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Some Recent Developments on the Application of the
Strain Energy Density to Shallow Threaded Plates with

Sharp Notches

R. Afshar1, F. Berto1

Abstract: In this study, the main advantages of the strain energy density (SED)
approach and some recent applications of the SED to the fatigue analysis of welded
joints are reviewed. In addition, the paper investigates the scale effect in the
threaded plates with sharp notches subjected to tension loading. Some closed form
expressions for evaluation of the notch stress intensity factors (NSIFs) of periodic
sharp notches, obtained by SED approach, are employed. The new expressions are
applicable to narrow notches when the ratio between the notch depth and the plate
width, t/W, is lower than 0.025 providing very accurate results. The NSIF ratio of
two scaled geometries of periodic sharp notches is a function of averaged SED in
the control volume embracing the middle notch tip. The new results are very useful
for the assessment under fatigue loading.

Keywords: Periodic notches, Notch Stress Intensity Factor (NSIF), Strain En-
ergy Density (SED), Narrow notches.

1 Introduction

Toothed cutting blades, thread bars and splined shafts play a vital role in various
industry applications. They are being used in many facilities across different sectors
including: construction, aerospace, wood industry, electronic devices, etc. The
variability of the notch stress intensity factors (NSIFs) of periodic blunt and sharp
V-notches is investigated by means of the strain energy density (SED) approach in
combination with coarse meshes in the finite element method (FEM) (Afshar and
Berto, 2011, Berto, Lazzarin and Afshar, 2012, Lazzarin, Afshar and Berto, 2012).

The necessity of a simple criterion for engineering applications led to development
of a point-wise SED approach valid for cracks (Sih, 1973, Sih, 1973, Sih, 1974,
Sih, 1991) and notches (Sih and Ho, 1991). Factor S was defined as the product
of the SED by a critical distance from the point of singularity (Sih, 1974). Failure
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was thought of as controlled by a critical value Sc, whereas the direction of crack
propagation was determined by imposing a minimum condition on S. The theory
was extended to employ the total SED near the notch tip (Sih and Ho, 1991), and
the point of reference was chosen to be the location on the surface of the notch,
where the maximum tangential stress occurs.

By using the SED concept combined with a coarse mesh in the FE analysis, a
fatigue strength assessment of welded joints was carried out (Lazzarin et al., 2008).
A procedure for rapid calculations of the NSIFs based on the SED from coarse
meshing is drawn in Ref. (Lazzarin, Berto and Zappalorto, 2010). The extension
to three-dimensional cases is also possible and very convenient, in particular when
edge effects are present or when a narrow spacing between collinear notches is
considered. In small bodies a multiscaling and segmentation scheme permits to
scale the SED at pico, nano and micro levels (Sih and Tang, 2005, Tang and Sih,
2005, Sih, 2007).

As alternatives of the SED approach, a review of the dual boundary element method
for modeling crack growth in two-dimensional and three-dimensional mixed mode
problems is presented and compared with available alternative solutions in Ref.
(Cisilino and Aliabadi, 2010). In another work, a model based on cohesive crack
concept is developed for finite element analysis of quasi-brittle materials (Cendón
et al., 2000, Gálvez et al., 2012).

The creation and subsequent shedding of periodic edge cracks is a natural phe-
nomenon which occurs in heat-checked gun tubes, rapidly cooled pressure vessels
and rock, dried-out mud flats, paint and concrete and in ceramic coatings and per-
mafrost. Dealing with this topic a complete state of the art together with a simple
developed model assessing the shedding behavior is carried out by Parker (Parker,
1999). As discussed in that work, the surface topography of the cracking of ice-
wedge polygons in Arctic permafrost, of mud flats in Death Valley and of craze-
cracks (heat-checking) at the bore of a gun tube are all strikingly similar, yet they
span five orders of magnitude in scale, with the maximum plate dimensions for ice
and mud being, respectively, 22 m and 0.25 m and with the minimum plate size
for gun tube craze cracking being 0.2 mm. Recently, some new expression for the
NSIFs of periodic sharp notches is developed, which is an extended version of that
proposed by Tada et al. (Tada, Paris and Irwin, 1985) for edge cracks. It is valid for
an infinite plate width, but can be applied with errors within 5 percent if the ratio
between the notch depth and plate width remains lower than 0.025. The expres-
sions are suitable both for the direct evaluation of the SED and NSIF as a function
of the narrow notch spacing (Berto, Lazzarin and Afshar, 2012).

In this paper, the scale effect of periodic narrow-sharp notches by using the afore-
mentioned closed form expressions in the macro-meso scale range is studied. The
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theoretical results reported here can be directly applied to the fatigue design.

