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Structure Health Monitoring (SHM) System Trade Space
Analysis
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Abstract: An analytic approach to exploring the tradespace associated with Struc-
tural Health Monitoring (SHM) systems is presented. Modeling and simulation of
the life cycle of a legacy aircraft and the expected operational and maintenance
events that could occur is shown. A focus on the SHM system detection of a sig-
nificant crack length and the possibility of False Alarm (FA), miss detection and
mishap events is investigated. The modeling approach allows researchers to ex-
plore the tradespace associated with safe and critical crack lengths, sensor thresh-
olds, scheduled maintenance intervals, falsely triggered maintenance actions, and
mishaps due to missed detections. As one might expect, it was observed that setting
the SHM system very conservatively (closer to safe crack levels) increases detec-
tion but causes a high number of FA events. On the other hand setting the SHM
system threshold higher to tolerate a larger crack length reduces FA events but in-
creases the number of Miss Detection events. Furthermore as cracks propagate to
a greater length it was observed that Miss Detection events can lead to catastrophic
failures. The analytic approach described herein allows one to determine an ac-
ceptable balance between safety of flight and acceptable FA rates. The novelty
of this approach is providing a life cycle analysis for a legacy aircraft equipped
with an SHM system with expected events (FA, Miss Detections) that could impact
the life cycle and cost-benefit analysis. This was accomplished by combining the
method used in MIL-HDBK-1823 and Paris’s model and integrating it into a life
cycle model reflecting changing crack size and detection in every flight sortie un-
til the end of the life of the aircraft. This enables users to estimate the frequency
of event occurrences and the costs associated with these events, thus contributing
to a more accurate life cycle cost (LCC) analysis for an aircraft equipped with an
SHM system. While the current model is applicable to crack propagation in metal-
lic structures, analytic expressions for sensor signal variation associated with other
damage/structure types would allow the current model to be extended for those
applications.
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Nomenclature

a crack length
acr critical crack length at which failure occurs
â system response signal to a crack length
ath a crack size detected 50% of the time by the SHM system
âth signal threshold for a crack size detected 50% of the time by the SHMsystem
asa f e minimum significant crack length
a0 initial flaw size (crack length)
β1 regression line slope
β0 regression line intercept
C material constant
∆δ pressure differential due to the stress load
∆K difference between the stress intensity factor
KIC fracture toughness
Kmax maximum stress intensity factor
Kmin minimum stress intensity factor
m material constant
N number of load cycles
σ standard deviation associated with probability of â given a

1 Introduction

Operation and Maintenance (O&M) of aircraft often accounts for 70-80% or more
of the total Life Cycle Costs (LCC) of military and civilian aircraft [Gilmore and
Valaika (1992)]. For this reason, aircraft operators and maintainers are always look-
ing for ways to reduce the O&M burden for both new and legacy aircraft. Main-
tenance schedules are selected conservatively based on flight safety, but a higher
frequency of scheduled maintenance increases O&M cost and may make it more
likely that the maintenance actions themselves introduce system faults. Performing
maintenance tasks in a timely manner, with reduced cost and improved safety, is
critically important for successful operation of any system, especially as resources
are becoming scarce. If we examine the military aerospace field we note that many
legacy systems will be operating beyond their original design life due to funding
delays or schedule slips associated with new replacement aircraft. Life extension
programs have often been implemented on these legacy systems so that they can
operate safely and effectively until a replacement system is available. Even with
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a life extension program, however, operating a legacy system can incur significant
operations and support costs.

One of the major concerns for aging aircraft is the structural health of the system.
As the structure accumulates flight hours, cracks develop and propagate in that
structure. In response, Non-Destructive Inspections (NDI) are used by the main-
tenance crews to find these cracks and perform maintenance if they grow beyond
what is considered a safe length. These NDI are preformed periodically, usually
based on flight hours. These inspections have some negative aspects associated
with them. NDI cause aircraft down time affecting mission readiness, and increas-
ing labor hours and maintenance costs. Further, between NDI intervals the length
of the existing cracks in the structure are not known, which raises safety concerns.
Condition-Based Maintenance (CBM) has been investigated in recent years to over-
come these shortcomings by performing maintenance when needed as opposed to
relying on more conservative maintenance intervals [Cutter and Thompson (2005);
Ellis (2008)].

