
Copyright © 2013 Tech Science Press SDHM, vol.9, no.3, pp.217-232, 2013

Crack Tip Parameters Under Large Scale Yielding
Condition
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Abstract: In recent years, the study of the behaviour of damaged structures has
been focusing on cracked components in presence of an extensive material yielding
at the crack tip; under this condition, linear elastic fracture mechanics theory is not
able to describe the real stress-strain state at the crack tip and consequently either
the static or the fatigue behaviour of the component. In this work, an extensive
parametric numerical analysis of the plastic zone size and shape at the crack tip for
a through cracked plate under Mode I loading condition is presented. The obtained
results allow assessing the limits of the linear elastic fracture mechanics in presence
of an extensive material yielding at the crack tip and the relationships between
the plastic zone size and other parameters of the elastic plastic fracture mechanics
theory are pointed out.
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1 Introduction

The behaviour of damaged structures is usually studied through the Linear Elastic
Fracture Mechanics (LEFM), which considers only plane stress-strain states at the
crack front.

The main advantage of two-dimensional theories is their analytical simplicity com-
pared to the three-dimensional ones, but for Large Scale Yielding (LSY) phenom-
ena they aren’t able to overcome some limits in describing the actual behaviour of
the material around the damage.

In fact, one of the basic principles of the LEFM theory is to consider the Plastic
Zone Size (PZS) at the crack tip as negligible with respect to the crack length,
i.e. to take into account Small Scale Yielding (SSY) condition [Park, Kim, Lee
and Rheem (1996)]. To overcome this limit and to consider the stress-strain state
transition from plane stress to plane strain condition several studies introduce a
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stress constraint factor, experimentally, numerically [Cisilino, Aliabadi, and Otegui
(1998); Cisilino and Aliabadi (1999)] or analytically derived, which influences the
yielding stress value [Chang and Hou (2005)].

Other studies emphasized the thickness influence on the stress-strain state at crack
tip: in Kudari, Maiti, and Ray (2009) the evaluation of PZS through both micro-
hardness technique and Finite Element Method (FEM) shows how the PZS, deter-
mined in the plane of the through crack (i.e. plastic radius, rp) on the outer surface
of a plate specimen, increases as the thickness decreases.

In any case, LEFM theory can’t describe the behaviour of “short cracks” [McDow-
ell (1997)] and it can’t even lead to accurate predictions when applied to most 3D
geometries [Bellett, Taylor, Marco, Mazzeo, Guillois and Pircher (2005)].

In the first case, the conditions for LEFM parameters application are not met be-
cause the state of stress at the short crack tip is generally characterized by a Large
Scale Yielding (LSY) and high ratios of PZS to the crack length [Hussain (1997)]
are found.

Several numerical and experimental investigations [Zhang and Du (2001), Caputo,
Lamanna, and Soprano (2006, 2011-2, 2012-3, 2013-2)] have shown that such ratio
is larger for short cracks than for long ones, for a given nominal Stress Intensity
Factor (SIF) and that if PZS is considered as the governing parameter of crack
growth behaviour higher rates are to be expected for short cracks than for long
ones, which is consistent with the experimental observations.

Moreover, in the case of short cracks further effects related to the material mi-
crostructure can also take place and influence the stress-strain state at the crack tip
and the growth rate [Jin and Mall (2003)]. In Lados, and Apelian (2008) it has
been shown that the changes in crack growth mechanisms can also be explained by
correlating PZS with the material microstructural features.

For these reasons, in the recent years, a particular attention is being paid to the
behaviour of damaged structures [Benedetti and Aliabadi (2013); Sfantos and Ali-
abadi (2007)] either in presence of high values of remote loads [Armentani, Citarel-
la, and Sepe (2011); Citarella, Cricrì and Armentani (2012); Caputo, Di Gennaro,
Lamanna, Lefons and Riccio (2013)] or in presence of short cracks, when a rela-
tively large scale yielding condition occurs around the crack tip.

