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A New Method for Maintenance Management Employing
Principal Component Analysis

Fausto Pedro García Márquez1

This paper presents a simple graphic method for detecting and classifying faults in
point mechanisms based on the study of some statistical parameters of the force
and current signals of the point machine. Principal Components Analysis (PCA)
employed in order to reduce the number of these parameters. PCA is utilised in this
paper for modifying the parameter dataset, and reducing the coordinate system by
linear transformation. It is then possible to plot the new coordinate system in 2 or
3 dimensions, where the faults can be detected and identified. In this work most of
the faults could be detected, but only a few experiments could be identified.
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1 Introduction

A train can change from one track to other only at certain places employing rail
moving parts, called blades, guided by different mechanisms. These components
are called point mechanisms. Point machines move the blades and it leads that the
trains can change the track or not (see Figure 1). They have two possible move-
ments: normal to reverse and reverse to normal. There are different types of point
machines, but the most important are the electro-pneumatic, hydraulic and the me-
chanical.

The advantages of an electro-pneumatic point machines are immunity from electro-
magnetic interference, the large power reservoir tank and fast response. However
the cost of its compressors is high and failure of the air supply pipe can cause
great problems. Generally, there are also mechanical linkages for the detection and
locking of the point. The standard railway point is therefore a complex device with
many potential failure modes [Roberts et al. (2002)].

The electro-hydraulic point machine basically comprises an electric motor, a pump
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and a cylinder (or various). The pump is driven by the electric motor, and generates
the pressure required to move the cylinder. The cylinder can rotate completely in
each operation. The throwing disk is connected to the throwing rod which moves
the point. This type of point machine has the same properties as electro-pneumatic
point machines [Fry (1999)].

The electro-mechanical point machine studied in this paper contains a switch actu-
ator and a locking mechanism (see Figure 1). The mechanism is normally divided
into three major subsystems [García Márquez and Schmid (2007)]:

• The motor unit which may includes a contactor control arrangement and a
terminal area;

• A gearbox comprising spur-gears and a worm reduction unit with overload
clutch;

• The dual control mechanism as well as a controller subsystem with motor
cut-off and detection contacts.

A fault detection and diagnosis system was been developed as explained in the next
section.

2 Fault detection and diagnosis

Fault detection and diagnosis (FDD) systems are a more advanced version of condi-
tion monitoring systems(CM), incorporating ‘intelligent’ algorithms capable of de-

 

Figure 1: Main parts of a point mechanism.
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tecting faults prior to failure, diagnosing the incipient fault and providing some in-
dication of the criticality of the detected fault [Venkatasubramanian et al. (1990)].

Over recent years, researchers have developed algorithms, methods and techniques
for detecting faults, the principal ones being presented in reference [García Márquez
et al. (2010)]. These works lead to maintainers understanding what the CM is do-
ing.

One of the most important objectives of using FDD is to minimize the preven-
tive/corrective maintenance cost [García Márquez et al. (2008)]. It is also nec-
essary to minimize the number of sensors employed in the system based on the
type of mechanisms that is being analysed. The most common sensors applied in
electro-mechanical point machines are current and force sensors [García Márquez
et al. (2003)], [García Márquez et al. (2003)] and [McHutchon et al. (2005)],
which have been employed in this work. It is also common to employ current sen-
sors together with voltage [Zattoni (2006)], or throwing load and blade position
sensors [Shimonae et al. (1991)]. Some authors have considered more sensors,
for example Zhou et al. have utilised 16 different sensors measuring for example
distance, motor driving force, driving current and voltage, electrical noise, temper-
ature and state changes [Zhou et al. (2002)].

3 Experiments

The force sensor measures the stress in the operating rod of the electric point ma-
chine. The throwing load can increase due to inadequate lubrication, changes in
weather or inadequate adjustment, or because of an obstacle between the point
blade and stock rail [García Márquez et al. (2003)]. The current sensor mea-
sures the operating current of the induction motor installed in the electric point
machine. A current signal is useful for detecting an increase in the throwing load
because the operating current of any motor, including induction motors, is affected
by load torque. If the current increases significantly while the force stays the same,
this indicates a problem in the electric parts of the drive or in the gearbox [García
Márquez et al. (2003)].

