
Copyright © 2009 Tech Science Press SDHM, vol.5, no.3, pp.251-273, 2009

Structures with Surface-Bonded PZT Piezoelectric
Patches: a BEM Investigation into the Strain-transfer

Mechanism for SHM applications
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Abstract: In this work a three-dimensional BEM model is used for the anal-
ysis of structures with cracks and surface bonded piezoelectric PZT patches used
as strain sensors. The cracked structure is modelled by the dual boundary element
method, which allows for accurate and reliable crack analysis, while the piezoelec-
tric patch is analyzed by a finite element state-space approach, that embodies both
the full electro-mechanical coupling and the suitable sensor’s boundary conditions.
The model is used to investigate the strain-transfer mechanism from an host elastic
structure to the piezoelectric layer, taking into account the effect of the adhesive
layer, as well as the mechanical interaction between the sensor and the measured
field. Finally, a fast solver based on the use of the GMRES and the hierarchical ma-
trices is employed to speed up the solution of some large scale BEM systems arising
from structural health monitoring applications. The numerical tool has been used
to investigate the sensitivity of sensors arrangements in three-dimensional damaged
solids.

Keywords: Piezoelectric patches, Structural health monitoring, Fast dual bound-
ary element method

1 Introduction

High levels of reliability and low life-cycle costs are primary concerns in the design
and maintenance of civil, chemical, mechanical, aeronautic and aerospace struc-
tures. In recent years, the idea of using Structural Health Monitoring (SHM) strate-
gies, instead of classical inspection methods, has emerged, showing advantages like
reduced down-time, elimination of component tear-down and the potential preven-
tion of failures during operations [Noor (2000), Staszewski, Boller, and Tomlison
(2004)].

