferences to a large extent. CWD adopts the exponential kernel [Samuel (2006); 

Saldaña (2008)] to suppress the cross-term interference of WVD.  

The Choi-Williams distribution could be expressed by the following equation, 
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Where ( , )   is kernel function. 

The kernel function is expressed as follows, 
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The exponential kernel function includes a beta parameter to suppress the cross-terms away 

from the horizontal axis and the vertical axis. Therefore, the CWD reduces the cross-terms 

generated by two auto-terms with different time centers and frequency centers. However, 

CWD preserves the cross-terms on the horizontal axis and the vertical axis. In other words, 

the CWD does not suppress the cross-terms that two auto-terms with the same time center 

or frequency center generate. 

2.9 Smoothed pseudo Wigner-Ville distribution 

SPWVD is a windowed version of WVD, which employs windowing operation to suppress 

the undesired cross-term interference. The mathematical expression for SPWVD is as 

follows, 
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Where function g allows the smoothing of the cross term along the time axis (time 

smoothing) and the function h allows the smoothing of the cross term along the frequency 

axis (frequency smoothing). The amount of smoothing in the time domain and in the 

frequency domain can be controlled by the length of window function (for example 
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Hanning window). This windowing operation is used to reduce the effect of cross term 

interference [Amirtaha and Hansen (2017); Samuel (2006); Saldaña (2008)]. 

2.9 Born-Jordan distribution 

Born-Jordan a time-frequency technique provides temporal and spectral information of a 

signal. This distribution employs a kernel function is sin ( )c t  to reduce the effect of 

cross-term interference [Samuel (2006); Saldaña (2008)]. BJD suppress the effect of cross 

term partially in the center of time and frequency axis. However, it removes the effect of 

cross the erm in the different time and frequency axis. 

2.10 Cone shape distribution 

The Cone shape distribution (CSD) could be expressed by the following equation 

 
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−

−=   ddeAftC ftj
zz

))(2(),(),(),(

                                                                 (16) 

Where, ( , )zA    is ambiguity function of the signal, and ( , )   is kernel function. 

Here, the kernel function is defined as Saldana [Saldana (2008)], 

)2exp()(sin 2 −c                                                                                       (17) 

The reason why this distribution is so named is that its kernel function in ( , )t  domain 

looks like two cones. This kernel function is also known as butterfly function The CSD 

suppresses the cross-terms that two auto-terms with different time centers and frequency 

centers generate. Additionally, the CSD also suppresses cross-terms that two auto-terms 

with the same frequency center generate. However, the cross-term components with the 

same time center cannot be removed by the cone-shape kernel [Samuel (2006); Saldaña 

(2008)]. 

Table 1: Comparison of time-frequency methods 

S. No Methods              Applications                   Remarks 

 

 

1 

 

 

STFT 

Damage analysis of buildings  

[Black (1998); Trifunac, Ivanovic 

and Todorovska (2001)] 

Provides time and frequency information, 

but suffers from windowing effect 

2 GT Analysis of Geophysical signal  

[Bradford (2006)] 

Damage analysis of buildings  

[Todorovska and Trifunac (2007)] 

Improve time and frequency resolution as 

it employs Gaussian window. Although, it 

is limited to the uncertainty principle 

3 WT Damage identification of EUSR 

system [Yu and Giurgiutiu (2005)] 

Structural health monitoring [Taha, 

Noureldin, Lucero et al. (2006)] 

Processing of earthquake records 

[Heidari and Salajegheh (2008)] 

Detection of damage location in the 

beam [Rucka (2011)] 

Tami warning system [Chew and 

Kuenza (2007, 2009)] 

 

 

 

Spectral smearing problem 

http://journals.sagepub.com/author/Lucero%2C+J+L


 

 

 

Joint Time-Frequency Analysis of Seismic Signals                                                     73 

4 S transform Oil and Gas detection [Liu and 

Fomel (2013)] 

Enhancement of seismic signals 

[Pinnegar and Mansinha (2003)] 

Structural health monitoring  

[Vikram and Bidisha (2009)] 

Seismic exploration. 