When the system does not lead to relaxation of the point by a locking system the
initial and final force values in any curve are non-zero. The majority of point mech-
anisms, e.g., those used in most counties in Europe, do not require the provision
of a drive force in the end positions [García Márquez et al. (2010)]. This type of
point mechanism has been employed in this paper for the experiments.

• The faults considered in this study are listed as follows:

• Back drive overdriving at heel on normal(reverse) side with dry (lubricated)
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slide chairs

• Back drive slack end off at toe end (LHS drive basket slack end off)

• Back drive tight end at heal end (RHS tight end)

• Back drive tight end at hell end (LHS tight end)

• Diode snubbing block disconnected

• Drive basket loose

• Drive rod stretcher bar loose RHS

• Dry slide chairs

• Low tension on motor brush

• Lubricated slide chairs

• Obstruction at first/second bearer on normal(reverse) side of points

• Obstruction at toe on normal(reverse) side of points

• Operational contact in original position

• Operational contact slack end off by one/two holes

• Tight lock on reverse side (Sand on all bearers on both sides)

Based on different pattern recognition and data analysis algorithms, different meth-
ods for FDD have been applied in this work. The most critical faults could be de-
tected by clustering of statistical parameters of the current and force signals as in
reference [McHutchon et al. (2005)]. The statistical parameters were: Maximum,
minimum, mean, peak to peak, standard deviation, root mean square (RMS), shape
factor, crest factor, impulse factor, kurtosis and definite integral. Figure 2 shows
an example where ‘x’ are the trials faults listed above and ‘y’ is the parameter
magnitude in the original signal. Trials 1-3 are the ‘as commissioned’ case.

The reference signals used for detecting faults depend on environmental conditions
(temperature, humidity, etc.), and the mechanism conditions as the friction forces,
temperature, etc. [García Márquez et al. (2010)]. In this paper the dynamic char-
acter of the electric point mechanisms has been considered. For that propose the
signal analyzed in the model is based on the differences between the current data
and the reference data in the form of absolute values, in order to consider the dy-
namic character of the system and the environment conditions, as demonstrated in



A New Method for Maintenance Management 93

 

 

-300 

-200 

-100 

0

100 

200 

300 

400 

500 

600 

0 5 10 15 20 25 30 

Trial - Different Faults

Max 
Min
Peak to Peak
Peak
Mean 
S.D. 
RMS 
Shape Factor

Figure 2: Statistical parameter example in the force signal for normal to reverse
direction [McHutchon et al. (2005)].

reference [García Márquez et al. (2003)]. In Figure 3 are shown the as commis-
sioned curves for current [A] vs. time [s] signals in the normal to reverse direction
as result of the differences between the real data and the “as commissioned” data
in the form of absolute values.

Pedregal et al. (2004) developed an algorithm based on the unobserved compo-
nents (UC) class of models. The UC model fits into the discrete time multivariate
models. This method can detect faults in real time, but for our study it has only
been used for the purpose of filtering the signals. Figure 4 shows a smooth trend
and an irregular signal. The trends are calculated as an estimate of the local mean
of the series which is extrapolated into the future, and the irregular signals are a
couple of unpredictable perturbations about such trends.

For a basic novel FDD, a typical ‘As Commissioned’ vector could be established
using the mean of multiple trials of each individual point as part of set up. Then,
calculating the correlation of each faulty vector with the ‘Mean as Commissioned’
vector will give a range of correlation values. If this range of correlations is suf-
ficiently far from 1.0, then it will be possible to use this method for basic fault
detection.

Mathematically, the correlation between two identically sized data sets is found in
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Figure 3: “As commissioned” curves for current [A] vs. time [s] signals in normal
to reverse direction.

the explained manner, where Cov is the covariance, and σ and µ are the standard
deviation and mean of the respective data sets x and y.