1 Universitá di Palermo, Palermo, Italy.
2 Imperial College London, London, UK.



252 Copyright © 2009 Tech Science Press SDHM, vol.5, no.3, pp.251-273, 2009

The SHM approach is based on the real-time detection of structural damage by
means of the so called damage signatures, consisting in adverse changes in some
structural features, so to replace scheduled inspection cycles with a continuous
monitoring system. In practice, the task of health monitoring is accomplished
through a network of sensors and storage/computing units able to track the vari-
ables related to the structural response, such as strain, vibration, electrical conduc-
tivity and acoustic emission, which are affected by the presence of damage. From
this point of view, SHM systems can be collocated in the broad range of the smart
structures and their design and implementation rely upon the efficient integration
of the sensor network with the structure and on the combination with appropriate
electronics, modeling and control algorithms. Typical employable sensors for such
tasks are strain gauges, accelerometers, fiber optics, piezoelectric films and piezo-
ceramics [Van der Auweraer and Peeters (2003)].
Piezoelectric films and patches, in particular, are a widely used class of sensors
because of their reliability and sensitivity. By exploiting the direct piezoelectric
effect, i.e. the generation of an electric field as a consequence of a mechanical
load, they are able to sense the structural deformation and provide its indirect mea-
sure through a variation of voltage or rate of variation of voltage [Chopra (2002)].
Piezoelectric sensors for SHM applications are usually employed in the form of
small polyvinylidene fluoride (PVDF) films or thin lead zirconate titanate (PZT)
monolithic wafers. While PVDF elements are mainly used for sensing applica-
tions, the stiffer PZT transducers can also be used for actuation purposes. They
can be either bonded on the surface of the structure or embedded into the struc-
ture itself. Due to their small size, the gradient identification for damage detection
applications is often based on the use of arrays of such micro-electro-mechanical
systems (MEMS). Piezoelectric based sensing networks can be grouped into two
classes: active and passive sampling systems. Active sampling techniques require
externally supplied energy in the form of stress or electromagnetic waves and they
lead to SHM based on the frequency response method or Lamb waves method.
Passive sampling methods detect the structural response perturbations without the
need of external energy injection. The typical passive sensing approach in SHM is
strain measurement by piezolectric wafers [Rees, Chiu, and Jones (1992), Hauta-
maki, Zurn, Mantell, and Polla (1999), Chiu, Galea, L., and Rajic (2000)].
It is then apparent from above that the design of SHM systems is a strongly mul-
tidisciplinary task, involving a deep understanding of structural behavior, damage
mechanics, sensors characteristics, signal processing and optimization theory. One
of the key features enabling the design of such devices is the availability of reliable
mathematical models for the analysis of sensors, actuators and the whole SHM sys-
tems.
A comprehensive bibliography about FEM and BEM modeling of sensors and ac-
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tuators is given by Mackerle (1999). Some investigations have also been devoted
to the analysis of piezoelectric layers bonded to isotropic [Zhang, Zhang, and Fan
(2003), Ali, Mahapatra, and Gopalakrishnan (2004), Ali, Mahapatra, and Gopalakr-
ishnan (2005)] and orthotropic [Huang and Sun (2006)] elastic substrates. Other
works focus on the modeling of the whole SHM system, trying to take into ac-
count the various aspects comprising the damage identification strategy. Lin and
Yuan (2001) proposed an analytical model for an isotropic plate with integrated
piezoelectric actuators and sensors for Lamb waves based SHM systems. The de-
tection of cracks in plates through piezo-generated Lamb waves is studied by Tua
et al. (2001), who considered several system parameters and proposed a method-
ology for locating and quantifying the extent of cracks. Fukunaga et al. (2002)
developed a two stage strategy for damage identification, using a limited number
of piezoelectric devices. Liu et al. (2003) modeled the whole input-output behav-
ior of composite plates with adhesively bonded piezo-sensors and actuators, using
a dynamic one-dimensional piezoelectric model, thin plate orthotropic theory and
multiple integral transforms. Liang and Hwu (2004) focused on the online identi-
fication of holes/cracks in a structure through static strain measures and artificial
neural networks. Raghavan and Cesnik (2005) proposed a generic procedure to
obtain the guided waves (GW) field excited by finite dimensions piezoelectric ac-
tuators bonded on an infinite isotropic plate. They also proposed a model for the
response of the piezoelectric sensors in GW fields, considering them as infinitely
compliant layers. Sumant and Maiti (2006) proposed a strain based technique to
detect size and location of cracks in beam-like components through discrete PZT
patches and validated a BEM model for such systems through experimental results.
In this work the sensitivity of a strain passive sensing SHM system is investigated
by a numerical model for the analysis of three-dimensional damaged solids with ad-
hesively bonded piezoelectric patches [Benedetti, Aliabadi, and Milazzo (2009)].
The damaged structure is modeled and analyzed through a fast Dual Boundary El-
ement Method (DBEM) based on the use of hierarchical matrices in conjunction
with a GMRES iterative solver, previously developed by Benedetti, Aliabadi, and
Daví (2008) for the analysis of large scale cracked structures. The DBEM allows
to model with accuracy the presence of cracks and its performance in terms of
memory storage and solution time is improved using the hierarchical solver. The
attached sensors, as well as the adhesive layer, are modeled using a 3D state-space
finite element approach [Quing, Qiu, and Liu (2006)], taking into account the full
electro-mechanical coupling in the piezoelectric layer. The suitable boundary con-
ditions are embodied in the sensor model which is eventually expressed in terms
of interface variables, allowing straightforward coupling with the underlying host
structure.
The paper is organized as follows. In section 2 the dual boundary element model
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of the host structure is briefly reviewed and the main features of the hierarchical
treatment for fast BEM solution are addressed. In section 3 the model for the struc-
ture with attached piezoelectric patches is introduced and the strategy for the fast
solution of the complete system is presented. In section 4 the strain-transfer mech-
anism is deeply investigated with reference to a single sensor. The response of a
cracked plate with bonded sensors is then computed to evaluate the sensitivity of
different sensors arrangements to the crack size.