One of the necessary tools to achieve CBM is to continuously monitor the sys-
tem. Structure Health Monitoring (SHM) is an approach that employs methods and
tools to monitor the health of the structure continuously through on-board sensors,
promising higher safety levels and reduction in cost through extended inspection
intervals and continuous monitoring. Many of the necessary SHM technologies are
available, yet we see a slow implementation of these systems on operational plat-
forms. Further, challenges involved in the development and transition of SHM
technology including issues concerned with design, installations and validation
methods for damage detection are still present [Beard and Banerjee (2011)]. It
has been suggested that the lack of a solid business case clearly analyzing the cost
benefit of a SHM system is one of the main causes of the slow implementation of
such a system [Derriso, Olson, Desimio and Pratt (2007); Perez, DiUlio, Maley,
and Phan (2010)]. False Alarms (FA) from a SHM system will cause unnecessary
maintenance actions, thus raising cost and aircraft availability concerns. Missed
detections that might also occur when using a SHM system also cause safety con-
cerns. It is clear that these factors have a major impact on the business case. Trade
space analysis that considers fatigue crack growth rates, SHM sensor performance,
scheduled inspection intervals, and event costs is needed. This paper presents a
trade space analysis for a legacy fighter equipped with an SHM system through-
out its remaining life cycle. Modeling and simulation using Monte Carlo analysis
in the MATLAB® programming environment will be used as the tradespace anal-
ysis tool. While the current model is applicable to crack propagation in metallic
structures, analytic expressions for sensor signal variation associated with other
damage/structure types would allow the current model to be extended for those
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applications.

2 Fatigue crack growth

Fatigue crack growth predictions are used to estimate the design life of aircraft
structural components. They are used in design where a structural component is
expected to operate safely with an existing crack until the crack reaches a length
that is detectable by NDI, but less than a critical length [Roylance (2001)]. Paris’s
Law is one of the most widely used fatigue crack growth models and was used in
this research effort [Paris and Erdogan (1963)].

2.1 Paris’s Law

Under a fatigue stress regime Paris’s Law relates sub-critical crack growth to stress
intensity factor. The basic formula has the following form:

da
dN

=C∆Km (1)

The term on the left side is known as the crack growth rate, where a is the crack
length and N is the number of load cycles. The crack growth rate indicates the
crack length growth per accumulated number of load cycles. C and m are material
constants and ∆K is the difference between the stress intensity factor at maximum
loading and minimum loading:

∆K = Kmax−Kmin = ∆δ
√

πa (2)

where Kmax is the maximum stress intensity factor, Kmin is the minimum stress
intensity factor and ∆δ is the pressure differential due to the stress load.

2.2 Probability of detection (POD)

The primary focus of a SHM system is to reliably detect a significant crack length
a just like the NDI does, but to perform this task continuously during operation of
the system. The performance of a SHM system can be demonstrated using POD(a)
curves. [Kuhn and Soni 2009; Kuhn (2009)] showed that POD(a) can be evaluated
using the following formula:

POD(a) = P(â > âth) = Φ

(
β0 +β1 ∗ ln(a)− ln(âth)

σ

)
(3)

POD(a) is modeled by performing linear regression on an a vs. â functional rela-
tion that has normally distributed residuals with constant variance, where â is the
measured system response of a NDI system to a crack of length a. Units depend
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on the particular inspection system. MIL-HDBK-1823 [Department of Defense
(1999)], describes NDI experimental data showing a linear regression line relation-
ship relating ln(a) to ln(â), where β0 is the regression line intercept, β1 is the slope,
âth is the signal threshold for a NDI system (the value of â below which the signal
is determined to have been caused by a crack of insignificant length) and σ is the
standard deviation of the residuals of a linear regression fit of a vs. â data as repre-
sented in Fig. 1 [Department of Defense (1999)]. A more intuitive explanation of
the generation of the POD equation showing practitioners how properties of SHM
data affect the rotation and translation of the POD curve was published by [Pado,
Ihn, and Dunne (2013)].

Figure 1: Linear regression fit of ln(a) vs. ln(â) data [Department of Defense
(1999)]

2.3 Confusion Matrix

In a scenario where a NDI or SHM system is attempting binary detection (crack/no-
crack) of a crack of length a there are four possible outcomes:

1) The system detects a crack and a crack of significant length actually exists; this
is declared a True Detection event;

2) The system detects a crack and either the crack does not exist or the length of
the crack is not considered significant; this is declared a FA event;

3) The system does not detect a crack and a crack of significant length does not
exist; this is a True Negative event;
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4) The system does not detect a crack but a crack of significant length exists; this
is a Missed Detection event.