The difficulties encountered to describe the stress-strain state at the crack tip through
the parameter of LEFM theory is leading to consider the Elastic-Plastic Fracture
Mechanics (EPFM) theory’s parameters [Leitao, Aliabadi, and Rooke (1995)], as
the CTOD (Crack Tip Opening Displacement), the CTOA (Crack Tip Opening An-
gle), the COD (Crack Opening Displacement) and the J-integral [Newman, James
and Zerbst (2003); Rice, and Rosengren (1968)].
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In Werner (2012), CTOD and COD are used to evaluate PZS and to describe the
crack growth rate in presence of high load values.

PZS strictly depends on many variables, such as the material yield stress (σs), the
applied remote load (described by the J-integral parameter for elastic-plastic condi-
tions), the crack size (a) and the component thickness (t), but an analytical formu-
lation for PZS such as to take into account all these parameters is not yet available,
exactly because of the difficulties in computing the stress-strain field which exists
ahead of the tip of a growing crack.

In particular, those difficulties arise as the size and the shape of the plastic zone
depend on the adopted yield criterion and on the thickness of the considered com-
ponent [Camas, Garcia-Manrique and Gonzalez-Herrera (2011); Amiri, Belhouari,
Bounoua, Achour and Bouiadjra (2013); Narasimhan and Rosakis (1998)], which
in turn influence the stresses at the crack tip.

The main scope of the study reported in the present paper is to describe the elastic-
plastic state of stress and strain, which takes place around the crack tip under Mode
I loading condition, by using the parameters of EPFM theory (among which the
PZS is considered), as well as it is possible to describe the elastic stress-strain state
through LEFM theory’s parameters.

The analysis of the behaviour of a crack under Mode I loading condition can be
related to the fact that, as also showed in Gao, Wang, Kang, and Jiang (2010), the
Mode I loading condition has a crucial effect on the plastic zone size and shape also
in mixed mode loading conditions.

2 Analytical background

According to the LEFM theory and considering a through transversal crack in an
infinite plate subjected to a remote longitudinal stress (Mode I) the PZS can be
represented by the following equations, respectively in plane stress and in plane
stress condition:
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where KI is Mode I stress intensity factor, θ is the polar coordinate ,σs is the mate-
rial yield stress and ν is the Poisson module. For θ = 0 and ν = 0.3, equations (1)
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become:
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According to Irwin and Dugdale approaches [Anderson (1995)], PZS in the plane
of a through crack is respectively given by:
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In 1968 Rice presented the J-integral parameter [Rice and Rosengren (1968)], a
path-independent contour integral for the analysis of the stress state at crack tip
and he showed that the value of this integral is equal to the energy release rate
parameter for a nonlinear elastic cracked solid.

Considering an arbitrary counter-clockwise path (Γ) around the crack tip, the J-
integral is given by:

J =
∫

Γ

(
Wdy−Ti

∂ui

∂x
ds
)

(4)

where W is the strain energy density, y is the normal to the crack direction x, Ti

are components of the traction vector, ui are the displacement vector components
and ds is a length increment along contour Γ. Considering a power law relation-
ship between plastic strain and stress, Hutchinson (1968) and Rice, and Rosengren
(1968) showed that the J-integral parameter characterizes crack tip stress state in a
nonlinear elastic material.

For the special case of a linear elastic material and Mode I loading condition the
J-integral is given by:

J =
K2

I

E ′
with E ′ =


E planestrain

E
1− v2 planestrain

(5)

According to Broberg (1999) the J-integral parameter regards only a plane stress or
a plane strain condition and then in presence of a finite thickness plate the J-integral
parameter value can be calculated either in the middle plane of the plate, where the
stress-strain state is very close to a plane strain one, or on the outer surfaces.
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3 Description of the numerical model

The examined component is a plate with a trough crack in the middle transverse
section subjected to a remote longitudinal stress (Mode I), whose value spans the
range 1÷352 N/mm2 (Fig. 1); the allowed ranges of the geometrical and physical
parameters considered for the component are those illustrated in Tab. 1.

Table 1: Investigation parameters

parameters
W L a t σ

[mm] [mm] [mm] [mm] [MPa]
50 100 0.1÷10 0.5÷5 0÷352

The material properties used in the model have been assumed to be non linear (Fig.
2). Elastic-plastic analyses of FE model have been performed by using Abaqus®
ver. 6.11 FE code.