ρxy =
cov(x,y)

σxσy

where −1≤ ρxy ≤ 1 and Cov(x,y) = 1
n

n
∑

i=1
(xi−µx)(yi−µy).

This first stage of fault detection is only good for detecting whether a point may be
in need of immediate attention. An ideal case would be where a fully functioning
set of points gave force and current vectors that matched perfectly with test cases
– returning a correlation coefficient of 1.0. Any faulty case would bring about
sufficient change in the shape of the vector to noticeably affect the coefficient.
Thus a novelty detecting algorithm could operate based on a threshold value of the
correlation coefficient.
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Figure 4: “As commissioned” curves filtered by UC models in normal to reverse
direction [Zattoni (2006)].

In Table 1 the correlation factors for the current and force signals for normal to
reverse (N-R) and reverse to normal (R-N) directions are presented. The signals
studied are the signals from the experiment (exp.) and the signals that have been
modified (mod.). It is clearly visible that the new signals considered in this paper
differ more from the “as commissioned” signals than the original signals, so the
faults can be classified better. For example, in N-R direction it was clearly identified
20% of the faults by analyzing the statistical parameters of the modified current
signals, but it was not enough for detecting the rest of faults. It was improved
studying the statistical parameters by pairs (see Figure 5). In this case every faults
could be detected studying the modified current and force signals, and 70 % of
faults in N-R direction and 65 % in R-N direction where identified.

The method still has a drawback which needs to be solved for a better implemen-
tation. The proposed method incorporated numerous statistical variables and turn
increases the pairs of their combinations, hence making it very complex to con-
trol these combinations. So as to tackle this problem, principal component analysis
(PCA) has been employed which reduces these numerous combinations to a smaller
number of uncorrelated variables called principal components. The working steps
of PCA have been explained herewith in detail.

Let X be a dataset, X∈ℜnxm where mis the set of sensor values for each observation,
arranged in each of n rows. PCA transforms this dataset X into a dataset in a
transformed space given by the eigenvectors of the covariance matrix S associated
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Table 1: Correlation factors for the experiments considering the experiment signals
and the modified signals.

Correlation Factor

Fault
Current Force
N-R Direc-
tion

R-N Direc-
tion

N-R Direc-
tion

R-N Direc-
tion

Mod. Exp. Mod. Exp. Mod. Exp. Mod. Exp.
Tight lock re-
verse side (Sand
on both bearers)

