
Copyright © 2012 Tech Science Press SDHM, vol.8, no.3, pp.271-293, 2012

Sensor Fault Detection in Large Sensor Networks using
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Abstract: Current advancements in structural health monitoring, sensor and sen-
sor network technologies have encouraged using large number of sensor networks
in monitoring spatially large civil structures like bridges. Large amount of spa-
tial information obtained from these sensor networks will enhance the reliability in
truly assessing the state of the health of the structure. However, if sensors go faulty
during operation, the feature extraction techniques embedded into SHM scheme
may lead to an erroneous conclusion and often end up with false alarms. Hence it
is highly desirable to robustly detect the faulty sensors, isolate and correct the data,
if the data at faulty sensor locations are sensitive. Several sensor fault detection al-
gorithms have been reported in the literature and among them the PCA based sensor
fault detection algorithm [Kerschen et al (2005)] appears to be robust in isolating
all types of sensor faults. However, in a large sensor network, the computational
time in isolating the faulty sensor is prohibitive for online fault detection and isola-
tion. In this paper we propose a multi-level search algorithm, which improves the
performance of the PCA based sensor fault detection algorithm quite appreciably.
Numerical simulation studies have been carried out to demonstrate the effective-
ness of the proposed algorithm. The sensitivities of the proposed algorithm with
parameter settings are also presented.

Keywords: Structural health monitoring, smart sensor networks, Principal com-
ponent analysis, multi-level algorithm, singular value decomposition.

1 Introduction

Civil engineering infrastructure systems like bridges are spatially large and hence
the structural health monitoring strategies are being equipped with large number
of sensors for continuous online health monitoring and extracting features for ro-
bust damage diagnosis. As the number of sensors deployed for a SHM application
increases, it is also likely that the sensors themselves represent a weak link in the
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SHM system. Since the structural health monitoring schemes are heavily based
on the measurement data recorded during a long period, the sensor faults if goes
undetected, may misrepresent as a structural fault. Hence we need to thoroughly
investigate the long-term reliability, robustness, and calibration of these sensors.
Robust algorithms need to be developed which can offer a reliable damage detec-
tion capability even under malfunction of some sensing nodes of the global SHM
system. The dense sensor network constitutes a redundant system, which can be
used to detect sensor malfunction, identify the faulty sensor and reconstruct the
faulty sensor data, if required.

A sensor is declared faulty when it displays “a non-permitted deviation from the
characteristic properties”. This deviation may appear in four forms namely: bias,
drift, complete failure, and precision degradation. A sensor reading is biased if
the reading differs by a constant value from the actual value. If the difference
between the sensor reading and the actual value changes linearly with time, the
corresponding fault is referred to as drift. The sensor is considered to be completely
faulty, if the sensor reading remains constant regardless of the changes in actual
value. If the sensor reading is associated with an excessive-variance white noise, it
is referred to as precision degradation. Gain fault is due to increase in the variance
of the sensor and said to be uncommon [Kerschen et al (2005)].

The control and chemical engineering community have considered the sensor vali-
dation problem, and have used models and sensor redundancy to good effect. How-
ever, these approaches usually use the faulty sensor to predict the response and look
for errors between predictions and measurement. Using the faulty sensor in the
prediction process will propagate errors to the predicted responses. Often neural
networks, or artificial intelligence approaches are used for the analysis.

Structural health monitoring schemes of civil engineering structures typically in-
clude several sensors at different locations of the structure in order to extract fea-
tures for damage detection or damage localization. Such sensor network constitutes
a redundant system, which can be used to detect sensor malfunction or failure, iden-
tify, and even correct the faulty sensor. Dunia et al (1996) have investigated the
detection, isolation, and reconstruction of a faulty sensor using principal compo-
nent analysis (PCA). They have reconstructed each sensor data making use of data
from the remaining sensors. They have proposed sensor validity index (SVI), eval-
uated from the residuals obtained from the sensor data before and after reconstruc-
tion. This index is used for fault detection and isolation. They have also proposed
two approaches to reconstruct a single sensor. The first one is an iterative method
and the second one is an optimization based method. However, both these meth-
ods result in the same closed-form solution. Dunia et al (1996) have investigated
different types of sensor faults, i.e., bias, complete failure, drifting, and precision
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degradation. Different residuals were investigated. Dunia and Qin (1998) have
also derived conditions for fault detectability, reconstructability, and identifiability.
Both sensor and process faults could be identified, but the fault direction must be
known, which is easy for a sensor fault, but difficult for process faults.