The FE models (Fig. 3) have been built with a number of nodes between 64826
and 180855 and a number of elements between 14520 and 42090, depending on
the values assumed by the geometrical parameters.

Figure 1: Test case geometry.
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 Figure 2: Material properties.

 

Figure 3: FE model detail at crack tip.

Symmetry conditions have been used for an efficient computation and therefore a
quarter symmetric model has been adopted. The reduced integration 20-nodes brick
elements (element type C3D20R by the Abaqus® elements’ library) have been
used. In all models, the element sizes have been kept accurately small to match
with those necessary at the crack tip (where the minimum average element length
is about 1E-04mm) to reach the required resolution of the stress field. Twenty
elements have been considered along the thickness to resolve consistently the out
of plane stress gradient.

In this paper, the plastic radius (rp), i.e. the plastic zone size on the crack plane,
in the middle plane of the plate, has been evaluated through the von Mises yield
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criterion, by considering the distance from the crack front at which the von Mises
stress, σvm, reaches the value of the material yielding stress, σs = 503.15 MPa (Fig.
4).

The numerical J-integral parameter has been evaluated in the middle plane of the
plate by using the Virtual Crack Extension (VCE) technique [Caputo, Lamanna,
Lanzillo, and Soprano (2013)], as implemented in the algorithms of the Abaqus®
code.

 

Figure 4: σvm vs distance from crack
front (x) @ a = 5 mm, t = 0.5 mm

 
Figure 5: J/J10 vs # Contour @ a = 5 mm,
t = 5 mm

Provided that the crack faces are parallel to each other, the J-integral parameter
value should be independent of the domain used, but J-integral parameter values
estimated at different ring paths (contours) can vary because of the approximate
nature of the finite element solution; the actually considered J-integral parameter
value is that one appearing approximately constant from one contour to the next
one (Fig. 5).

4 Analysis of results and conclusions

Figs. 6 and 7 show the influence of both geometrical and boundary parameters
(plate thickness, t, remote stress, σ , crack length, a) on the J-integral parameter
values, J. It can be seen that, as well as expected, the increase of both σ and a, for
a fixed t, leads to an increase of J, while for a fixed σ , the increase of t leads to a
decrease of J. Figs. 8 and 9 show that for a fixed a, the increase of σ leads to an
increase of J, while the increase of t implies a decrease of J.

Comparing the evolution of the J-integral parameter value calculated by finite el-
ement method through the Abaqus® code, J_Aba, with either that one evaluated
analytically through the LEFM theory, J_LE, or that one evaluated analytically by
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Figure 6: J vs σ @ t = 0.5 mm
 

Figure 7: J vs a @ σ = 352 MPa

 

Figure 8: J vs σ @ a = 5 mm
 

Figure 9: J vs σ @ a =10 mm

 

Figure 10: Comparison of J vs σ @ a =
0.5 mm, t = 5 mm

 

Figure 11: Comparison of J vs σ @ a =
10 mm, t = 5 mm
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Figure 12: Comparison of J vs σ @ a =
5 mm, t = 0.5 mm

 

Figure 13: Comparison of J vs σ @ a =
5 mm, t = 1 mm

 

Figure 14: Comparison of J vs σ @ a =
5 mm, t = 2.5 mm

 

Figure 15: Comparison of J vs σ @ a =
5 mm, t = 5 mm

considering the Irwin correction factor, J_Irwin, it can be seen from the plot of Fig.
10 that the J_LE values are well in agreement with the J_Aba values in presence of
SSY (i.e. short cracks with high value of t).

The J_Irwin values in the same conditions are higher than both of them.

Moreover, considering long cracks with high remote load values (i.e. LSY condi-
tion), J_Aba values are higher than J_LE values, even if the Irwin correction factor
is considered (Fig. 11).

In Figs. from 12 to 15 it can be seen that, for a fixed a, the difference between the
J_Aba values and the J_LE values decreases when the thickness increases, i.e. by
approaching to SSY conditions.