These four probabilities can be represented in a “Confusion Matrix” shown in Fig.
2 [Fawcett (2006)]. The confusion matrix is used for predictive analysis. Typically,
the probabilities appearing in the matrix are determined through test or historical
data collection.

Figure 2: Confusion Matrix.

In operating an aircraft, FA rates or false calls raise concerns due to the fact that
these will drive unnecessary maintenance actions that will affect mission readi-
ness and cost. Even beyond concerns for unnecessary maintenance actions, false
alarms could result in premature mission terminations. Missed Detections raise
concerns due to the fact that they might cause an aircraft mishap due to unfore-
seen/undetected structural problems. A graphical representation of the confusion
matrix probabilities distributions plus the threshold level of an NDI or SHM system
is represented in Fig. 3 [Kuhn (2009)].

It is important to note that adding the FA and True Negative probabilities equals 1.
Likewise adding the True Detection and Miss Detection probabilities equals 1. It
can be observed from Fig. 3 that varying the threshold âth will affect sensor perfor-
mance. Moving âth to the right will result in less FA and less Detections. Moving
âth to the left will result in more Detections and more FA. The variance (standard
deviation) can also affect sensor performance as it will determine the amount of
overlap for pdf’s associated with a given crack length and that associated with a
“safe” structure. In this research the effect of a crack growth on a legacy fighter
will be simulated for each sortie up to the time when a mishap (catastrophic fail-



Structure Health Monitoring (SHM) System Trade Space Analysis 7

Figure 3: Graphical representation of the probabilities and the Threshold Detection
Level [Kuhn (2009)].

ure) occurs or the end of the design life of the aircraft is reached, whichever occurs
first. For every sortie, corresponding to a set number of load cycles, SHM system
detection will be simulated based on the current crack size and sensor performance,
POD(a). For this analysis, the SHM system will be assumed to follow an NDI-like
detection trend whereby a larger crack will generate a larger mean signal response;
the analysis approach easily supports a piezo-like sensor whereby the trend is re-
versed (larger cracks generate smaller mean signal response). An event correspond-
ing to one of the quadrants of the confusion matrix will occur at each sortie. A true
detection event will trigger an inspection and a repair action will occur. Second, a
FA event triggering an inspection can occur. For an FA event, subsequent NDI will
identify the true crack size. In this research, NDI performed post-flight is assumed
to be perfect; in future work this assumption will be relaxed. A missed detection
event triggering the possibility of a mishap can occur. A missed detection of a
crack that is still less than some defined critical length will not cause a mishap;
however, missed detection of a crack that grows undetected to a length equal to or
exceeding a critical length will result in a mishap. Finally, a true negative event
triggers no action, and the aircraft is assumed ready for the next sortie. Varying
the sensor detection threshold,âth, minimum crack length detected requiring a re-
pair action, asa f e and the standard deviation of the distribution will be investigated
to study the effects of these SHM system sensor performance parameters on the
number of maintenance events and mishaps that occur. For this research, a single
critical crack location is modeled, but the methods described herein are extensible
to multiple crack locations, and future work will extend the model to accommodate
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them. Further, this method is applicable for damage detection in composite panels
where the extent of the damage is an area (compared to crack length) and the extent
of the damage includes severity. As long as experimental data can show and reflect
a relationship existing between damage characteristics/severity and signal response
by SHM system that could be later modeled this method is applicable.

3 Methodology

Modeling and simulation using MATLAB® was the method used in this research.
Fig. 4 shows an event flow diagram depicting SHM related events for a legacy
aircraft equipped with SHM system.