Denoising of seismic signals [Parol 

(2009)] 

 

 

Suffers from the poor energy 

concentration and it is also restricted to 

the uncertainty principle 

5 WVD Analysis of earthquake damaged 

structurer [Brasdford (2006)] 

etermine the seismic reflection 

pattern [Steeghs and Drijkoningen 

(1996)] 

It provides the highest resolution for non-

stationary signal in the time-frequency 

plane. However, due to the cross-terms, it 

is difficult to analysis the signals 

6 PWVD Damage detection of structures 

[Cano and Cruzado (2007); 

Trifunac, Ivanovic and Todorovska 

(2001); 

Trifunac and Todorovska (1999)] 

Detection of events in seismic time 

series [Gabarda and Cristobal 

(2010)] 

 

The presence of the cross term does 

decrease as compared with the WVD, but 

at the cost of a slight increase in the 

broadness of the frequency values 

 

 

 

7 

 

 

 

 

 

SPWVD 

Reef, shoal carbonate reservoir 

characterization [Pinnegar and 

Mansinha (2003)] 

Estimating the attenuation of 

seismic signals [Yandong and 

Xiaodong (2007)] 

Detection of transition of seismic 

signal [Moreno and Boris (1996)] 

Damage analysis of the 

instrumented buildings [Michel and 

Philippe (2010)] 

 

 

 

 

Energy bands of frequencies distributions 

are thick, so it is very difficult to detect 

the small variation of signals 

8 

 

 

RSPWVD Analysis of earthquake signal  

[Demetriu and Trandafir (2003)] 

Detection of gas reservoir [Ning et 

al. (2012] 

Damage analysis of instrumented 

buildings [Michel and Philippe 

(2010)] 

 

It involves the filtering operation so it 

affects the smoothing of the auto terms 

9 

. 

CWD 

 

 

 

 

Seismic reflection pattern  

[Steeghs and Drijkoningen (1996)] 

Detection of the arrival time of P-

wave [Moriya and Niitsuma (1996)] 

Damage assessment of structures. 

Damage assessment of a frame 

structure [Chandra and Barai 

(2014)] 

 

 

CWD does suffer from an inherent cross-

term problem 

10 

 

 

CSD Applied on the 2D seismic data to 

extract attributes. 

The cross-term components with the same 

time center cannot be removed by the 

cone-shape kernel 
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3 Synthetic signal analysis 

3.1 Simulate signal 

A synthetic seismic signal is considered for analysis and results are presented in this section 

from several time-frequency methods. Simulation has been carried out for the particular 

synthetic seismic signal. For examination purpose, a synthetic seismic signal is generated, 

which consists of modulated sine waveforms with Gaussian signals of frequencies 10 Hz, 

5 Hz and 5 Hz, is sampled at 100 Hz of frequency. The frequency components are labeled 

as F1, F2, and F3, and are indicated by the arrow in all the plots. The generated synthetic 

seismic signal is shown in Fig. 1 and it could be expressed as 
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Where x(t) is clean signal and )(tn  is additive white Gaussian noise. The mathematical 

model was used to generate such signal is composed of the product of the Gaussian signal 

and sine signal with different frequency components. The synthetic seismic signal has been 

generated using Eq. (18), by adding Gaussian noise to the signal. The resulting synthetic 

seismic signal with Gaussian noise is shown in Fig. 1.1. 

The two-dimensional plots of the application of time-frequency distributions on the 

synthetic seismic signal for the methods such as STFT, GT, WT, S-transform, WD, WVD, 

PWVD, SPWVD, CWD, Born-Jordan, and CSD are shown in Figs. 1.2-1.12. The result of 

short time Fourier transform on the application of synthetic seismic signal is shown in Fig. 

1.2. The use of such windowed method needs a compromise between frequency and time 

precision. From Fig. 1.2, it appears that energy of individual frequency component obtained 

from STFT spectrograms are not localized properly over the time-frequency plane and also 

energy in the time-frequency plane appears before the true temporal onset of the transient 

signals. In order to get a better result, analysis of seismic data has been performed with GT. 