2 Advantages of the SED for fatigue assessment

As opposed to the direct evaluation of the NSIFs, which needs very refined meshes,
the mean value of the elastic SED on the control volume can be determined with
high accuracy by using coarse meshes ...(Lazzarin et al., 2008, Berto and Lazzarin,
2009, Lazzarin, Berto and Zappalorto, 2010).Very refined meshes are necessary to
directly determine the NSIFs from the local stress distributions. Refined meshes are
not necessary when the aim of the FE analysis is to determine the mean value of
the local SED on a control volume surrounding the points of stress singularity. The
SED in fact can be derived directly from nodal displacements, so that also coarse
meshes are able to give sufficiently accurate values for it. Some recent contributions
document the slight variability of the SED as determined from very refined meshes
and coarse meshes, considering some typical welded joint geometries and provide a
theoretical justification to the weak dependence exhibited by the mean value of the
local SED when evaluated over a control volume centered at the weld root or the
weld toe. On the contrary singular stress distributions are strongly mesh dependent.
The NSIFs can be estimated from the local SED value of pointed V-notches in
plates subjected to mode I, Mode II or a mixed mode loading. Taking advantage
of some closed-form relationships linking the local stress distributions ahead of
the notch to the maximum elastic stresses at the notch tip the coarse mesh SED-
based procedure is used to estimate the relevant theoretical stress concentration
factor Kt for blunt notches considering, in particular, a circular hole and a U-shaped
notch, the former in mode I loading, the latter also in mixed, I + II, mode ...(Livieri
and Lazzarin, 2005, Berto and Lazzarin, 2009). Other important advantages can
be achieved by using the SED approach. The most important advantages of SED
method are as follows:

• It permits consideration of the scale effect, which is fully included in the
NSIF Approach

• It permits consideration of the contribution of different Modes.

• It permits consideration of the cycle nominal load ratio .

• It overcomes the complex problem tied to the different NSIF units of measure
in the case of different notch opening angles (i.e crack initiation at the toe
(2α=135˚) or root (2α=0˚) in a welded joint)

• It overcomes the complex problem of multiple crack initiation and their in-
teraction on different planes.
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• It directly takes into account the T-stress and this aspect becomes fundamen-
tal when thin structures are analysed.

• It directly includes three-dimensional effects and out-of-plane singularities
not assessed by Williams’ theory.

2.1 Synthesis of fatigue analysis based on SED in a control volume

The mean value of the SED in a circular sector of radius R0 located at the fatigue
crack initiation sites has been used to summarise fatigue strength data from steel
welded joints of complex geometry (Fig. 1).

Local SED (∆W̄ ), averaged in a finite size volume surrounding weld toes and roots
is a scalar quantity which can be given as a function of mode I-II NSIFs in plane
problems and mode I-II-III NSIFs in three dimensional problems. The evaluation
of the local SED needs precise information about the control volume size. From
a theoretical point of view, the material properties in the vicinity of the weld toes
and the weld roots depend on a number of parameters as residual stresses and dis-
tortions, heterogeneous metallurgical micro-structures, weld thermal cycles, heat
source characteristics, load histories and so on. To device a model capable of pre-
dicting R0 and fatigue life of welded components on the basis of all these param-
eters is really a task too complex. Thus, the spirit of the approach is to give a
simplified method able to summarize the fatigue life of components only on the ba-
sis of geometrical information, treating all the other effects only in statistical terms,
with reference to a well-defined group of welded materials and, for the time being,
to arc welding processes.

In a plane problem all stress and strain components in the highly stressed region
are correlated to mode I and mode II NSIFs.

The material parameter R0 can be estimated by using the fatigue strength ∆σA of
the butt ground welded joints (in order to quantify the influence of the welding pro-
cess, in the absence of any stress concentration effect) and the NSIF-based fatigue
strength of welded joints having a V-notch angle at the weld toe constant and large
enough to ensure the non singularity of mode II stress distributions.

The mean value of the SED, ∆W, as determined on a control volume embracing
the weld toe or the weld root was directly used as parameter for fatigue strength
assessments of welded joints (see Refs. (Livieri and Lazzarin, 2005, Berto and
Lazzarin, 2009)). The relevant ∆W-N scatterband is shown in Fig. 1, where a
large bulk of fatigue test data (about 900 data) from different welded joints with
a main plate thickness ranging from 6 to 100 mm are plotted. Details on welded
joint geometries, materials and welding technologies are reported in some previous
papers.
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Figure 1: Fatigue strength of the welded joints as a function of the averaged local
SED; R is the nominal load ratio (Berto and Lazzarin, 2009).

3 SED in a control volume applied to sharp notches

Dealing with a sharp V-notch subjected to Mode I loading (see Fig. 3), assuming
a plane strain condition, the mean value of the SED in the semi-circular sector of
radius R0 is (Lazzarin and Zambardi, 2001):

W̄1 =
e1

E

(
K1

R1−λ1
0

)2

(1)

where K1 is the NSIF, λ1 is Williams’eigenvalue (Williams, 1952), e1 is a shape
function that depends both on the notch angle 2α and the Poisson’s ratio ν and E
is the Young modulus.