Kerschen et al (2005, 2004) have also applied PCA to sensor validation and used
the angle between the principal subspaces as a feature for fault detection. They also
presented a closed-form equation to reconstruct data of a single faulty sensor. The
faulty sensor is isolated by removing the data pertaining to one sensor at a time from
both the reference and current data sets and the principal angle of the subspaces is
evaluated. The angle should then be very small, when the faulty sensor is discarded.

Friswell and Inman (2000, 1999) have introduced a sensor validation method based
on the modal model of the structure. This approach requires that the sensors are
functioning correctly, should be continuous and automatically monitored. The two
approaches (based on modal filtering and PCA) to sensor validation are developed,
based on the assumption that a model of the structure is available. They have con-
cluded that the modal filtering approach performs better, if an accurate modal model
is available. They have also observed that a multiplicative sensor fault is more dif-
ficult to locate than an additive fault.

Abdelghani and Friswell (2004, 2007) have investigated model-based methods to
validate sensors with additive or multiplicative faults. They have proposed parity
space and the modal filtering approaches for identification of sensors with an ad-
ditive fault. For the multiplicative fault, they have proposed a correlation index to
isolate the faulty sensor.

Hernandez-Garcia and Masri (2008) compared PCA, independent component anal-
ysis (ICA), and modified ICA(MICA) for sensor fault detection. They have used
Hotelling’s T2 statistic and the squared prediction error (SPE) for fault detection. It
was concluded that the detection performance of ICA and MICA was higher than
that of PCA.

Kullaa (2009) introduced factor analysis for sensor validation and compared it with
PCA. A closed-form solution to reconstruct several sensors using the remaining
sensors was also proposed.

Kullaa (2006) introduced the minimum mean square error (MMSE) estimation to
sensor validation. It works directly in the data space and does not require to deter-
mine any model parameters. A spatio-temporal extension was introduced [Kullaa
(2007)], which can be applied if the number of sensors is lower than the number
of active modes in the structure. The faulty sensor was identified by removing one
sensor at a time and performing MMSE estimation on the remaining sensors. The
faulty sensor was the missing sensor in the analysis with the lowest mean-square
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residual compared to that of the training data. The main disadvantage is that the
analysis needs to be carried out for each sensor and hence it is tedious.

Zhiling et al (2007) have developed a technique for sensor failure detection by
formulating a sensor error function. In this approach, the sensors are divided into
two groups; reference sensors and uncertain sensors. Reference sensors correctly
measure the structural responses and uncertain sensors may fail to correctly mea-
sure the structural responses. A sensor error function is formulated to detect the
instants of failure of the corresponding uncertain sensor, using the measurements
from reference sensors and the uncertain sensor examined. The sensor error func-
tion is derived using indirect and direct approaches. The applicability of the sensor
failure detection formulation has been demonstrated experimentally by a 4 m long
eight bay truss structure.

Before presenting our investigations on the effectiveness of various sensor valida-
tion algorithms, it is worthwhile to define the ideal characteristics of a sensor fault
detection algorithm. An ideal sensor validation technique should be capable of iso-
lating the faulty sensors in the sensor network, with the following characteristics:

• The ambient loading on civil engineering structures is not measurable. Hence
the algorithm should be capable of isolating faulty sensors with output only
responses.

• The algorithm should be able to identify all forms of sensor faults i.e., bias,
drift, complete failure, and precision degradation.

• The algorithm should be capable of working without the prior knowledge of
the number of faulty sensors in the network.

• The algorithm should have ability to find instance of origination of fault.

• Ease of implementation and computational efficiency.

Numerical investigations have been carried out on some selected sensor fault diag-
nosis techniques and their characteristics with respect to the above five desirable
features are listed in Table 1. The details provided in Table 1, clearly indicate that
the technique based on principal component analysis (PCA), where the angle be-
tween the principal subspaces is used as a feature for fault detection is robust in
terms of identifying all the four types of sensor faults. However in this algorithm,
one need to remove the time history data of a sensor (or multiple sensors) each time
and compute the subspace principle angle in order to identify the single or multiple
sensor faults. This process of sensor validation is computationally very expensive
and time consuming especially for spatially large civil engineering structures like
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bridges, which are instrumented with large number of smart sensors. In the state-
of-the-art structural health monitoring schemes, it is quite common to use large
sensor networks. Keeping this in view, we propose a multi-level algorithm, which
substantially reduces the number of operations in identifying the multiple sensor
faults. Numerical investigations have been carried out to validate and also verify
the robustness of the proposed algorithm in identifying the sensor faults. The com-
putational complexities with single and multiple sensor faults are also analyzed.