The simulation model starts at takeoff, depicted on the bottom left side of Fig. 4.
To initialize the model, a threshold, âth, safe crack length, asa f e, and a standard
deviation σ are set and kept for the life time of the aircraft. A stochastic initial
flaw size is used to initialize the crack growth model based on the Paris model dis-
cussed previously [Paris and Erdogan (1963)]. After takeoff, the model generates a
probability distribution for the probability of detection in that specific sortie based
on the actual crack length from the growth model and the number of accumulated
flight hours in service or since previous crack repair. A Monte Carlo draw is ini-
tiated simulating SHM system detection. If the system response signal â is less
than âth no SHM detection occurred. The model will check if the crack length a
is greater than the critical crack length, acr. If that is true the model will declare a
catastrophic structure failure leading to an aircraft mishap. Otherwise the aircraft
will land. Then the model will check if a is greater than asa f e, and if that is true
a missed detection event will be recorded. Note that while missed detections are
recorded in the simulation for later analysis, the SHM system has no knowledge
that a missed detection has occurred. If no detection occurs and a < asa f e, a True
negative event will be recorded. If the aircraft reached its maximum life the simula-
tion run for this aircraft will end and a new simulation run will start; otherwise, the
model will propagate the crack length by the amount simulated for one sortie and
takeoff again. For any sortie, if â is greater than âth, SHM detection occurs and the
sortie will be aborted. An inspection will occur and if a is greater than asa f e, a true
detection event will be recorded. The crack length will be reset simulating a repair
or a replacement of a structural component and the aircraft will take off again. If
a is less than asa f e, a FA event will be recorded, the crack a will be propagated,
and the aircraft will takeoff again. This will continue until the end of design life or
catastrophic failure of the aircraft. For a given set of asa f e, âth and σ , 100 simula-
tion runs will be performed, each one having a randomly selected initial flaw size
and growth rate parameter. After that a different set of asa f e, âth and σ will be used
so trade space analysis on the affect of SHM sensor performance and crack length
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on events can be performed.

3.1 Fatigue crack growth subroutine

A fatigue crack growth subroutine model was developed to simulate the crack
length propagation in every sortie. By integrating the Paris model equation (1)
and solving for ai which is the crack length after Ni cycles (flights) we get [An,
Chol, and Kim (2012)]:

ai =
[
Nic
(

1− m
2

)(
∆δ
√

π
)m

+a1−m
2

0

] 2
2−m

(4)

where a0 is assumed to be the initial flaw size (crack length) existing in a new
or repaired structural component [Heida and Grooteman (1998)]. Uncertainty is
applied to the value of a0 to reflect that this value is different every time a repair or
replacement is done to the structure. The pressure differential, ∆δ , due to the stress
load can be evaluated by using the expression [An, Chol, and Kim (2012)]:

∆δ =
KIC√
acrπ

(5)

where KIC is the fracture toughness, a material property provided by the manufac-
turer of the structural component. ∆δ is modeled with uncertainty to simulate the
variation in loads an aircraft structure is exposed to every time a repair or replace-
ment is done to the structure. Fig. 5 is a presentation of the fatigue crack growth
simulation with 10 runs reflecting 10 repairs or replacements to the structural com-
ponent.

It is shown in Fig. 5 that every run has a different a0 and the growth rate with
different loads ∆δ causing the crack to propagate differently after each replacement
or repair. A representation of asa f e , a minimum crack considered to be significant
for SHM monitoring is shown on the figure. Detected cracks of length smaller
than asa f e will not be repaired. The figure also shows ath, a crack size having an
associated SHM response designated as the threshold for detection, âth. Both asa f e

and âth will be varied to simulate the performance of the SHM system.

3.2 Probability of detection subroutine

A probability of detection (POD) simulation subroutine was developed to simulate
the SHM system response to a crack length occurring for every sortie. A probability
of detection of the threshold crack ath , detected 50% of the time, will be evaluated
using equation (3) in the following form:

POD(a) = 0.5 = Φ

(
β0 +β1 ∗ ln(ath)− ln(âth)

σ

)
(6)
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Figure 4: Flow diagram for SHM equipped aircraft.

Figure 5: Fatigue crack growth simulation results for 10 runs.
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The signal threshold âth is solved for and used in the following equation:

POD(a) = P(â > âth) = Φ

(
β0 +β1 ∗ ln(a)− ln(âth)

σ

)
(7)

where the crack length a from the fatigue crack growth simulation is used and a
Monte Carlo draw is performed every sortie. The constants β0 and β1 are evaluated
by performing linear regression on experimental data provided by MIL-HDBK-
1823 [Department of Defense (1999)]. Since varying ath will directly vary âth as
shown from the previous equations, only ath will be used in the rest of the dis-
cussion. The variables ath and asa f e are held constant for a given run, but varied
for different simulation runs as a percentage of acr . Also, the standard deviation
σ associated with the â vs. a pdf is set for a given simulation run and varied for
different runs.