By inverting Eq.(1) K1 can be easily defined as follows:

K1 = R01−λ1

√
EW̄1

e1
(2)

Due to the linearity of the problem, the NSIF value can be computed, similarly to
stress intensity factors (SIFs) in linear elastic fracture mechanics (LEFM) as:

K1 = k1 σn t1−λ1 (3)
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where k1 is a non dimensional parameter that depends on the overall geometry
and can be seen as an extension of the shape factor used in the LEFM, σn is the
reference stress (e.g., the remote tensile stress); t1−λ1quantifies the influence of the
specimen size and in particular of the notch depth.

Results of narrow V-notches with a/t=0, the most critical geometry, are reported
in Table 1. Here the comparison is between the normalized NSIFs obtained from
coarse and fine meshes. The maximum detected error is less than 2%.

Table 1: Comparison between fine and coarse mesh-based results; SED approach
applied to the models with narrow periodic notches, a/t=0.0, (t/d=0.05).

2α

(o)
FV

I
(coarse mesh)

FV
I

(fine mesh)
∆%

30 0.329 0.333 -1.06
45 0.405 0.411 -1.56
60 0.498 0.498 -0.17
90 0.734 0.730 0.58
120 1.092 1.090 0.14
135 1.322 1.323 -0.07

3.1 Application of the SED to periodic narrow notches: an extension of Tada
Paris diagram

A system of multiple, equal length edge cracks of depth t and spacing 2h has been
considered by Tada et al. (Tada, Paris and Irwin, 1985) in a plate of infinite width.
The variation of the SIF normalized by K0 = σ

√
h is presented as a function of

s=t/(t+h). It is shown that in the case of narrow cracks and having a s value greater
than 0.3, the SIF (KI) can be simply estimated by using the following equation,
which is valid for an infinite plate width:

KI = K0 = σn
√

h (4)

Eq. (4) can be directly applied without requiring numerical simulations and is
independent of the notch depth. The only parameter involved is the crack spacing,
h, which can be easily measured.

Consider now multiple, equal-length double symmetric V-notches of depth t under
Mode I loading and plane strain conditions (see Fig. 3).

An extension of Eq. (4) is proposed in (Berto, Lazzarin and Afshar, 2012) only for
narrow notches to matches the Tada Paris diagram valid for the crack case. The
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NSIF can be expressed as follows:

K1 = K0 = κ0 σnhλ1 (5)

In Eq. (5) κ0 is a dimensional parameter that depends on the notch opening angle
and λ1 is Williams’eigenvalue (Williams, 1952). Equation (5) collapses into Equa-
tion (4) when the crack case is considered (κ0=1 and λ1=0.5). For an infinite plate
width W>>t and narrow notches, being t/(t+a) close to 1 the stain energy averaged
over a control volume of radius R0 can be written as follows:

W̄=
1

κ2
0 e1

E

(
σnhλ1

R1−λ1
0

)2

=
ẽ1

E

(
σnhλ1

R1−λ1
0

)2

(6)

By inverting Eq. (6) it is easy to determine parameters κ0 and ẽ1 that can be ex-
pressed according to the following equations:

ẽ1 = κ
2
0 e1 =

EW̄1

σ2
n

(
R1−λ1

0

hλ1

)2

(7)

κ0 =

√
EW̄1

e1σ2
n

(
R1−λ1

0

hλ1

)
(8)

The values of κ0 and ẽ1 are given in Ref. (Berto, Lazzarin and Afshar, 2012)
for the five different characteristic notch opening angles (2α=30, 60, 90, 120 and
135˚) both for symmetric and edge notches. By means of κ0 and ẽ1 it is possible
to straightforwardly evaluate the NSIF and the SED over an area of radius R0 by
using Eq. (5) and (6), respectively. It is also possible to express the ratio between
K1 and K0 in a general form by combining Eqs (3) and (5). It yields to the final
expression:

K1

K0
=

k1

κ0

(
t1−λ1

hλ1

)
(9)

4 Scale effect for not narrow periodic notches

Since the NSIF depends on the absolute dimension of the notch and the plates, it
is surely convenient to normalize its value as a function of the notch size. Some
preliminary considerations might be useful. It is well known that two notched
plates scaled in geometrical proportion have the same theoretical stress concentra-
tion since it simply depends on the geometrical ratios, i.e. notch depth to plate
width ratio. Consider now two plates weakened by sharp V-notches, plates and
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notches in geometric proportion, the corresponding NSIF is different and can be
quantified by means of the simple expression ...(Dunn, Suwito and Cunningham,
1997, Dunn, Suwito and Cunningham, 1997, Lazzarin and Tovo, 1998):