2 Computation of Principal component subspace

It is always more efficient to identify directly the principal components, also called
principal directions, rather than performing an exact modal identification to com-
pute the trajectories covered by the measurements. However, under certain as-
sumptions, principal components may represent the vibration modes of the system
[Feeny and Kappagantu (1998)].

In the present work, it is assumed that the number of sensors ‘n’ is greater than the
number of structural modes (m+1) involved in order to maintain the redundancy
of the data. Let Q denote a discrete block time-history of n x b ( where b � n)
sampled responses

Q =

x1(t j+1) .... x1(t j+b)
. .... .

xn(t j+1) .... xn(t j+b)

 (1)

The singular value decomposition (SVD) of the block data Q gives:

Q = UΣV T (2)

where U is an orthonormal matrix (n X n) whose columns define the principal
components (PCs) and form a subspace spanning the data. Each column of U is
associated with the (b X b) time coefficient matrix V. The singular values, given by
the (n X b) diagonal matrix Σ and sorted in descending order, can be related to the
energy associated with the corresponding principal components of U. This means
that the structure will react mainly in the directions of the principal components
associated with the highest energies. We may note here that it is computationally
more efficient to calculate the SVD of:

QQT = UΣ
2V T (3)

Theoretically, only the first m + 1 eigenvalues of Q are nonzero. Nevertheless, we
know that test data contains sensor noise. Since noise has much lower energy than
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the structural modes, the components of U associated with eigenvalues presenting
an order of magnitude much lower than others have to be discarded from the prin-
cipal component base. In the linear case, the principal directions extracted from
test data, always lie in the subspace (or hyper-plane) generated by the participating
modes

Mathematically speaking, this means that the so-called principal hyper-plane is in-
variant, even if the directions of the principal vectors are dependent on the structural
excitation. Nevertheless, the principal hyper-plane is dependent on the structural
characteristics. The PCA may be then considered as a powerful and straightforward
approach to compute a modal metrics of test data and to detect a potential sensor
failure by comparing reference and current structural states.

2.1 Angles between Subspaces

Given a set of data, the active principal components–PCs define a subspace (or
hyper-plane) that characterizes the dynamic behavior of the system. A change in the
system modifies consequently its dynamic state and affects the subspace spanned
by the PCs. This change may be estimated using the concept of angles between
two subspaces introduced by Golub and Van Loan (1996). This concept allows
quantifying the spatial coherence between two time-history blocks of an oscillating
system. Let A∈Rns×p and B∈Rns×q be two subsets, each with linearly independent
columns. First a QR factorization allows computing the orthonormal bases of A and
B:

A = QARA QA ∈ Rns×p

B = QBRB QB ∈ Rns×q (4)

Thus, the singular values of QT
AQB define the q cosines of the principal angles θi

between A and B.

SV D(QT
AQB) → Diag(cos(θi)) i = 1, ....q (5)

The largest angle allows quantifying how the subspaces A and B are globally dif-
ferent.

The faulty sensor can be detected using these principal angles. The responses of the
subspaces between reference data, i.e., when all sensors are functioning properly
and the current data i.e., when some of the sensors have become faulty, are com-
pared by computing the principal angles. If the principal angle between these two
subspaces is appreciably high, it can be concluded that some sensors in the current
response gives erroneous results. Theoretically, if all sensors are functioning cor-
rectly, the angle between the subspaces spanned by reference data and the current
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data should be zero. However, practically, it will not be zero due to environmental
variances and also the noises present in the measurement process. Before applying
the sensor validation process, number of reference data sets are collected by taking
measurements at different time instants and partitioned into several sets. The prin-
cipal angle between the subspace spanned by each of these sets and the subspace
spanned by the whole data set is computed, which gives us a collection of different
subspace angle values. When dealing with the current data set, an alarm is issued
when the monitored angle exceeds the upper control limit (UCL) defined as the
mean angle plus three times its standard deviation. This corresponds to a 99.7%
confidence interval for a normal distribution.