3.3 Parameter Values and Recorded Events

The main simulation routine tallies several different events for the tradespace anal-
ysis. The number of FA events and Miss Detection events is recorded for different
sets ofasa f e, ath and σ . Five values for the parameter asa f e are considered, and for
every value ofasa f e, ath takes on eight corresponding values and σ takes on four
values. For each combination of asa f e, ath, and σ , 100 simulation runs are con-
ducted and the average FA and Miss Detection events are calculated. The results
are displayed and discussed in the following section.

4 Results and Discussion

4.1 FA events

Fig. 6(a) displays the effect of fixing the standard deviation σ at 0.1 and varying
asa f e with the values 5, 6, 7, 8 and 9% of acr . For every asa f e value, the ath value is
incremented 8 times starting at asa f e using increments of 1% of acr. For example,
if asa f e= 5% acr then ath is incremented as 5, 6, 7, 8, 9, 10, 11 and 12% of acr. This
is repeated for Fig. 6(b), (c) and (d) with standard deviation σ = 0.2, 0.3, and 0.4.
It is observed from Fig. 6(a) that as ath is moved about 2% from asa f e a significant
drop in the number of FA events is noticed. The greater the asa f e percentage the
greater the number of false alarm events recorded. From Fig. 6(b), as the standard
deviation is increased from σ = 0.1 to σ = 0.2, it is observed that we have the same
trend shown in Fig. 6(a) but with a slight increase in FA events. Also it is observed
that an increase of ath by about 3% over asa f e essentially eliminates FA events.
From Fig. 6(c), as the standard deviation is increased from σ = 0.2 to σ = 0.3,
it is observed that we have the same trend shown in Fig. 6(b) with very close FA
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events, but it now requires an increase of ath by about 5% over asa f e to essentially
eliminate FA events. Similarly in Fig. 6(d), as the standard deviation is increased
from σ = 0.3 to σ = 0.4, it is observed that it now requires an increase of ath by
about 8% over asa f e to essentially eliminate FA events. 95% confidence intervals
bars are shown on all figures based on 100 simulation runs

Figure 6: ath (% of acr) ) for a crack detected 50% of the time vs. average number
of FA events for different standard deviation levels σ .

4.2 Miss Detection events

It is observed from Fig. 7(a) that if ath is moved about 3% above asa f e a significant
increase in number of Miss Detection events is noticed. Note that a single missed
detection is not fatal as long as a detection on a subsequent sortie occurs prior
to the crack reaching a critical length. From Fig. 7(b) it is observed that, as the
standard deviation is increased for σ = 0.1 to σ = 0.2, the same trend as Fig. 7(a)
is shown, but ath needs to be at least 4% more than asa f e to reach the same number
of Miss Detection events shown in Fig. 7(a). A similar trend is shown in Fig. 7(c)
where it is observed that, as the standard deviation is increased from σ = 0.2 to
σ = 0.3, ath needs to be at least 5% more than asa f e to reach the same number of
Miss Detection events as shown in Fig. 7(b). For σ = 0.4, shown in Fig. 7(d), ath
needs to be at least 6% more than asa f e to reach the same number of Miss Detection
events as shown in Fig. 7(c). In general, a decrease in the standard deviation and
an increase in the difference between ath and asa f e results in an increase in the
average number of Miss Detection events. Referring back to Fig. 3, an increase in



Structure Health Monitoring (SHM) System Trade Space Analysis 13

the standard deviation of the distributions results in greater overlap, improving the
Miss Detection performance at the expense of higher FA rates.

4.3 Average crack length detected after a Miss Detection event

It is of interest to know the average crack length once detected after a Miss Detec-
tion event as percentage of acr as it reflects a safety concern. As noted previously,
an initial missed detection can be detected during a later sortie as long as it does
not reach the critical length causing a mishap. Before discussing these results, it
is important to note that each detection attempt is treated independently, and the
treatment herein assumes no degradation of the sensor (although research account-
ing for sensor degradation over time is ongoing). The following plots represent the
simulation runs output for the crack length once detected as a percentage of acr.

