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Crack Growth Modelling in Functionally Graded
Materials by Mesh-Free Method

P.H. Wen1 and M.H. Aliabadi2

Abstract: A mesh-free method for modelling crack growth in functionally graded
materials is presented. Based on the variational principle of the potential energy,
mesh-free method has been implemented with enriched radial bases interpolation
functions to evaluate mixed-mode stress intensity factors, which are introduced to
capture the singularity of stress at the crack tip. Paris law and the maximum prin-
ciple stress criterion are adopted for defining the growth rate and direction of the
fatigue crack growth respectively. The accuracy of the proposed method is assessed
by comparison to other available solutions.

Keywords: Meshless method, stress intensity factors, enriched radial bases func-
tions, fatigue crack growth, Paris law, functionally graded materials.

1 Introduction

In a method for life time prediction of damaged structures, the influence of the
geometry of the component or structure and its interaction with the growing crack
should be considered. In general, numerical methods such as the Boundary Element
Method (BEM) and the Finite Element Method (FEM) are used in the fracture anal-
ysis of structures, because of the complex shape and continuously changing path of
the growing crack. More recently, Mesh-free (also referred to as Meshfree) meth-
ods have grown in popularity. Regardless of the numerical method being used,
crack growth incremental analysis requires remeshing at the end of each crack ex-
tension. Except for the very simple cases, where the crack paths are known prior,
remeshing can be quite cumbersome.

Early attempts to model crack growth using the Finite Element Method (FEM) can
be traced back to works of Shepard et al (1985); Tong et al (1973); Soboyejo et al
(1990); Remzi and Blackburn (1990). A popular approach to model crack growth
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is the discrete crack modeling approach (see Kawai (1978); Currtin (1990)). More
recent advances in the finite element method can be found in the work of Swift
(1992); Theilig et al (1997) for two-dimensional mixed-mode crack problems, and,
[11,12,16, 42, 54,55] for three–dimensional mixed-mode problems.

The enriched element was developed Benzley (1974) by adding the analytic ex-
pression of the crack tip field to the conventional finite elements. The enriched el-
ements formed the immediate layer of elements surrounding the crack-tip. Further
progress on enriched elements were reported by Foschi and Barrett (1976); Gifford
and Hinton (1978); Heppler and Hansen (1981); Heyliger and Kriz (1989). Hy-
brid elements developed by Theilig and Buchholz (1999) are similar in concept to
the enriched elements, in the sense that both approaches are based on assumed dis-
placement and/or stress distributions near the crack tip and both allow for the direct
evaluation of the stress intensity factors as global unknowns. The major difference
between the two methods lies in the method of enforcing the inter-element com-
patibility of displacement variables. The enriched elements use a special transition
element, while the hybrid elements typically use a modified variational principle
(see [4]).

Another interesting method for modeling crack propagation is the Embedded Finite
Element Method (EFEM). A review of EFEM can be found in Jirasek (2000).

A more recent successful application of the FEM to mixed-model crack growth
modeling is due to the development of eXtended Finite Element Method (XFEM).
The XFEM as developed by Black and Belytscchko (1999); Rethore et al (2005)
is inspired by the enriched finite elements originally proposed by Benzley (1974)
(see Aliabadi and Rooke (1991) for an overview of enriched FEM).

A robust method for modeling crack growth in general mixed-mode problems was
developed by Portela et al (1993); Mi and Aliabadi (1994, 1995). The method
is based on the Dual Boundary Element Method earlier proposed by Portela et
al (1993); Mi and Aliabadi (1992) as an effective way of modeling crack prob-
lems using the boundary integral equation. The DBEM for the first time allowed
modeling mixed-mode crack problems without a need for continuous remeshing
and user interferences. The crack extension was modeled with new boundary el-
ements without having to remesh the previous crack geometry. The extension of
the DBEM to different linear, transient and nonlinear problems can be found in
Benedetti et al (2008); Cisilino and Aliabadi (1999, 2004); Dell’Erba and Ali-
abadi (2000); Dirgantara and Aliabadi (2000); Leitao et al (1995); Prasad et al
(1996); Saleh and Aliabadi (1995); Salgado and Aliabadi (1998); Wen and Ali-
abadi (2011). Another interesting development in 3D crack growth modeling is
the coupled symmetric Galerkin boundary element method formulation with FEM
alternating method as presented by Han and Atluri (2002). A review of boundary
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element methods for crack growth modeling can be found in [2].