0.75917
0.57478
0.82615

0.74049
0.73558
0.92955

0.81295
0.84107
0.40678

0.92113
0.98102
0.98002

0.29745
0.30752
0.58850

0.98312
0.98445
0.99796

0.66339
0.65550
0.24093

0.98416
0.99963
0.98847

12mm obstruc-
tion reverse side
at toe

0.80636
0.82126
0.81172

0.82120
0.88880
0.87179

0.46580
0.61699
0.62633

0.90279
0.89553
0.85432

0.67276
0.60521
0.58929

0.94763
0.99088
0.99187

0.69452
0.76518
0.76298

0.99968
0.99233
0.99158

Backdrive slack-
ened, toe end
LHS

0.70768
0.49343

0.79430
0.99227

0.58401
0.50831

0.99140
0.96786

0.38974
0.83553

0.98007
0.99803

0.06665
0.51106

0.99836
0.99979

Backdrive slack-
ened, toe end
RHS

0.92618
0.67939
0.75278

0.96604
0.97056
0.96278

0.71763
0.44013
0.54189

0.91518
0.93354
0.94422

0.32070
0.62378
0.35903

0.99815
0.99873
0.99660

0.16417
0.23716
0.57023

0.99333
0.99758
0.99582

Backdrive tight-
ened, heel end
RHS

0.58175
0.59979
0.85571

0.78459
0.98775
0.99454

0.66188
0.53864
0.09929

0.98992
0.99148
0.95114

0.35013
0.89630
0.94422

0.97768
0.99987
0.99850

0.84873
0.58756
0.37971

0.99991
0.99941
0.98958

Backdrive tight-
ened, heel end
LHS

0.93006
0.78312
0.58063

0.92901
0.98125
0.88833

0.14888
0.72314
0.80109

0.98397
0.99309
0.99279

0.59159
0.79395
0.32279

0.99508
0.99924
0.98526

0.44315
0.29150
0.74703

0.99389
0.99811
0.99988

Diode snubbing
block discon-
nected

0.10428
0.69267
0.02669

0.77319
0.86849
0.74352

0.05410
0.76575
0.94722

0.89617
0.96403
0.82359

0.14728
0.49263
0.14642

0.99188
0.99993
0.98164

0.75536
0.52559
0.83611

0.99555
0.97966
0.99964

Drive rod
stretcher bar
loose RHS

0.74706
0.73818
0.72145

0.90492
0.89232
0.90019

0.51544
0.48233
0.46614

0.81079
0.81044
0.76758

0.54151
0.59636
0.58430

0.99442
0.99682
0.99373

0.85764
0.82996
0.85728

0.95092
0.95920
0.96605

Maximum 0.93006 0.99454 0.94722 0.99309 0.94422 0.99993 0.85764 0.99991
Minimum 0.02669 0.73558 0.05410 0.76758 0.14642 0.94763 0.06665 0.95092
Mean 0.67479 0.88354 0.55503 0.92443 0.52161 0.99050 0.57789 0.99011
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Figure 5: Impulse factor vs. peak factor of the force signal in Reverse to Normal
direction.

with X (see equation 1).

S =
XT X
n−1

= UΛUT , (1)

Where Λ is diagonal matrix of non-negative real eigenvalues with decreasing mag-
nitude, λ 1 > λ 2 >. . . λ m−1 >λ m (λ k ∈ ℜ ∀k), and U is matrix with columns being
the corresponding eigenvectors.

Hence it has been deduced that the first principal component is accountable for
as much of the variability in the data as possible, and each subsequent component
accounts for as much of the remaining variability as possible [Jolliffe (1986)]. Each
new eigenvector follows an ordered fashion so as to capture the maximum amount
of variability in the dataset hereby giving rise to the principal components. A new
p-dimensional set of Cartesian coordinates transformed from a new observation
vector X has been obtained. Therefore Y is a projection of the dataset onto the
principal component vector, where P (ℜmxa) matrix gives the direction, a being the
first largest eigenvalue with its columns being the retained eigenvectors.

For the purpose of this research, if there are j dimensions to the data then j eigen-
vectors should be found. The eigenvectors are associated with the statistical param-
eters presented above. Here d = 11, but for alarming and the prediction of faults, it
is simplified to 2 and 3 dimensions.

It has been explored and verified that the faults can be grouped by linear relation-
ship employing PCA and allowing detection of majority of faults, but only a few
can be classified clearly. Figure 5 shows an example for force signal eigenvectors
in the reverse to normal direction. A comparative study has been carried out with
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the results obtained by McHutchon et al. (2005) to establish better fault detection
by analysis of the transformed signals, and in every case it has been possible to
detect and classify faults.

4 Conclusions

A simple pattern recognition method has been employed in this pattern for detect-
ing and identifying faults studying the different statistical parameters. In order to
consider the dynamic character of the system, the experiment signal of current and
force has been modified and filtered, employing unobserved component models.
The new signals provide better detection and identification of the faults but it has
been necessary to use a great number of graphics. In order to reduce this num-
ber, Principal Component Analysis has been applied. Using PCA, the faults can
be grouped by linear relationship and every faults can be detected, most of them
can be identified in both directions. The author proposes to study force and current
graphics together for increasing the fault diagnosis reliability. In essence, the model
performance is remarkably good when the signal is filtered, implying that the sys-
tem described above is better for FDD of the devices involved. In addition, the
system is capable of producing sensible forecasts of the future state of the system
that allow the detection of potential failures before they occur in practice.
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