When an alert for faulty sensor is given, we need to isolate the faulty sensors. In
order to accomplish this, one has to remove one of the sensors each time from both
reference and current data sets and check the subspace angle. If the subspace angle
is minimum i.e. below the UCL specified, then the sensor isolated is faulty. Oth-
erwise, the isolated sensor is considered as working fine. The PCA based sensor
fault detection algorithm works very robustly and able to identify both additive and
multiplicative faults associated with sensors. However, the major problem associ-
ated with the PCA based sensor fault detection is the computational complexity,
especially while dealing with large smart sensor setup. It is not uncommon to em-
ploy large smart sensor networks in the state of the art structural health monitoring
schemes. For example, if there are hundred sensors and assuming the upper limit
of faulty sensors is five, the number of searches to identify the faulty sensors will
be of the order of 75e06(100 C5) , which will be computationally very tedious and
might not be a good option for online sensor fault detection in continuous health
monitoring schemes. In this paper, we propose a new search algorithm, which can
identify the sensor faults with minimum number of searches. The details of the
algorithm are described here.

2.2 Multi-level Search algorithm for PCA based sensor fault detection

The frame work of the proposed multi-level algorithm is developed keeping the
following objectives in view

• The main objective of the search algorithm is to find any faulty sensor com-
bination with least number of computations.

• The sensor subsets chosen must be as diverse as possible. Comparing subsets
like ‘ 1 3 5 6 ..‘ and ‘1 4 5 6. . . ’ is unproductive since it would take lot of
operations to single out the correct combination.( Samples should be like ‘ 1
3 5 6’ and ‘ 4 6 8 7’ , having little in common ).
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• The method should be as simple as possible. Also, it should be robust for
any size of sensor network and also any size of faulty sensor subset.

The algorithm works on the principle of forming subspaces using several diverse
combinations of spatial sensors (i.e., constructing subspaces using the time history
data of a typical spatial sensor combination) and checking the subspace angles by
comparing with reference subspace. Based on the subspace angles, the combina-
tion of spatial sensors chosen can be identified as faulty set or true set. Let the
total number of sensors placed on a structure be n. Form a subspace from the time
history data obtained from all n sensors. The search algorithm makes use of the
subspace data and also the reference subspace data to identify robustly the faulty
sensor/sensors using the principal angles concept discussed earlier. The sensor fault
detection process runs in multiple levels. In the first level, all the sensors in the net-
work are categorized as probable faulty sensors group (PFSG). From this, diverse
subsets are formed at each level and the size of PFSG is reduced by identifying
the subsets of working sensors using principal angles. In the next level, the same
operations are repeated on the reduced PFSG. Thus at each level, the size of PFSG
is reduced by identifying and eliminating the working sensor subsets formed at that
level. The algorithm terminates when PFSG is reduced to true faulty sensor set.
The details of forming subsets at each level are as follows:

Form new subspaces using the following subsets of time history data collected:

Subspace S1:- 1, 3, 5, . . . .n

Subspace S2:- 1, 4, 7, . . . .n

Subspace S3:- 1, 5, 9,. . . ..n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subspace Sk:- 1, 1+(k+1), 1+2(k+1), . . . .n

The number of subsets, k, to be formed depends on the total number of sensors and
also probable number of faulty sensors. The number of subspaces considered at
each level is called the depth factor and is denoted by k. The issues related to the
optimal parameter settings will be discussed later in this paper.

It can be observed from the subsets formed that sensor numbers like 2, 6, 8, ...etc.,
will be missing. To avoid this, we form further k number of following subsets:

Subspace R1:- n, n-2, n-4, n-6, .....1

Subspace R2:- n, n-3, n-6, n-9, .....1

Subspace R3:- n, n-4, n-8, n-12, .....1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subspace Rk:- n, n-(k+1), n-2(k+1), n-3(k+1), .....1
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Comparing the subspaces of all the above diversified subsets with the subspace
of the reference data, we can find the combinations that are fully comprised of
working (non faulty) sensors. The reduced set of probable faulty sensors group
(PFSG) for the next level is formed, by eliminating the already established working
sensors from the total sensors. The probable faulty sensor group (PFSG) need to
be analysed for further reduction of this group. Similar approach described above
is repeated for the current PFSG. Each combination is grouped with all or some of
working sensors to provide spatial coverage. In each iteration, the number in PFSG
reduces, finally converges to the exact faulty sensors.