During the last decades, mesh-free methods, as an alternative to Finite Element
Method (FEM), have shown a promising potential and has found applications on
various problems (see Atluri and Zhu (1998); Belytschko et al (1994); Duarte and
Oden (1996); Gingold and Monaghan (1977); Liu et al (1995); Nayroles et al
(1992)). Among different kinds of mesh-free methods proposed so far, Element
free Galerkin and Meshless local Petrov-Galerkin (MLPG) have gained much at-
tention both using Moving least square (MLS) approximation as the shape function
construction. More recently, Liu and Gu (1999) introduced a point interpolation
method which uses Radial bases (RB) function to construct the shape function.
Valliappan and Murti (1985); Wen and Aliabadi (2007, 2008); Wen et al (2011)
applied the Radial bases function to analysis of elastodynamic, functionally graded
materials and fracture mechanics problems. A new formulation of EFG was pro-
posed by Liu and Gu (1999) through the moving kriging (MK) interpolation in
order to eliminate the shortcoming that EFG shape function does not satisfy the
Kronecker delta property.

This paper presents a mesh-free method with enriched radial bases function for
modelling crack growth for functionally graded materials. An enriched radial bases
function has been introduced to catch up the singularity of stresses near crack tip.
The crack growth is simulated simply by adding two new nodes, i.e. one node
indicates new crack tip and one is split from previous crack tip. Compared with
classic finite element method, meshing and re-meshing for crack propagation prob-
lems are not necessary in this approach. The incremental crack length is obtained
by integrating the Paris law for a given increment of load cycles. The mixed-mode
stress intensity factors are evaluated with satisfactory accuracy either by using the
J-integral or crack opening displacements. Two numerical examples are presented
to demonstrate the validity of the proposed method.

2 Variational principle of potential energy

Consider a homogeneous anisotropic and linear elasticity solid, the relationships
between stresses and strains by Hooke’s law are given by

σi j(x) = Ci jkl(x)εkl(x) = Ci jkl(x)uk,l(x), (1)

whereεkl = (uk,l +ul,k)/2, and Ci jkl denotes the elasticity tensor which has the fol-
lowing symmetries

Ci jkl = C jikl = Ckli j. (2)
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For a homogeneous isotropic solid, we have

Ci jkl(x) = λ (x)δi jδkl + µ(x)
(
δikδ jl +δilδ jk

)
(3)

where λ and µ are the Lame’s constants, which are functions of coordinates x in
general case. For the orthotropic plane-strain state, Hooke’s law can also be written,
in matrix form, as

σσσ =


σ11
σ11
σ11

= D


ε11
ε22
ε12

= Dεεε (4)

where

D(y) =
E(y)[1−ν(y)]

[1+ν(y)][1−2ν(y)]


1 ν(y)

1−ν(y) 0
ν(y)

1−ν(y) 1 0

0 0 1−2ν(y)
2[1−ν(y)]

 (5)
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Figure 1: Support domain Ωy for RBF interpolation of the field point y in a cracked
body.

in which, E(y) is the Young’s modulus and νÍ(y) the Poisson’s ratio. Both them
are functions of the position of analysis point. With the shape functions, the dis-
placements u(y) at the point y can be approximated in terms of the nodal values in
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a local domain (see Figure 1), called as support domain, as

ui(y) =
n

∑
k=1

φk(y,xk)ûk
i = ¯(y,x)ûi (6)

where

Φ̄ΦΦ(y,x) = {φ1(y,x1),φ2(y,x2), ...,φn(y,xn)} (7)

and the nodal value

ûi =
{

û1
i , û

2
i , ..., û

n
i
}T

, i = 1,2 (8)

at point xk =
{

x(k)
1 ,x(k)

2

}
, where k = 1,2, ...,n(y), φk the shape function and n(y) the

number of nodes in the local supported domain. For the two dimensional elasticity,
we can rearrange the above relation in a matrix form as

u(y) = {u1,u2}T = (y,x)û (9)