2 Host structure model

The numerical modeling of a whole SHM system relies upon the accurate and effi-
cient evaluation of the response of the damaged host structure, to which the sensors
are bonded. The DBEM provide a general and effective tool for analyzing both two-
dimensional [Portela, Aliabadi, and Rooke (1992, 1993)] and three-dimensional
[Mi and Aliabadi (1992, 1994)] crack problems in the framework of the BEMs
[Aliabadi (1997b,a)].

2.1 Dual boundary element method

Referring to a cracked body, the DBEM is based on the use of two independent
boundary integral equations, namely the displacement integral equations and the
traction integral equations, [Portela, Aliabadi, and Rooke (1992)].
The displacement boundary integral equation is collocated on the external boundary
where, assuming continuity of displacements at the boundary nodes, it takes the
following form

ci j(x0)u j(x0)+−
∫

Γ

Ti j(x0,x)u j(x)dΓ =
∫

Γ

Ui j(x0,x)t j(x)dΓ (1)

In Eq.(1), Ui j and Ti j represent the Kelvin displacement and traction fundamental
solutions at the boundary point x when collocating at the point x0, ci j are coef-
ficients depending on the boundary geometry and computed through rigid body
considerations and the symbol −

∫
stands for Cauchy principal value integral related

to the singularity of Ti j.
On the crack boundaries both the displacement and traction equations are used: the
displacement equation is collocated over a crack surface, whereas the traction equa-
tion is collocated over the other one. When collocating the displacement boundary
equation at the crack node x−0 , one obtains

ci j(x−0 )u j(x−0 )+ ci j(x+
0 )u j(x+

0 )+−
∫

Γ

Ti j(x−0 ,x)u j(x)dΓ

=
∫

Γ

Ui j(x−0 ,x)t j(x)dΓ

(2)
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where x−0 and x+
0 are the two coincident crack nodes belonging to the upper and

lower crack faces, respectively. For smooth crack surfaces at the point x−0 , it results
ci j(x−0 ) = ci j(x+

0 ) = (1/2)δi j.
The collocation of the traction integral equation at the crack lower surface point
x+

0 , where continuity of strains is assumed, provides

ci j(x+
0 )t j(x+

0 )− ci j(x−0 )t j(x−0 )+n j(x+
0 ) =

∫
Γ

Ti jk(x+
0 ,x)uk(x)dΓ

= n j(x+
0 )−

∫
Γ

Ui jk(x+
0 ,x)tk(x)dΓ

(3)

where the kernels Ui jk and Ti jk contain derivatives of Ui j and Ti j respectively, n j are
the component of the outward normal at the point x+

0 and =
∫

stands for Hadamard
principal value integral, originating from the singular nature of the kernel Ti jk.
Starting from the boundary integral equations (1), (2) and (3) the numerical model
is obtained from a discretization of the external boundary and crack surfaces by
suitable boundary elements fulfilling the continuity requirements of the formula-
tion. In this work the discretization scheme adopted by Mi and Aliabadi (1992,
1994) is used. In particular, for the external boundary are used continuous eight-
node quadratic elements whereas discontinuous eight-node quadratic elements are
used for the modeling of both the crack surfaces.
After suitable numerical treatment the DBEM integral equations lead to the alge-
braic system

Hu = Gt (4)

where u and t collect the nodal values of displacements and tractions, respectively.
After enforcing the boundary conditions, the final linear algebraic system takes the
form

Ax = y (5)

where x is the vector of unknowns, the right hand side y stems from the application
of the boundary conditions and the collocation matrix A contains the influence co-
efficients.