Figure 7: ath (% of acr) ) for a crack detected 50% of the time vs. average number
of Miss Detection events for different standard deviation levels σ .

From Fig. 8(a) it can be observed that, as ath is increased further away from asa f e ,
the crack length once detected after an initial miss detection increases. Also, as ex-
pected, a greater value of asa f e results in greater crack lengths once detected, which
can become problematic as they approach a critical length. The obvious contribu-
tion to this increase is the fact that, as asa f e is increased, the size of the smallest
crack that you intend to detect increases. However, it is important to note that the
crack growth rate monitonically increases (see Fig. 5); higher values for asa f e re-
sult in higher growth rates for a > asa f e. Sweeping across Fig. 8(a), (b), (c) and
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(d) to observe the effect of change in standard deviation, it is noted that the length
of the crack once detected is the greatest for the smallest σ = 0.1 and the greatest
ath. This can be expected as the combination of these parameter trends increases
the separation and decreases the overlap between the “safe” and “detectable” crack
distributions. As the standard deviation increases there is a smaller change in the
length of the crack detected after a Miss Detection event is observed due to greater
overlap between the distributions.

Figure 8: ath (% of acr) ) vs. average length of a crack detected after a miss detec-
tion event.

4.4 Miss detection leading to a catastrophic failure

The previous section leads one to the question as to what values for ath and asa f e re-
sult in a significant chance that a Miss Detection leads to a catastrophic failure(a >
acr) of the structure component. Based on the crack growth model, growth is very
slow for low numbers of load cycles (or sorties), but increases significantly as the
load cycles accumulate. The simulation is coded to flag every time the crack length
a is equal or greater than the critical length acr and declare a catastrophic failure,
and these results are shown for increasing values of asa f e and ath.

Fig. 9 displays the effect on the percentage of mishaps based on varying the thresh-
old ath from 50% to 90% of acr. For this analysis, asa f e was set at 50% of acr and
the standard deviation σ was set at 0.4. It is observed that varying ath from 50% to
about 55% of acr did not result in any aircraft mishap events from the simulation
runs. Once the threshold is increased beyond 55% of acr mishap events are noticed.
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Figure 9: ath (% of acr) ) for a crack detected 50% of the time vs. mishap rate

Setting the threshold set at 65% acr resulted in approximately 10% mishap events
(based on 100 simulation runs). As expected, the trend of increasing mishap rates
for increasing detection thresholds continued. This preliminary analysis clearly
shows how tradespace analysis can be conducted to show safe operating regimes
resulting in minimal probabilities of catastrophic failure and acceptable false alarm
rates.

5 Conclusion

5.1 Summary and findings

The tradespace analysis approach described herein shows how SHM sensor per-
formance design parameters asa f e, ath and σ can affect the number of FA, Missed
Detections and mishap events that could occur over the expected life of an aircraft.
If design parameters are set too conservatively with regards to safety, a high num-
ber of false alarms will result, with a subsequent increase in maintenance events
and cost. Conversely, higher value for ath with respect to acr result in a reduction in
FA events, but an increase of Miss Detection. Further increase in ath with respect to
acr can result in Miss Detection events leading to mishaps. With safety of flight as
a primary consideration, the SHM system sensor parameters can be adjusted to re-
duce the probability of mishap events to an acceptably low level while also keeping
FA rates, and related maintenance costs, at an acceptable level.
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5.2 Future work

Although installing an SHM system with a certain expected performance might
produce expected cost savings, better operational readiness and improved safety,
the degradation of the SHM system will be a concern in its own right. Any system
installed on an aircraft is likely to degrade with operation. Systems installed on
aircraft typically require maintenance and inspection schedules to ensure contin-
ued acceptable operation. The same is true for the SHM system. Kuhn’s research
[Kuhn and Soni (2009); Kuhn (2009)] concluded that degradation to the SHM sys-
tem sensors due to flight loads affect the performance of such a system. Ongoing
work is investigating the effect of degradation on SHM performance parameters
such as âth and σ , amongst others, on the FA, Miss Detection and mishap events
an aircraft might experience. Also maintenance of the SHM system itself will be
considered. SHM system unscheduled maintenance will be based on the maximum
FA events encountered/ allowed between SHM system scheduled maintenance in-
tervals which will be based on flight hours. Extensions to this work for composite
structures and other damage types are also being investigated.
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