As already mentioned and as it is shown in the following figures, this behaviour can
be explained by the extension of PZS: if PZS is negligible with respect to the crack
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Figure 16: rp vs σ @ t = 0.5 mm (long
crack)

 

Figure 17: rp vs σ @ t = 0.5 mm (short
crack)

 

Figure 18: rp vs a @ σ = 176 MPa
 

Figure 19: rp vs a @ σ = 264 MPa

 

Figure 20: rp vs σ @ a = 1 mm
 

Figure 21: rp vs σ @ a = 2.5 mm
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Figure 22: rp vs σ @ a = 5 mm
 

 Figure 23: rp vs σ @ a = 10 mm

 

Figure 24: Comparison of rp vs σ @ a = 1
mm, t = 2.5 mm

 

 Figure 25: PZS (in grey) along the
crack front @ σ = 350 MPa

length, that is in presence SSY condition, J_LE provides results in agreement with
the numerical ones (J_Aba); on the contrary, that is in presence of LSY condition,
the J_Aba values are higher than J_LE values, as the J_Aba parameter considers the
“real” stress-strain state at the crack tip. In Figs. from 16 to 19 it can be seen that
the increase of both the applied load value and the crack length lead to an increase
of the plastic zone size.

Figs. from 20 to 23 show the influence of thickness on the plastic radius.

It can be seen that for fixed crack length and thickness a load value exists beyond
which the plastic radius quickly increases with applied remote load and that load
value increases with the thickness and decreases with the crack dimension.

These behaviours can be explained by considering the stress state at the crack tip
and then the evolution of plastic zone shape and size along the thickness.
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 Figure 26: Comparison of rp vs σ @ a = 5
mm, t = 2.5 mm

 

 

Figure 27: PZS (in grey) along the
crack front @ σ = 350 MPa

 

 Figure 28: rp/a vs a @ σ= 176 MPa

 

 

Figure 29: rp/a vs a @ σ= 264 MPa

 

 Figure 30: rp/a vs a @ J= 0.5 N/mm
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For what concern the crack tip conditions, in the case of a small applied load or of
a short crack the stress state at the crack tip can be considered more similar to a
plane strain state; on the contrary, in the case of a high applied load the stress state
at the crack tip can be considered more similar to a plane stress state.

For what concern the thickness, being the stress-strain state at the middle plane of
the thickness very close to a plane strain one and the plane stress state limited to the
outer surfaces, the plastic radius increases slowly with the applied load and its val-
ues are confined between the plastic radius values calculated analytically through
the LEFM theory by considering plane strain conditions, rp_LEd, and those calcu-
lated analytically through the LEFM theory by considering plane stress conditions,
rp_LEt (Fig. 24 and Fig. 25).

If the stress state is more similar to a plane stress one, the plastic radius quickly
increases with the applied load and reaches the value which can be calculated ana-
lytically through the LEFM theory by considering the Dugdale approach, rp_Dug
(Figg. 26 and 27).

It can be interesting to consider more deeply the behaviour of the plastic radius
with reference to a plate 1 mm thick (Fig. 20): it can be considered, in fact, that the
stress state around the crack tip is more similar to the one corresponding to plane
stress for a plate 0.5 mm thick and to plane strain for a 2.5 mm thick plate, and it
can be observed a transition of the stress state for the 1 mm thick plate from the
plane-stress state to the plane-strain one by increasing the applied load value (the
same behaviour occurs with an increasing crack length for given plate dimensions).

Figs. 28 and 29 show the influence of the crack length on the ratio between the
plastic radius and the length of the same crack (rp/a) for four different thickness-
es, considering the applied load value as fixed. It can be seen that the rp/a ratio
increases with the crack length and the applied load, while it decreases with the
thickness.

In Fig. 30 it can be seen that for a fixed value of the J-Integral parameter value (0.5
N/mm) and for different thicknesses the rp/a ratio decreases as the crack length
increases up to a specific crack size; beyond this value PZS becomes constant with
the crack size.

This behaviour could justify the use of the PZS as an EPFM parameter for long
cracks, as both PZS and the parameter describing the stress state at crack tip, the
J-Integral, are constant for that case; for small cracks, in the same conditions, the
ratio of PZS to the crack length increases as the crack size decreases, therefore
if this ratio is used as a parameter to represent the short crack growth rate, the
description should be more coherent with the experimental evidence than the J-
Integral or the SIF parameter.
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