2.2 Fast solution of large DBEM system

When computations involve large systems, as in the case of SHM systems mod-
eling, memory storage and time requirements, besides solution accuracy, become
key elements for the choice of the numerical technique to be employed. The DBEM
system of algebraic equations presents a coefficient matrix which is fully populated
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and neither symmetric nor definite. This results in increased memory requirements
as well as increased assembly and solution time with respect to other numerical
methods for problems of numerical comparable size. In this context, the use of
hierarchical matrices for the representation of BEM systems of equations, in con-
junction with Krylov subspace iterative solution techniques, become a very appeal-
ing technique to speed up the computation maintaining the required accuracy and
saving the storage memory needed for the collocation matrix treatment.
A fast solver for the analysis of three-dimensional DBEM elastic crack problems
has been developed by the authors of the present work [Benedetti, Aliabadi, and
Daví (2008), Benedetti, Milazzo, and Aliabadi (2009)]. The interested reader is re-
ferred to those works and the references therein for further details. here, only some
basic concepts are recalled for the sake of completeness.
The fast BEM solver is based on the hierarchical representation of the collocation
matrix [Bebendorf (2000)]. Such representation is built by representing the ma-
trix itself as a collection of blocks, some of which admit a special approximated
and compressed format. Such blocks, referred to as low rank blocks, can be ap-
proximated by computing only some of the entries of the original blocks through
adaptive algorithms known as Adaptive Cross Approximation (ACA). A sufficient
condition for the approximation to be valid is the asymptotic smoothness of the
integral equations kernels [see e.g. Bebendorf and Grzhibovskis (2006)]. Low
rank blocks represent the numerical interaction, through asymptotic smooth ker-
nels, between sets of collocation points and clusters of integration elements which
are sufficiently far apart from each other, see Fig. 1. The distance between clusters
of elements enters a certain admissibility condition, based on some selected geo-
metrical criterion, for the existence of a low rank approximant. The blocks that do
not satisfy such condition are called full rank blocks and they need to be computed
and stored entirely. The low rank representation of the collocation matrix allows
to reduce the memory storage requirements as well as to speed up the operations
involving the matrix, especially the matrix-vector multiplication which is the core
operation in iterative solvers.
Once the hierarchical representation of the collocation matrix has been built, the

solution of the system can be conveniently computed through iterative solvers,
which take full advantage of the hierarchical representation by exploiting the ef-
ficiency of the low rank matrix-vector multiplication. The convergence of iterative
solvers can be improved, or sometimes obtained from a non-convergent scheme, by
using suitable preconditioners. In the present work a GMRES iterative solver [Saad
and Schultz (1986)] with a hierarchical preconditioner is used for the solution of the
system of equations. In the framework of the hierarchical representation a coarse
preconditioner can be obtained by first generating a coarse approximation A (εp)
of the original collocation matrix A (εc), where the relationship εp > εc holds, ε
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Figure 1: Correspondence between a matrix block and sets of collocation nodes
and integration elements.

denoting the selected accuracy for the hierarchical representation. This coarse ap-
proximation, with reduced memory storage and required computation time, can
then be decomposed through the hierarchical LU decomposition to give the pre-
conditioner L [A (εp)]−1 and build the final hierarchical system

L [A (εp)]−1A (εc)x = L [A (εp)]−1 y (6)

The resolving system (6) has a lower condition number and can be solved by an
iterative GMRES algorithm whose convergence rate results noticeably improved.
Obviously, manipulations of the system require the use of a suitably defined arith-
metic able to deal with matrices in hierarchical form [Hackbusch (1999); Hack-
busch and Khoromskij (2000); S, Grasedyck, and Hackbusch (2003)].

3 Model for the structure with piezoelectric patches

In this section, the model for the static-strain piezoelectric sensor is briefly de-
scribed, referring the reader to the work of Benedetti, Aliabadi, and Milazzo (2009)
for the underlying formulation and required manipulations. The sensor model is
based on a state-space formulation expressed in terms of the piezoelectric gener-
alized variables [Lee and Jiang (1996), Sheng and Ye (2002)]. The state-space
formulation gives the through-the-thickness patterns of suitably chosen structural
variables in terms of the values of the same variables at a given reference plane.
With reference to Fig. 2, for a piezoelectric wafer bonded to the host structure by
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an adhesive layer, the state-space approach provides, after suitable discretization,
the following relationship

u2
ϕ2
σ2
D2

 =

 Luu(∆h j) · · · Lud(∆h j)
...