The result obtained with GT is shown in Fig. 1.3, and it has been observed that the energy 

of the individual frequency component obtained from GT spectrogram is confined to a 

smaller area in comparison to the STFT. Since Gaussian signal is more concentrated than 

the rectangular function in the frequency domain and provides less spectral leakage, and GT 

offers a better resolution over the time-frequency plane as compared to STFT as can be seen 

in Fig. 1.3. As STFT and GT have limitations of having a fixed resolution that is why, 

analysis has been carried out by wavelet transform. And, it has been observed that this 

transform provides better time resolution and blurry frequency information on the time axis 

in between 1 s to 2 s as can be seen in Fig. 1.4. The frequency components are present on 

the time axis between 1 s to 2 s, not easily able to discriminate. However, this method also 

suffers from the time-frequency resolution problem since window function is involved. The 

analysis of the seismic signal is continued with S transform and the result obtained with S 

transform is presented in Fig. 1.5. The result shows that S transform has poor energy 

distribution of signal over the time-frequency plane. Because of this blurring information, 

the exact frequency distribution with respect to time is unpredictable. 

)()()( tntxty +=



 

 

 

Joint Time-Frequency Analysis of Seismic Signals                                                     75 

 

Figure 1.1: Synthetic seismic signal that consists of modulated sine curves with 

frequencies of 10, 5 and 2 Hz 

   

Figure 1.2: The intensity graph 

obtained from STFT                     

Figure 1.3: The intensity graph 

obtained from Gabor transform 

     

Figure 1.4: The intensity graph 

obtained from wavelet transform                                                                  

Figure 1.5: The intensity graph 

obtained from S transform 
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Figure1.6: The intensity graph obtained         Figure 1.7: The intensity graph obtained 

from WD                                                          from WVD 

 

Figure 1.8: The intensity graph obtained from WVD 

 

Figure 1.9: The intensity graph obtained   Figure 1.10: The intensity graph obtained from 

WVD                                                          from WVD 
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Figure 1.11: The intensity graph obtained        Figure 1.12: The intensity graph obtained 

from WVD                                                          from WVD 

To overcome the effect of the window function in time-frequency method as discussed 

above, the analysis is carried out with WD. The result of WD on synthetic seismic data is 

provided in Fig. 1.6. It could be noticed from the Fig. 1.6 that the presence of cross terms in 

between each pair of the auto term, which is not present in STFT, GT, WT and S-transform 

plots. Although, this method increases time and frequency resolutions, due to the occurrence 

of cross terms, characterization of seismic signal and identification of their frequency 

components become very difficult. In Fig. 1.6, those cross-term interferences are generated 

due to the interaction between the positive and negative frequency components as appears 

in the lower frequency band (i.e. below of frequency 5 Hz) in the time-frequency plane. 

Those cross terms are present in the lower frequency band; it can be removed by converting 

the real signal into the analytic signal as suggested by researcher Ville [Boashash (2003)]. 

This new distribution is named as WVD. The WVD removes the cross terms which are 

present in the lower frequency band. But, the cross terms which were generated between the 

actual frequency components are not removed as shown in Fig. 1.7. The signal to noise ratio 

(SNR) of seismic signal is further decreased due to cross-term interference. At the low signal, 

to noise ratio, a rapid degradation in performance is observed. The PWVD overcomes the 

WVD limitations reducing the effect of cross-terms. It removes the effect of cross term 

interference diagonally of the actual frequency components as well as it removes the effect 

of the cross term, those are present in the same frequency axis. But, the cross-terms are 

present on the same time axis of true frequency components, cannot be eliminated as can be 

seen in Fig. 1.8. Moreover, the analysis is carried out with SPWVD. From Fig. 1.9, it is 

clear that SPWVD suppressing the effect of cross-terms and make the time-frequency plane 

free from the cross- terms. But, the drawbacks of PWVD and SPWVD are that the energy 

band of this distribution is generally thick and makes the small frequency variations difficult 

to distinguish. Since then, there is continuous developed in time-frequency method to get 

better resolution. Additionally, the analysis on synthetic seismic data with CWD is shown 

in Fig. 1.10. The CWD offers a time-frequency resolution on par with the WVD. It could 

be observed that CWD suppresses the cross term interference to a large extent, but the cross-

terms which are present in the same time and frequency axis, cannot be removed as shown 

in Fig. 1.10. The analysis of seismic data with BJD is continued and yields result shown in 

Fig. 1.11. The result obtained with BJD shows that it removes the cross-terms in a different 
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time and frequency axis completely, but those cross-terms are present in same time and a 

frequency axis, are moderately reduce the effect of cross-terms as can be seen in Fig. 1.11. 