The algorithm assumes that end sensors are working. If one or both end sensors
happen to be faulty, all the combinations of the subsets formed at that level, will
become faulty. The algorithm stalls at this instant. In order to avoid this rare case, a
feature to handle this situation is included. When such an instant is encountered, the
end sensors are left out and remaining sensors (2 to n-1) are sampled and evaluated.
If 2 and n-1 are found to be working, they are used for spatial coverage. Otherwise
sensors 3 to n-2 are sampled and the process goes on. This avoids stalling of the
algorithm, due to faulty end sensors. We may encounter similar problem, while
forming subsets with PFSG, i.e., the end sensors may be faulty. To overcome this,
we can ensure that the end sensors are not faulty by using the sensors from working
sensor group as end sensors. Further, while forming the S and R subsets, it is
possible that, we may end up with the same sensors in both S and R subsets. To
overcome this, the generated R and S subsets are verified for duplication and may
be eliminated before proceeding for computing subspace angles.

3 Numerical studies

Numerical studies have been carried out by simulating numerically various types
of sensor faults in order to ensure the robustness of the sensor fault detection tech-
nique. Later, we have employed the proposed multi-level search algorithm in con-
junction with the sensor fault diagnosis technique based on subspace angles to in-
vestigate the efficiency, robustness in detection of sensor faults and also parameter
settings.

3.1 Simply supported beam

The first numerical example considered is a simply supported beam with twenty
one accelerometers placed at equal intervals on the beam, to measure the response.
All four types of sensor fault are simulated. First, the acceleration measured at the
ninth sensor is multiplied by 1.2 (gain fault). Secondly, it is replaced by a white-
noise sequence of the same variance. Three different cases are considered for this
numerical example. They are:
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• case-A : one sensor at fault as indicated in Figure 1(a)

• case-B : three adjacent sensors are faulty as indicated in Figure 1(b)

• case-C : three sensors at different locations are faulty as indicated in Figure
1(c)

 

 

 
 
 

10 m 

Elastic Modulus = 205 GPa ;       Cross sectional Area = 0.225m2 

Mass Density     = 7850 Kg/m3;    Moment of Inertia = 0.000562 m4 

Sensors with red indicates faulty sensors & yellow are working sensors 

Figure 1: Simply supported beam with 21 accelerometers

For case-A, the reference data set contains 110000 samples from each of the twenty
one channels. The first step is to estimate the upper control limit (UCL). In order
to arrive at UCL value, the data are partitioned into 11 different subsets, each con-
taining 10000 points. These 11 reference subsets will give us a collection of 11
different angle values. The first three PCA modes are considered in the analysis as
they capture almost 99% of the energy. For a three-dimensional subspace, an alarm
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will thus be issued when the monitored angle will exceed the following angle (in
degrees).

UCL3 = θ̄ +3σθ = 0.4150+3×0.5261 = 1.9933 (6)

Where θ̄ = 1
N

N
∑

k=1
θk and N=11

σθ =

√
1
N

N

∑
k=1

(θk− θ̄)2

The current data set contains 110000 samples, whose last 50000 samples corre-
spond to a sensor fault. The current data set is partitioned into 11 different sets
containing 10000 points each. Figure 2 shows the principal angle between the sub-
space spanned by each of these subsets of current data and the subspace spanned
by the whole reference set for both sensor faults. It can be observed that, the first
six subsets (i.e., 60000 samples) are well below the UCL. However, the subspace
angle computed for rest of the five subsets (from 60000 to 110000 samples) is well
above the UCL clearly indicating that the some of the sensors have become faulty.
An alarm will be issued to indicate the presence of faulty sensors in the network.
Once the alarm has been issued, the faulty sensor needs to be identified using the
methodology discussed earlier in this paper. Figure 3 presents all the subspace an-
gles obtained when the sensors are removed one at a time. It is clear from Figure
3 that the computed subspace angle falls below UCL, when the ninth sensor is re-
moved. In all the other cases, the computed subspace angle lies well above UCL.
With this, one can clearly identify that ninth sensor is faulty.