. . .
...

Ldu(∆h j) · · · Ldd(∆h j)




u0
ϕ1
σ0
D1

 (7)

where the subscripts refer to the corresponding level hi and ui collects the nodal
displacements (at the height hi), ϕ i collects the nodal values of the electric poten-
tial, σ i collects the nodal values of the out-of-plane stresses and Di contains the
out-of-plane electric displacement nodal values. The matrices Li j(∆h j) depend on
∆h j = h j−h j−1 with j = 1,2, and their expression can be found in [Benedetti, Ali-
abadi, and Milazzo (2009)].
When the piezoelectric wafer is used as a sensor, its surfaces are generally coated

with a thin electrode and it can be then assumed that the surfaces h1 and h2 are
equipotential. Moreover, it can be assumed, without loss of generality, that the in-
ferior surface of the piezoelectric patch (h1) is at zero electric potential and that the
surface h2 is stress-free. Consequently, applying open-circuit boundary conditions,
from Eq.(7) one deduces the following relationships [Benedetti, Aliabadi, and Mi-
lazzo (2009)], which constitute the piezoelectric sensor model, written in the host
structure reference system

t(h0) = Ψ u(h0); (8)

ϕ(h2) = Φ u(h0) (9)

Eq.(8) links the sensor nodal displacements u(h0) and nodal tractions t(h0) at the
interface between the sensor and the host structure. This equation can be coupled

Figure 2: Piezoelectric sensor bonded on the host structure.
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through standard interface conditions with the boundary element model of the host
structure, allowing the computation of the unknowns u0. Once these values are
known, Eq.(9) can be used for computing the sensor top surface electric potential
ϕ(h2).
The presence of sensors bonded to the host structure is directly accounted for in the
resolving system given in Eq.(5) according to the following observations. Let us
partition the nodal displacements and tractions so that uh

k and th
k denote displace-

ments and tractions at the nodes of the host structures belonging to the interface
with the k-th piezoelectric sensor, whereas u and t refer to the remaining surface.
Invoking the interface continuity conditions between the host structure and the sen-
sors and taking Eq.(8) into account, the algebraic system can be written as

Hu+∑
k

(Hk +GkΨk)uh
k = Gt (10)

where the sum is extended over all the bonded sensors. After completing the appli-
cation of the boundary conditions, the previous system assumes the form

Ax+∑
k

GkΨk uh
k = Ax+Φpz xpz = y (11)

where the vector xpz ⊂ x collects all the unknown displacements that multiply the
columns belonging to the matrix Φpz introduced by the presence of the sensors.
In Eq.(11) the collocation matrix related to the sole host structure appears and
this shows that the presence of the piezoelectric patches affects such matrix only
through the terms GkΨk, which modify only some columns of the original col-
location matrix itself. Once the displacements are obtained from the solution of
Eq.(11), Eq.(9) allows the determination of the electric potential at the upper sur-
face of the piezoelectric sensors.
The form of Eq.(11) suggests an efficient numerical scheme for its fast hierarchical
solution. Since it can be reasonably assumed that the number of elements related
to piezoelectric sensors is considerably less than the total number of boundary ele-
ments, the hierarchical counterpart of Eq.(11) is written as

A x+Φpzxpz = y (12)

where A is the collocation matrix of the damaged structure without sensors ex-
pressed in hierarchical format, whereas Φpz is the matrix, expressed in full format,
collecting the contributions related to the sensors. Since the presence of the sensors
does not affect noticeably the structural behavior, the original preconditioner used
in Eq.(6) is still efficient and can be used to improve the performance of the itera-
tive solver. The validity of this consideration has been numerically demonstrated in
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Table 1: Material constants for PZT4.