ΦΦΦ(y,x) =
[
Φ̄ΦΦ 0
0 Φ̄ΦΦ

]
=
[

φ1 0 φ2 0 ... φn 0
0 φ1 0 φ2 ... 0 φn

]
(10)

û =
{

û1
1, û

1
2, û

2
1, û

2
2..., û

n
1, û

n
2
}T

(11)

Therefore, the relationship between strains and displacements is given by

εεε(y) =


∂φ1
∂y1

0 ∂φ2
∂y1

0 ... ∂φn
∂y1

0

0 ∂φ1
∂y2

0 ∂φ2
∂y2

... 0 ∂φn
∂y2

∂φ1
∂y2

∂φ1
∂y1

∂φ2
∂y2

∂φ2
∂y1

... ∂φn
∂y2

∂φn
∂y1

 û = B(y,x)û. (12)

Considering the variation of the total potential energy, with respect to each nodal
displacement yields 2×N a linear algebraic equation system in a matrix form as

[K]2N×2N û2N = f2N (13)

where N is the number of node in the domain Ω¸ and on the boundary. The stiffness
and mass matrices can be written as

K =
∫
Ω

BT(y,x)D(y)B(y,x)dΩ(y) (14)
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for nodes x = xi i = 1,2, ...N, and nodal force vector is defined by

f =
∫
Ω

ΦΦΦ
T(y,x)b(y)dΩ(y)+

∫
Γσ

ΦΦΦ
T(y,x)t(y)dΓ(y) (15)

where b = {b1,b2}T is the vector of body force, vector of traction t = {t1, t2}T, in
which ti = σi jn j, ni denotes a unit outward normal vector, σ denotes the boundary
on which the traction is given. For a concentrated force acting at node i, we may
determine the nodal force vector directly by

fi =
{

F i
1,F

i
2
}T

(16)

3 The approximation scheme

A sub-domain Ωy as shown in Figure 1 is introduced in a neighbourhood of point
y and is defined as local support domain. In order to guarantee unique solution of
the interpolation problem, the distribution of function u in the sub-domain Ωy over
a number of randomly distributed notes {xi} , i = 1,2, ...,n(y) is interpolated by

u(y) =
n

∑
k=1

Rk(y,x)ak +
t

∑
j=1

Pj(x)b j = R(y,x)a+P(y)b (17)

along with the constraints
n

∑
j=1

Pk(x j)a j = 0, 1≤ k ≤ t (18)

where {Pk}t
k=1 is a bases for Pm−1, the set of devariate polynomials of degree ≤

m−1, and

t =
(

m+d−1
d

)
is the dimension of Pm−1. A set of linear equations can be written, in the matrix
form, as

R0a+Pb = û, PT
0 a = 0 (19)

where matrix

R0(x,x) =



R(x1,x1) R(x1,x2) ... R(x1,xn)
R(x2,x1) R(x2,x2) ... R(x2,xn)

. . ... .

. . ... .

. . ... .
R(xn,x1) R(xn,x2) ... R(xn,xn)

 (20)
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and

P0(x) =



P1(x1) P2(x1) ... Pt(x1)
P1(x2) P2(x2) ... Pt(x2)

. . ... .

. . ... .

. . ... .
P1(xn) P2(xn) ... Pt(xn)

 (21)

Solving (19) gives

b =
(
PT

0 R−1
0 P0

)−1 PT
0 R−1

0 û, a = R−1
0

[
I−P0

(
PT

0 R−1
0 P0

)−1 PT
0 R−1

0

]û
(22)

where I denotes the diagonal unit matrix. To capture singular stresses at crack tip,
enriched radial bases function has been selected as following

Rk(y,x) = R(y,x) =
√

c2 + |y−xk|2 +
√

r e−α r (23)

where r = |y−yc|; c and α are free parameters; yc (y(c)
1 ,y(c)

2 ) denotes the location
of the crack tip. Substituting the coefficients a and b from (22) into (23), we can
obtain the approximation of the field function in terms of the nodal values

ui(y) =
〈

R(y,x)R−1
0

[
I−P

(
PT R−1

0 P
)−1 PT R−1

0

]
+P(y)