The CSD is a smoothed version of BJD which filters the cross-term along the same 

frequency axis has also been in Fig. 1.12, but it preserves the cross-term along the time axis. 

4 Northridge earthquake data recorded in 1994 

4.1 Seismic signal 

A Northridge earthquake data recorded in the year of 1994 can be seen in Fig. 2.1. This 

earthquake data recorded at the top of the building (https://www.strongmotioncenter.org/) 

is considered for analysis and results are presented in this section from several time-

frequency methods. Further, these methods such as STFT, GT, WT, S-transform, WD, 

WVD, PWVD, SPWVD, CWD, Born-Jordan, and CSD are applied as shown in Figs. 2.2-

2.12. The STFT was applied. Its response can be seen in Fig. 2.2. From the response, it can 

be observed that energy of the signal is not localized over the time-frequency plane. In order 

to overcome this problem, Gabor introduced the Gaussian window. Further, the response 

was computed from GT which provides the better resolution as could be seen in Fig. 2.3. 

Further, WT was also tested and attempted to detect the variation of frequency can be seen 

in Fig. 2.4, but it also does not provide the promising result. Furthermore, well-known 

transform i.e. S transform was employed, and response can be seen in Fig. 2.5. From figure 

it can said that energy of signal is not localized over the time-frequency plane. Hence, it is 

suggested that S transform cannot be used for analysis of seismic signals. Further, WD and 

WVD were applied to the same data as can be seen in Figs. 2.6 and 2.7 respectively. These 

methods improve the resolution, however in the presence of cross-terms variation of 

frequency components are difficult to detect. In this direction, researchers have been 

explored smoothing methods namely PWVD, SPWVD, CWD, BJD and CSD, and 

responses can be seen in Figs. 2.8-2.12 respectively. During analysis, it has been observed 

that smoothing methods reduce the cross-terms effect, but characterization of seismic signal 

and identification of their frequency components become very difficult. Hence, it can be 

said that time-frequency methods are strong ability to detect the variation of frequency 

components. Therefore, we need to explore a powerful time-frequency methods so that 

variation of frequency components are easily detected. In future, time-frequency methods 

can be an efficient technique to detect the changes in the frequency, and can be correlated 

to the physical structure of the systems. Further geophysics scientist can also be engaged to 

detect the reservoir.  
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Figure 2.1: Northridge earthquake recorded in 1994 

      

Figure 2.2: STFT                                             Figure 2.3: GT 

 

Figure 2.4: WT 
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Figure 2.5: S-transform 

 

Figure 2.6: WD 

 

 

 

Figure 2.8: PWVD 

 

Figure 2.9: SPWVD 

 

Figure 2.10: CWD 

 

 

 

 

Figure 2.11: BJD 
 

Figure 2.12: CSD 

Figure 2.7: WVD 

 



 

 

 

Joint Time-Frequency Analysis of Seismic Signals                                                     81 

5 Conclusion 

In this paper, the joint time-frequency analysis has been carried out for the synthetic 

seismic signal and recorded real-time data. It has been observed that better time and 

frequency resolutions cannot be achieved simultaneously due to window function involved 

in STFT, GT, WT, and S transform time-frequency distributions. The effort made to 

increase the time and frequency resolution introduces cross term. Further, it is proved that 

the PWVD, SPWVD, CWD, BJD, and CSD reduce the effect of cross terms by introducing 

the different sort of kernel function, but these methods limit its actual time-frequency 

resolution features. In smoothing method, different kinds of the kernel have been studied 

and selection of the best kernel function is an unsolved problem. Many time-frequency 

methods have been discussed in this paper and it was observed that time-frequency method 

performs well for some application and poorly for others. A successful application of time-

frequency representations requires some degree of expertise on the user side. The prior 

knowledge of the signal is necessary in order to select the most suitable method for analysis 

of the signal. Moreover, no Cohen class distributions can significantly measure the energy 

of signals in the joint time-frequency plane. Tab. 1 shows the brief summary of several 

time-frequency distributions. 
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