C11 C22 C33 C12 C13
GPa 139 139 115 77.80 74.30

C23 C44 C55 C66
74.30 25.60 25.60 30.60

e31 e32 e33 e24 e15
C/m2 -5.20 -5.20 15.08 12.72 12.72

k11 k22 k33
nFa/m 13.06 13.06 11.51

[Benedetti, Aliabadi, and Milazzo (2009)]. The GMRES is then used for the rapid
solution of the following system

L [A (εp)]−1(A (εc)x+Φpzxpz) = L [A (εp)]−1y (13)

4 Numerical results and discussion

In this section, the numerical results obtained by using the present model are pre-
sented and commented. The response of an isolated sensor is first investigated
and the effect of the adhesive layer is discussed. The response of the sensor at-
tached to an host elastic substrate is then evaluated, highlighting the influence of
the structure-sensor interaction on the measured output voltage. Some medium-
scale structures with cracks and bonded piezoelectric sensors are finally analyzed,
illustrating the use of the present numerical model in the framework of structural
health monitoring applications.

4.1 Isolated sensor

First, the response of an isolated sensor to prescribed strains acting on its bottom
surface is analyzed, see Fig. 3. The isolated sensor is generally comprised of a layer
of piezoelectric material with thickness hpz and an adhesive layer of thickness hadh,
that serves the purpose of bonding the piezoelectric patch to the host structure. The
prescribed strains act on the inferior surface of this bi-layer system and, as it will
be numerically shown, the presence of the adhesive layer has a critical influence
on the sensor’s sensitivity. The response of the sensor is given in terms of output
voltage. Tab. 1 gives the values of the material constants for PZT4, while for the
adhesive G = 85MPa and ν = 0.33.
The influence of the piezoelectric layer thickness is firstly investigated. The piezo-

electric layer has size 10mm× 10mm× hpz with h varying from hmin = 0.1mm to
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hmax = 1mm. No adhesive is considered in the first test and the strains γx = γy =
γ = 10−4 are applied directly to the basis of the piezoelectric layer. It is worth
noting that this would be the case of a piezoelectric patch perfectly bonded on a
substrate undergoing the prescribed strains γx and γy. In Fig. 4, the output voltage
predicted by the present model is compared with that computed by using a simpli-
fied 2D model, in which the piezoelectric patch is modeled as an ideal capacitor,
see for example the model used by Lin and Yuan (2001). The two responses match
well with each other when the thickness of the considered layer is small with re-
spect to the in-plane dimension. As the thickness increases, the three-dimensional
effects related to the presence of shear strains at the sides of the piezoelectric layer
become influent, thus affecting the output voltage in a way that is not predicted by
the simplified 2D model.
The influence of the adhesive layer is then investigated. Fig. 5 reports the output

voltage at varying values of the piezoelectric layer thickness hpz for three different
values of the adhesive layer thickness hadh. The strains are prescribed at the basis
of the adhesive layer. Various considerations can be made commenting on these
results. First of all, it is evident that the output voltage is noticeably reduced as
consequence of the presence of the adhesive layer, that affects the transmission of
strains from the substrate to the piezoelectric layer. As can be observed from the
comparison between Fig. 4 and Fig. 5, the presence of the adhesive layer reduces
the output voltage of one or two order of magnitude. Moreover, while in Fig. 4 an
increase of the piezoelectric layer thickness always implies an increase of the out-
put voltage, the adhesive acts in such a way to make ineffective the increase of the
thickness of the piezoelectric layer beyond a certain value. This is a consequence
of the in-plane stiffness mismatch between the adhesive and the piezoelectric layer.
As the thickness of the piezoelectric layer is increased, also its stiffness increases
and the piezoelectric layer experiences a smaller deformation that is however am-