(
PT R−1

0 P
)−1 PT R−1

0

〉
û

=
n

∑
k=1

φk(y)ûk
i (24)

where R(y,x)= {R1(y,x1),R2(y,x2), ...,Rn(y,xn)} and P(y)=
{

1,y1,y2,y2
1,y1y2,y2

2...
}

are a set of radial bases functions centred around the point y and the set of devari-
ate polynomials respectively. It is worth noting that this shape function depends
uniquely on the distribution of scattered nodes within the support domain and it
has the property of the Kronecker Delta function. In addition, the inverse matrix of
coefficient R−1

0 (x) depend on the distribution of the node xi located in the support
domain only, therefore it is easy to evaluate the first and higher order derivatives of
shape function from Equation (10). From Equation (17), we have

ui, j(y) =
n

∑
k=1

φk, jûk
i i = 1,2 (25)

From Equation (23), we have

Rk, j(y,xk) =
y j− x(k)

j√
c2 + |y−xk|2

+
y j− y(c)

j

r

(
1

2
√

r
−α
√

r
)

e−α r j = 1,2. (26)
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P,1(y) = {0, 1, 0,2y1 ,y2, 0, ...} (27)

P,2(y) = {0, 0, 1, 0, y1, 2y2, ...} (28)

Therefore, the first order derivative for displacements is of 1/
√

r singularities at
crack tip. In addition, the introduction of the polynomial terms has very slight
effect on the accuracy (see Wen and Aliabadi (2011), therefore we have, a = R−1

0 û
and b = 0 simply.

4 Fatigue crack growth analysis

To evaluate stress intensity factors, both J-integral and crack opening displacement
(COD) are used in this paper. For a mixed-mode fracture problem and constant
material properties, the stress intensity factors are related with the J-integral for
plane-strain as following

1−ν2(yc)
E(yc)

(
K2

I +K2
II
)

= J (29)

where J =
∫
Γ′

(
Wn1− tβ uβ ,1

)
dΓ′ and Γ′ is an arbitrary closed contour, oriented in

the anti-clockwise direction, starting from the lower crack surface to the upper one
and incorporating the crack tip and W = σαβ εαβ /2is strain energy density in the
field. Alternatively stress intensity factors for plane strain problem, can be obtained
from

KI =
E(yc)

8[1−ν2(yc)]

√
2π

r0
∆u2, KII =

E(yc)
8[1−ν2(yc)]

√
2π

r0
∆u1 (30)

where r0 indicates the distance between calculation point on the crack surface and
the crack tip. Obviously for the functionally graded materials, the arbitrary closed
contour or the distance r0 should be small enough in order that the material prop-
erties can be considered as constants. It is worth noting that in the evaluation of
J-integral, the coordinate system should be a local system, i.e. direction 1 is along
the direction of crack growth. As there are two variables in equation (29), we need
to introduce another equation. A simple procedure based on the decomposition of
the elastic field into its respective symmetric and anti-symmetric mode compos-
ites, can be used to separate the stress intensity factors of a mixed-mode problem,
see Kitagawa et al (1976); Rigby and Aliabadi (1998). However, the simplest
and most direct way is to introduce the ratio of the crack opening displacements
(COD), i.e. ψ(r0) = ∆u2/∆u1, therefore the mixed-mode stress intensity factors
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can be evaluated by

KI =

√
E(yc)J

[1−ν2(yc)](1+ψ2)
, KII = ψKI (31)

where a circle of radius r0 centred at the crack tip is selected to be a J-integral
contour. In general case, the crack path is a smooth curved path. However, crack
propagation is simulated by successive linear increments, which direction needs to
be determined. Several criteria have been proposed to describe the local direction
of mixed-mode crack growth (see Aliabadi and Rooke (1991); Erdogan and Sih
(1963); Sih (1974)). The maximum principal stress criterion Erdogan and Sih
(1963) is adopted in this paper. This criterion postulates that the growth of crack
will occur in a direction perpendicular to the maximum principal stress (the minor
principal direction at the crack tip). Thus, at each crack tip, the local direction of
crack growth is determined by the condition that the shear stress is zero, that is