Now that the ninth sensor has been identified as faulty, the next step is to retrieve
its original response. The response can be obtained using the redundancy of mea-
surement data, i.e., the number of sensors are more than the number of structural
modes involved. We use the approach suggested by Kramer (1992) and is given by

x∗ =−
{a′j}T

∑
ns
k 6= j=1 xk{a′k}

{a′j}T{a′j}
(7)

a′j, a′k are the jth and kth columns of the matrix A, where A= PT P. Matrix P contains
the principal components. xk and x∗ are the acceleration vector at kth location
(node) and the corrected acceleration data at the faulty sensor location respectively.

As underlined in the previous section, we have at our disposal 110000 reference
data points. First, the optimum number of retained PCA modes is determined.
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                        (a) Sensor Gain plot      (b) Sensor failure plot 
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          (c) additive sensor failure  plot    (d) Sensor drift failure plot 

 
Figure 2: Monitoring the subspace angle- Simply supported beam

More precisely, the response of the ninth sensor for the last 50000 points is pre-
dicted using equation (7) and the modes of the first 60000 points. The number
of modes which gives the minimum mean square error (MMSE) is chosen. The
studies suggest three PCA modes. The reconstructed response of the faulty sensor
is now compared to its original response in Figure 4. Even though, 50000 points
are faulty, for the sake of clarity, only 500 points are represented in the figure. A
close look at Figure 4 clearly indicates that the two curves compares very well. The
difference between them is marginal and not visible.

Similarly, we have considered the case-B and case-C, where three adjacent sensors
and three arbitrary located sensors are faulty. The faulty sensors are identified
using sequential elimination technique. The faulty sensor data is corrected using
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                        (a) Gain plot       (b) Sensor plot 

 
Figure 3: Faulty sensor isolation

multi variant approach discussed in the earlier section and also iterative refinement
of the corrected data to improve the solutions. The results obtained for case-B and
case-C are shown in figures 5 and 6 respectively

 
Case-A 

 
Figure 4: Reconstruction of faulty data of 9th sensor
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Case-B 

 
Figure 5: Reconstruction of faulty 9th sensor data after identification of 9, 10, and
11 as faulty sensors

 
Case-C 

 
Figure 6: Reconstruction of faulty 15th sensor data after identification of 7, 10, and
15 as faulty sensors

3.2 Slab bridge

The second numerical example considered is a slab bridge shown in Figure 7. In
this example, the number of accelerometers is considered as 24. The reference
data contains 110000 samples collected from each of the 24 channels. The data is



286 Copyright © 2012 Tech Science Press SDHM, vol.8, no.3, pp.271-293, 2012

partitioned into 11 different sets containing 10000 points each, which gives us a
collection of 11 different angle values. The number of PCA modes is considered as
five. An alarm will thus be issued indicating presence of faulty sensors, when the
monitored angle exceeds the following angle (in degrees):

UCL3 = 0.7450+3×0.6630 = 2.734

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Dimensions of Slab Bridge: 15 m length by 3.5 m width 
 
Number of active nodes: 232              Thickness: 0.25 m 
 Elastic modulus: 25.1 GPa        Poisson’s ratio, ν : 0.18  

Figure 7: Slab bridge

The current data set contains 110000 samples and the last 60000 samples corre-
spond to a sensor fault. The current data set is partitioned into 11 different sets
containing 10000 points each. Figure 8 displays the principal angle between the
subspace spanned by each of these sets and the subspace spanned by the whole
reference set for both sensor faults. In both cases, it can be observed that the first
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six subsets (60000 samples) are well below the UCL and the rest of of five data sets
are above the UCL. Once the faulty sensor state is identified, the exact locations of
faulty sensors need to be identified using the same methodology employed earlier
for simply supported beam. Figure 9 presents all the subspace angles computed,
when data pertaining to one sensor is removed at a time from the available current
subset data. For both faults, it clearly appears that the angle approaches zero when
the eleventh sensor is removed. The reconstruction of the faulty data for eleventh
sensor is carried out using equation (7) and the reconstructed sensor data is com-
pared with the original data at the sensor location and presented in Figure 10. It
can be observed that the reconstructed data is almost same as the original data.

 (a) Sensor  Gain plot                 (b) Sensor Failure  plot  
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      (c) Sensor Additive plot                         (d) Sensor Drift Failure plot 
 

Figure 8: Monitoring the subspace angle - Slab bridge

It can be observed from the above numerical simulation studies that the sensor
correction scheme based on subspace angles can detect all possible sensor errors.
As mentioned earlier, the major problem associated with the PCA based sensor
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                        (a) Gain plot       (b) Sensor failure plot 

 
Figure 9: Faulty sensor isolation- Slab bridge

 
Figure 10: Reconstruction of faulty eleventh sensor data- slab Bridge

fault detection technique is the high computational cost associated in isolating the
sensors.