K1 = k1 σ0 t1−λ1 (10)

where σ0 is the reference stress (e.g., the remote tensile stress), 1-λ1 is the stress
singularity in the close vicinity of the notch tip and k1 is a nondimensional shape
factor. In the case of periodic notches the shape factor k1 does depend on the
geometrical ratios t/d and a/t. Table 2 gives the NSIFs and the shape factor k1 for
some plates with a/t=0.1 and t/d=0.025. In addition, the normalized NSIFs of the
data presented in Table 2 as a function of depth of the notch (t) is shown in Fig. 2,
where the shape factor ki clearly appears as the coefficient of the power function.

Table 2: NSIFs as a function of depth of the notch (t) with constant relative depth
(t/d=0.025) for a plate with periodic notches of 2α=60◦ and a/t=0.1 (1-λ1=0.4878)
(Lazzarin, Afshar and Berto, 2012).

t
(mm)

d
(mm)

t/d K1
MPa mm0.4878

Shape factor
ki

0.250 10 0.025 46.664 0.9176
0.625 25 0.025 72.962 0.9176
2.5 100 0.025 143.476 0.9176
10 400 0.025 282.140 0.9176
25 1000 0.025 441.144 0.9176

Following the guidelines given in (Lazzarin and Tovo, 1996), scaling the geomet-
rical dimensions by a factor of "n", the NSIF value can be obtained by using the
following equation:

Ki,b = Ki,a ·n1−λi (11)

where the first index "i" is 1 or 2 according to the loading mode and the second
index is a or b representing the former or later geometry.

Applying the similar concept to the periodic notches under mode I loading (Fig. 3)
it is possible to give the ratio of the two NSIFs as follows:

K1,b

K1,a
=

√
W̄1,b

W̄1,a
=

(
hb

ha

)1−λ1

=

(
tb
ta

)1−λ1

=

(
Wb

Wa

)1−λ1

(12)
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According to Eq. (12) there is the need to redefine K0 according to the following
expression to re-establish non dimensionality of k0 and to obtain an expression very
similar to Eq. (3) being in this case the spacing between the notches, h, the main
parameter:

K0 = k0 σnh1−λ1 (13)

The non-dimensional parameter k0 will be provided for a large range of periodic
notches from the narrow to the deep case. Differently from Eq. (5) which provides
a κ0 equal to 1 for the opening angles ranging from 0˚ to 90˚, the new defined k0
will be substantially different from 1 just when the case 2α=90˚ will be considered.

By plotting Eq. (9) an extended version of the Tada et al. (Tada, Paris and Irwin,
1985) diagram is obtained for double symmetric notches and edge notches (Berto,
Lazzarin and Afshar, 2012). The trend of the NSIFs for a threaded plate with sharp
notches in an infinite plate (t/W=0.01) is shown in Fig. 4 (shallow notches). On
the left hand side of the diagram the notches are very far from each other and the
results collapse into the case of a single notch. On the other hand, on the right side
the diagram matches the case of narrow notches (a=0).
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Fig. 5 shows the variation of the dimensionless NSIF as a function of the notch



Some Recent Developments on the Application of the Strain Energy Density 177

opening angle varying the relative distance a/t. Here the relative notch depth as-
sumes its minimum values, t/W=0.025, in order to make possible a comparison in
engineering terms with the results reported in Ref. (Savruk and Kazberuk, 2008),
all related to the case of periodic notches in a semi-infinite plate (a/t→0).
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Figure 5: Variation of dimensionless NSIF with notch opening angle for the modes
with t/d=0.025; comparison with data reported in Ref. (Savruk and Kazberuk,
2008) for periodic notches in infinite plate (Lazzarin, Afshar and Berto, 2012).

It can be observed from Fig. 5 that there is a very good agreement between the
present results and those reported in the literature for the infinite plate problem.
The mean relative deviations for different distances between periodic notches with
a/t=0.0, 0.1, 1.0, 2.0, 5.0 and ∞ are: 3.81±6.89, 3.54±3.23, 3.07±0.70, 2.39±0.35,
1.62±0.48 and -0.3±0.29, respectively. It is clear that the relative deviations de-
crease as the notch opening angle and the a/t ratio increases.

5 Conclusions

By using the SED concept combined with a coarse mesh in the FE analysis, fatigue
strength assessment of some welded components is addressed .The NSIF of a nar-
row threaded plate with an infinite width is only a function of the notch spacing
raised to William’s eigenvalue. The equation gives accurate results when the ratio
between the notch depth and the plate width is lower than 0.025 and collapses into
Tada et al., solution in the crack case. The problem of the NSIF ratio of two scaled
geometries of periodic sharp notches is also addressed.
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