Figure 3: Isolated sensor subjected to prescribed strains.
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plified, in terms of output voltage, by the increased thickness itself. The increase
of the thickness hpz implies two counteracting effects: on one hand, it reduces the
strain experienced by the piezoelectric layer, due to its superior stiffness; on the
other hand, although the deformation is smaller, the higher thickness hpz assures
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Figure 5: Vout versus hpz for various values of the adhesive layer thickness tadh.
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an higher output voltage at a given strain level. These two counteracting effects
cancel each other out beyond a certain value of hpz, making then ineffective any
additional increase of hpz itself. This consideration can be particularly important if
the piezoelectric sensors are to be used for lightweight applications.
The reduction of the sensor’s sensitivity due to the presence of the adhesive layer

is also show in Fig. 6, where the output voltage is expressed as a percentage of the
voltage that the same piezoelectric layer would give in perfect-bonding conditions.
As is evident, the quality of the bonding layer is a critical factor for the improve-
ment of the sensor’s sensitivity.
The influence of the sensor’s in-plane size is investigated in Fig. 7, where the ra-
tio between the output voltage predicted by the present model and that predicted
by the simple 2D model is reported. The considered sensor has square in-plane
shape L×L, it is comprised of a piezoelectric layer of thickness hpz = 1mm and an
adhesive layer of thickness hadh, and its bottom surface is subjected to prescribed
strains γx = γy = 10−4. It is worth noting that the 2D model does not predict any
dependence on the in-plane size of the patch, being the sensor modeled as an ideal
capacitor perfectly bonded to the host structure. The present model, on the con-
trary, even in perfect-bonding conditions, predicts a certain dependence of the out-
put voltage on the in-plane size when the ratio L/hpz is low, due the the influence of
the aforementioned 3D boundary shear effects. When the adhesive layer is present,
the output voltage is reduced, but the response approaches the perfect-bonding re-
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sponse as the ratio L/tadh increases. This is due to the improvement of the strain
transmission when the transmission surface increases in size.

4.2 Sensor bonded on an elastic substrate

After analyzing the isolated sensor, a sensor bonded on an elastic substrate is con-
sidered, Fig. 8. A piezoelectric patch of size 10mm×10mm×1mm is bonded on an
aluminum plate of size 100mm×100mm× tplate. The plate is subjected to uniform
tractions σx = σy = 10MPa acting along the four sides. The Young’s modulus of
the plate is E = 72.5GPa while the Poisson’s ratio is ν = 0.33. The case of perfect
bonding is first considered.
Fig. 9 reports: a) the output voltage of an ideal 2D sensor (the adjective ideal de-

notes a sensor that does not affect the strain field that it is revealing; in other words,
there is no elastic interaction between the sensor and the host structure, the sensor
is infinitely compliant and measures the strains that the structure would undergo
if it were free to deform); b) the output voltage of an ideal sensor modeled with
the proposed technique (note how the 3D shear effects reduce the voltage); c) the
output voltage of a 3D sensor attached on a plate of thickness tplate = 20mm; d) the
output voltage of a 3D sensor attached on a plate of thickness tplate = 2mm. It is
evident as the elastic interaction between the sensor and the host structure affects
the value of the output voltage. The deformation of the thinner plate in the area
under the sensor, for example, is restrained by the presence of the sensor itself and
this affects the output voltage. The deformation of the thicker plate, due to its supe-
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Figure 8: Sensor bonded on an elastic host structure.

rior transversal stiffness, is less affected by the presence of the sensor and the read
voltage is higher. This aspect is particularly relevant when thin-plate structures are
to be equipped with bonded piezoelectric sensor. The presence of the adhesive re-
duces the effect of the stiffness mismatch between the piezoelectric layer and the
host structure on the output voltage, see Fig. 10, as the adhesive itself is a compliant
layer.
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Figure 9: Vout versus hpz for a sensor perfectly bonded on a host plate.
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Figure 10: Vout versus hpz for a sensor adhesively bonded on a host plate.

Figure 11: Semicircular surface-breaking crack in a plate under traction load.