The new multi-level search algorithm proposed in this paper can overcome this
problem to a large extent. The gain in terms of computational efficiency increases
with the size of sensor network and also with number of faulty sensors. In order to
investigate the performance and robustness of the proposed search algorithm, we
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have considered the above two examples and also small to larger sensor networks.
The smaller sensor network configuration consists of ten sensors on a beam and the
larger sensor network configuration on slab bridge consisting of 1000 sensors. We
have also tested with various sizes of faulty sensor subsets at various spatial loca-
tions to test the robustness of the algorithm in isolating the faulty sensors. Further,
number of trials, has been conducted, choosing each time randomly a fixed subset
of faulty sensors to test the robustness and also performance of the algorithm. The
number of trails for each sensor depends on the total size of the sensor network and
also size of the faulty sensor set. The details of the studies carried out are furnished
in Table 2. The computational performance indicated in the table are the number of
times the subspace angles need to be computed and the entries shown in the table
are the average performance over specified number of trails made on each sensor
set configuration with varied size of faulty sensor set. In order to test the reliability
of the algorithm, we have computed the reliability index and shown in parenthesis
for each of the entry in the table. The reliability index is defined as the ratio of num-
ber of successful trials to the total number of trials made for a given set of sensor
network with the specified faulty sensor configuration. The following observations
can be made from the details furnished in the table.

The reliability of the algorithm increases with the increase in the depth parameter k.
This is obvious as k increases, the number of combinations of sensor sets increases
and there by the chances of identifying the faulty sensor at any spatial location
increases.

One can choose large value of k to improve robustness. But the computational
overhead increases with the increase in the value of k.

The reliability index of the algorithm depends on the size of faulty sensor set. The
reliability index is 1.0, when there is only one faulty sensor irrespective of the
variation of depth parameter k, while it reduces with the increase in the size of the
faulty sensor set.

While devising the algorithm it is assumed that the two end sensors in each sensor
combination belongs to working sensors set group. However, it may not happen
always and can easily be judged from the results obtained in the first level. If all
the sensor combinations are found to be faulty it can be concluded that the end
sensors are not working sensors. If this happens the algorithm stalls. To overcome
this, the two end sensors will be removed from the combinations and tested for
faulty groups.

Choosing an optimal value for the depth parameter, k is essential in reducing the
number of computations. The depth parameter, k chosen twice the size of specified
faulty sensor set in the network appears to be optimal. The reliability index of the
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Figure 11: Performance of the proposed search algorithm with different values of
k (Depth parameter)
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algorithm is also found to be 1.0 when k is chosen two times the Faulty sensor set.
It is evident from the bar chart presented in Figure 11 and also Table 2.

4 Conclusions

In this paper the sensor fault identification, isolation and correction scheme for
large sensor networks are attempted with principal component analysis using sub-
space angles. Since the state-of-the-art online continuous structural health moni-
toring strategies are based on large sensor networks, it is desirable that the sensor
correction scheme is robust and fast enough to handle the sensor faults and correct
the data online, if necessary. The studies presented in this paper, clearly indicate
that the PCA based algorithm is robust and can detect and isolate all the possible
sensor faults. However, it requires repeated formation of subspaces and computa-
tion of angle of current subspace and reference subspace to isolate the faulty sensor.
In view of this, the computational cost is likely to increase prohibitively with the
increase in the sensor network size and also size of faulty sensors. In order to over-
come this problem, a fast multi-level search algorithm is proposed in this paper.
Numerical simulation studies have been carried out with sensor network configu-
rations ranging from small to large size of sensor networks with varying size of
faulty sensor set. The reliability of the algorithm is also investigated by conducting
several trials on each sensor network choosing the faulty sensors at various sensor
locations randomly in each trail. Studies clearly indicate that the proposed multi
level search algorithm is robust and also highly reliable. The computational cost
of the PCA based sensor fault detection algorithm with the proposed multi-level
search strategy, reduces remarkably and the amount of reduction in computational
cost increases with the increase in the sensor network size and also the size of faulty
sensor set. The proposed multi-level search algorithm is extremely useful for online
sensor fault detection, isolation in current SHM schemes.
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