KI sinθc +KII(3cosθc−1) = 0 (32)

θc = 2arctan
[(

ψ±
√

ψ2 +8
)

/4
]

(33)

Obviously the direction of crack growth depends on the ration ψ only near the crack
tip. The equivalent stress intensity factor is defined for the mixed-mode fracture as
follows

Keq(a) = KI cos3 θc

2
−3KII cos2 θc

2
sin

θc

2
(34)

and the growth rate of crack are computed by the generalized Paris’ law

da
dN

= C∆Km
eq(a) (35)

where ∆Keq = (1−R)Keq,max, R = Keq,mix/Keq,max = σmin/σmax, C and m are em-
pirical constants characteristic of the material. The constant m, Paris constant, is
typically in the range 3-4 for common steal and aluminum alloys. At the end of
each incremental analysis, the equivalent stress intensity factors are calculated and
the number of cycles ∆Ni necessary to growth an arbitrary crack-extension incre-
ment size ∆ais obtained by

∆Ni =
1
C

ai+∆a∫
ai

∆K−m
eq (a)da. (36)

The implementation of this method can be carried out according to the following
processes:



232 Copyright © 2012 Tech Science Press SDHM, vol.8, no.3, pp.223-247, 2012

1. Choose a finite number of nodes N in the domain Ω and on the boundary;

2. Select crack tip with extra nodes around the crack tip;

3. Divide domain Ω into sub-domain for integration;

4. Loop over integral in sub domain m (m=1,2,. . . ,M) centred at ym

5. Loop over Gaussian integration points yl for each cell,

6. Loop over all nodes in the support domain (i, j);

7. Calculate the shape function φi(y,xi) and first derivative φi,k(y,xi);

8. Evaluate the elements ∆Km
l =

[
al

kl

]
i j with enriched radial bases function;

9. Assemble the system stiffness matrix K(I,J);

10. End the node loop in the local domain,

11. End the Gaussian point loop,

12. End the cell-integral loop,

13. Introduce the displacement boundary condition solve the system equations;

14. Determine the stress intensity factors and direction of crack growth

15. Go to (ii) or next step;

16. Calculate the cycle number for each crack growth.

5 Numerical examples

5.1 Fatigue crack growth for a single edge slant crack

The rectangular plate (10cm× 20cm) containing an inclined edge crack (2cm) with
an angle 400 studied in this example. In this case, we assume the material properties
are constants in the domain. A constant cyclic tension in the range from 0 to 40MPa
is applied on the top and bottom side of the plate. The material properties are:
E = 74GPa, ν = 0.3, C = 19.932× 10−12m / (MN / m1.5)m, m = 3.32 and Kc =
60MN / m1.5. There are 21×41 uniformly distributed nodes in the domain and 17
extra nodes around the crack tip as shown in Figure 2. Furthermore, in the system
stiffness matrix K in equation.(13), the integral function has a strong singularity of
O(1/r) at crack tip. We use polar coordinate to cancel this singularity in the integral
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Figure 2: Distribution of the nodes and extra 17 nodes around the crack tip.

function over sub region shown in Figure 3(a). The radius of the circle around the
crack tip R0 is selected in the region between ∆a and 3∆a, where ∆a represents the
increment of crack length, which is selected to 5mm in this example. The radius of
the support domain rycentered at field point y is determined such that the minimum
number of nodes in the support domain n(y) = 8. One of two free parameters c
is selected as η∆a and η = 1. The influence of the second free parameter α (in
the radial bases function) on the cycle number and stress intensity factors will be
investigated. The integration is performed on 40×80 cells with 4×4 Gauss points
in each cell.