4.3 Sensor bonded on a damaged substructure

In this section a medium-size structure with a crack and bonded piezoelectric patches
used as sensors is analyzed. The case shown in Fig. 11 is considered. A semicir-
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cular surface-breaking crack of radius a is contained in a plate of size 2w×2h×2t
subjected to a crack-opening load and the face opposite to the cracked bound-
ary surface is equipped with bonded sensors, see Fig. 12. Three different sets
of sensors are considered, to investigate the sensitivity with respect to different
crack/sensor relative positions. It is worth noting that the three different sets of
sensors are considered independently from each other, to avoid the effects of inter-
ference on the output measured voltages. The plate dimensions are w = h = 3cm
and t = 0.5cm, the load is σ = 10MPa and, to investigate the sensors response
as the crack propagates through the thickness, the response of the sensors for the
cases a/2t = 0, 0.1, 0.3, 0.5, 0.7, 0.9 are computed. The sensors have dimensions
L×L× hpz, with L = 6mm and hpz = 0.5mm. When present, the adhesive layer
has thickness hadh = 0.125mm. The used mesh has 1280 nodes and 381 elements
and the computation has been carried out by using the fast hierarchical solver. For
this medium-size mesh the solution has been computed in the 80% of time with
respect to the standard procedures, and the coefficient matrix is stored using only
54% of the standard full rank storage memory. The performance in terms of solu-
tion time and storage memory is superior for larger scale systems, as demonstrated
in Benedetti, Aliabadi, and Daví (2008); Benedetti, Milazzo, and Aliabadi (2009);
Benedetti, Aliabadi, and Milazzo (2009), and this confirms the effectiveness of the
fast BEM model for the analysis of SHM systems that tend to be inherently large-
scale.

Fig. 13 reports the output voltage of the three sets of sensors at different crack
sizes in the case of perfect bonding. As it can be noted, the sets A and B show a

Figure 12: Relative position between the crack and the considered sensors’ sets.
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Figure 13: Output voltage for perfectly-bonded patches at different crack lengths.

superior sensitivity with respect to the crack size than the set C. It is worth noting
that the voltage trend is affected by two counteracting strain effects: the first is
related to the bending that the specimen experiences, due to the loss of symmetry

Figure 14: Deformed plate (amplified rendering).
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Figure 15: Output voltage for adhesively-bonded patches at different crack lengths.

under self balanced traction loads, responsible for a voltage drop with respect to
the uncracked response; the second is related to the increase in stretching due to
the reduced load bearing plate section, see Fig. 14. These effects are responsible
for the behavior shown by the sensor A. The same trends are replicated in Fig. 15
where, however, a noticeable voltage level reduction results from the presence of
the adhesive layer, thus confirming the critical importance of the adhesive layer
quality.

5 Conclusions

In this work a BEM model was used to investigate the strain-transfer mechanism
between a three-dimensional elastic host structure and surface bonded piezoelectric
patches used as sensors. An in-depth investigation highlighted the influence on the
output voltage of various factors: the shear related three-dimensional effects, the
presence of the adhesive layer and the elastic interaction between the patch itself
and the host elastic substrate. These effects, and especially the quality of the ad-
hesive layer, have noticeable effects on the measured voltage and have to be taken
into account in the design of this kind of SHM systems. Moreover, a plate with
a surface-breaking crack and equipped with suitably arranged sets of sensors has
been investigated. The obtained results showed that the sensors have different sen-
sitivity to the crack presence and size, depending on their relative position with
respect to it. In conclusion, however, it should be remarked that static-strain piezo-
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electric patches are sensitive to the presence of cracks only when they are relatively
close to them. Consequently, effective SHM systems based on these principles
require, to be effective, the employment of quite fine networks of sensors over crit-
ical structural areas. Such networks have to be carefully designed and this requires
the support of reliable and effective numerical models to assist any experimental
campaign. The model used in this paper is a step towards in this direction.
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