Due to the discontinuities of displacement and traction between upper and lower
crack surfaces, the traditional support domain such as a circular domain is not valid
for the mixed-mode fracture problems. In this example, the cracked body is divided
into three sub-domains as illustrated in Figure 2 around the crack tip. Domains I
and II, which collocate on the two sides of crack surface, must be uncoupled as
the discontinuities of displacements due to crack. Different shapes of supported
domain for internal integral points are presented in Figure 2. Therefore, the discon-
tinuity of displacement can be described properly using the radial bases functions.
For example, if the calculation point (solid dot in Figure 3(a)) is in zoom I, the col-
location nodes in zoom II should be excluded. In addition, if the calculation point
is in zoom III and y2 > 0, the collocation nodes in zoom I should be excluded as
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Figure 3: Crack growth in plate and integration area around crack tip. (a): rectan-
gular plate with edge crack; (b) local support domain in zoom I; (c) local support
domain in zoom III.

shown in Figure 3(c).

The radius of J-integral contour or the distance between the calculation point and
crack tip is chosen asr0 = ∆a. The J-integral contour is valid for isotropic material
only. For the functionally graded materials, there is modification to the integration
in (10) (see Sih (1974)). The variation of the stress intensity factors by J-integral
technique against the crack length and the fatigue life diagram are presented in
Figures 4 and 5 respectively. The initial mode I and mode II SIFs are presented in
Table 1. It shows that satisfactory results can be found in the region of α between
1 and 5.

After crack initiates growth, the mode II stress intensity factor tends to zero rapidly.
Since the mode II SIF is almost zero for crack propagation, the failure life is dom-
inated by the mode I SIF apart from the initial growth of crack. For the fracture
toughness of 60MN / m1.5, the maximum crack length failure is found to be 66mm
and the failure life is estimated as 139200 cycles by the proposed method with tan-
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Figure 4: Stress intensity factors vs crack length with different free parameters α .
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gential technique when α is taken as 1. This is in good agreement with the results
by Duflot and Nguyen-Dang (2004): 61.3mm for the final length and 131411 cy-
cles. Figures 4 and 5 show the stress intensity factors KI(a) and KII(a) in unit of
MN / m1.5 against the crack length a (mm) for different selections of a free param-
eter α . In addition, a sudden change of the direction of the crack growth can be
observed at the first increment of the crack length. After that sudden change, the
crack growth is almost in a straight line.
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Figure 6: Geometry of a edge cracked square plate under a mode II load.

5.2 A square plate under a mode II fatigue load

A square plate (20cm×20cm) was investigated for a mode II fatigue load by Kim
and Lee (2007). Constant cyclic mode II traction in the range from 0 to 165MPa is
applied on the upper and lower left edge of the plate in the opposite direction. In this
case, 41×41 notes uniformly distribute in the domain and 17 extra nodes around the
crack tip as shown in Figure 6. The material properties are: E = 210GPa, ν = 0.3,
C = 1.886×10−12m / (MN / m1.5)m, m = 3.0 and Kc = 200MN / m1.5. The fatigue
crack growth is simulated by the tangential technique with crack increment length
of 2.5 mm (∆a). The initial crack lengths are specified as 1cm, 2cm, 4cm and
8cm respectively with the same incremental crack growth. The stress intensity
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Figure 7: Stress intensity factors vs crack length with different free parameters α .
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Figure 8: Number of load cycles vs crack length with different free parameters α .
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factorsKI(a), KII(a) in unit of MN/m1.5 and the cycling number against the crack
length a (mm) are presented with different free parameter α in Figures 7 and 8
respectively. Two different crack increments were used by Kim and (2007) in terms
of the increment of cycling number, i.e. ∆N = 200 and ∆N = 4000 respectively.
Figure 9 shows the growth paths for these four different initial cracks when free
parameter α is taken to 1. In addition, the selection of free parameter α has limited
effects on the results of SIFs and the cycling number. Obviously the growth path of
the 1cm initial crack forms a sharp curve with a small radius of curvature due to the
effect of boundary. In this case, the bending effect dominates the crack propagation
direction. Very good agreement has been achieved both for the number of load
cycles and crack growth paths with the results given by Kim and (2007) using the
boundary element method.

5.3 Functionally graded material cracked square plate under a mode II fatigue
load

The plate of same geometry and boundary conditions in Example 5.2 is investigated
for a mode II fatigue load with considering functionally graded materials. Constant
cyclic mode II traction with ratio R = 0 is applied on the upper and lower left edge
of the plate in the opposite direction. It is assumed that Young’s modulus E is
function of coordinate except Poisson’s ratio ν(= 0.3). In this example, Young’s
modulus E has an exponential variation in y1 as

E(y) = E0 exp(βy1/b) (37)

where β = ln(E1/E0), with E0 and E1 corresponding to the E-value at y1 = 0 and
y1 = b(=20cm) respectively. The nodes are uniformly distributed (41×41) in the
domain and 17 extra nodes around the crack tip are used. The fatigue crack growth
is simulated using the tangential technique with crack increment length of 2.5 mm
(∆a). The initial crack lengths are selected as 1cm and 4cm respectively with the
same incremental crack growth. We considered five ratios of η = E1/E0 for each
initial crack length, i.e. η equals 0.1, 0.5, 1, 5 and 10 respectively. Crack growth
paths for the initial crack length of 1cm are shown in Figures 10 and 11 respec-
tively for each ratio of η . When ratio E1/E0 > 1, the crack propagation becomes
unstable for a large crack length. It is because that the crack tip is too close to the
boundary and therefore a fine increment of crack length needs to be introduced.
Results by Kim and Lee for constant Young’s modulus are presented in the same
figure for comparison. In general case, SIF of mode I increases when ratio E1/E0
decreases. Similar conclusion can be observed for the initial crack length of 4cm.
Growth paths are presented in Figure 12 and all of them are stable for different
ratios of young’s modulus. Stress intensity factors are plotted in Figure 13 various



Crack Growth Modelling in Functionally Graded Materials 239

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-10

-5

0

5

10

0 5 10 15 20

10 =a cm 
20 =a cm 
40 =a cm 

80 =a cm 
 

y1 (cm) 

y 2
 (c

m
) 

Kim and Lee 

Figure 9: Geometry of a rectangular plate with an edge slant crack: (a) uniform ten-
sile load at the ends; (b) regular distribution of nodes (637); (c) random distribution
of nodes (600).
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Figure 10: Time dependent normalized stress intensity factors for a rectangular
plate with a slant edge crack under tensile step load on the top edge of the plate.



240 Copyright © 2012 Tech Science Press SDHM, vol.8, no.3, pp.223-247, 2012

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-50

0

50

100

150

200

250

300

350

400

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Series1 Series2

Series3 Series4

Series5 Series6

Series7 Series8

Series9 Series10

10/ 01 =EE  

5/ 01 =EE  

1/ 01 =EE  

5.0/ 01 =EE  

1.0/ 01 =EE  

a (cm) 

K I
, K

II
 (M

N
/m

1.
5 ) 

 

Figure 11: Geometry of a rectangular plate with an edge slant crack: (a) uniform
tensile load at the ends; (b) regular distribution of nodes (303); (c) random distri-
bution of nodes (781).
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Figure 12: Time dependent normalized stress intensity factors for a rectangular
plate with a slant edge crack under tensile step load on the top edge of the plate.
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Figure 13: Geometry of a rectangular plate with an edge slant crack: (a) uniform
tensile load at the ends; (b) regular distribution of nodes (303); (c) random distri-
bution of nodes (781).

with crack length. In the case of small ratio η , mode I stress intensity factors are
increased significantly. Therefore, we can conclude that the functionally graded
material has large influence both on crack growth path and stress intensity factors.

6 Conclusion

A mesh-free method for modelling crack growth in functionally graded materials
was presented. As shown the method does not require any discretizations of the
domain or the boundary. By introducing the enriched RBF interpolation, the singu-
larities of stress in the order of (1 /

√
r) was accurately represented at the crack tip.

Three examples of mode I ,mode II and mixed mode were presented. Good agree-
ment was obtained with other published results. Conclusions can be summarised
as following:

1. The mesh-free method is efficient for mixed-mode crack propagation prob-
lem analysis;

2. The enriched RBFs are flexible and simple to program with little increase in
computational efforts;
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3. The accuracy of the number of load cycles dependents on the crack incre-
ment.

Although this paper analyses the fatigue crack growth for two dimensional edge
crack problems, the proposed method can be easily extended to the embedded crack
problems and the crack closure problems with friction between two crack surfaces
under compressive load.
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