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Unsupervised Time-series Fatigue Damage State
Estimation of Complex Structure Using Ultrasound Based

Narrowband and Broadband Active Sensing

S.Mohanty1, A. Chattopadhyay2, J. Wei3 and P. Peralta4

Abstract: This paper proposes unsupervised system identification based meth-
ods to estimate time-series fatigue damage states in real-time. Ultrasound broad-
band input is used for active damage interrogation. Novel damage index estimation
techniques based on dual sensor signals are proposed. The dual sensor configura-
tion is used to remove electrical noise, as well as to improve spatial resolution in
damage state estimation. The scalar damage index at any particular damage con-
dition is evaluated using nonparametric system identification techniques, which in-
cludes an empirical transfer function estimation approach and a correlation analysis
approach. In addition, the effectiveness of two sensor configurations (configuration
1: sensors placed near the actuator and configuration 2: sensors placed away from
the actuator) are evaluated. Furthermore, the time series 2σ error bound is also
evaluated to study the effect of measurement noise on damage state estimation.
The time-series damage estimation approaches are validated on a complex Al-2024
cruciform specimen undergoing biaxial cyclic loading.

Keywords: Structural Health Monitoring (SHM), on-line state estimation, dam-
age index, nonparametric system identification, frequency response analysis, cor-
relation analysis, active sensing, ultrasound broadband input

1 Introduction

Real-time health monitoring and prognostics are emerging at the forefront of Con-
dition Based Maintenance (CBM) of critical structural systems. Whether it is a
newly acquired or an aging aircraft fleet, the structural life ceiling of the fleet is
defined from three distinct approaches: safe-life, fail-safe, and damage tolerant ap-
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proaches. A detailed review of these approaches is presented by Iyyer, Sarkar, Mer-
rill, and Phan (2007). In the above mentioned approaches the damage tolerance and
fatigue life predictions are obtained based on assumed structural flaws or on previ-
ous coupon test results, regardless of whether the assumed structural flaws actually
occur in service. Consequently, a large degree of conservatism is incorporated into
structural designs due to these uncertainties. The current state of the art in the area
of on-line (Farrar, Sohn, and et. al. (2003), Farrar, Worden, and et. al. (2007),
Mohanty, Chattopadhyay, Wei, and Peralta (2009), Mohanty, Chattopadhyay, and
Peralta (2009)) damage state estimation, or structural health monitoring (SHM)
techniques, offers methodologies for adaptive damage state prediction and residual
useful life assessment. At present, both passive vibration based global damage de-
tection approaches and active Lamb wave based local damage detection approaches
are widely being studied by the SHM research community. The Lamb wave method
using a pitch-catch approach (Giurgiutiu and Cuc (2005)) has been used to identify
the changes in the transmission velocity or energy of the elastic waves associated
with damage. Different pattern recognition techniques, (Park, Yun, Roh, and Lee
(2006)) such as support vector machine for damage classification are used to cor-
relate the Lamb wave active signal to find a practical damage indicator. However,
it is noted that most of the pattern recognition algorithms require large training
data sets to extrapolate physically meaningful information for an unknown dam-
age condition. To circumvent this problem the use of system identification (Ljung
(1999), Klein and Morelli (2006)) techniques for damage state identification can be
explored. However, many of the available approaches on system identification are
generally confined to low frequency applications such as process and aircraft flight
control identification. The research on low frequency structural damage identifi-
cation, such as vibration based damage identification (Giurgiutiu and Cuc (2008))
has limitations because of the large power and actuator requirements to excite the
low frequency, global structural modes. However, for local damage identification,
smaller piezoelectric based actuators with low power requirements can be used to
generate the required deterministic input signals for effective use of system iden-
tification tools. The use of fairly matured system identification techniques can be
extended for high frequency Lamb wave input signals in the range of kHz to MHz.
For example, the high frequency response function (Park, Rutherford, and et. all
(2005)) can be estimated at a particular damage condition and can be compared
with the frequency response function of the other damage condition to evaluate the
relative change in the structural health. It is noted that the narrowband Lamb wave
input widely used in the SHM community has limited capability for persistence of
excitation except around the central frequency of the chosen input signal. Input
signals such as multisine (Rivera, Lee, Mittelmann, and Barun (2007)) signals can
be used for persistence excitation in a broader frequency band of interest. Under
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experimental conditions where environmental noise is persistent, multiple cycles
of the periodic input can be introduced until the variance in the model estimate is
reduced to acceptable levels. In the present paper, both narrowband and broadband
chirp (Xiang-Gen (1997)) input is used to estimate the time series damage states.
It is noted that the chirp signal used in the present case is a type of multisine sig-
nal. However, the individual harmonics are not optimized but rather linearly varied
harmonics are selected in the required broadband frequency domain for simplicity.
Additionally, the paper presents the use of two nonparametric system identification
approaches such as frequency-domain based empirical transfer function estimation
approach and time-domain based correlation analysis approach to estimate time
series damage states. The individual damage state at a given fatigue cycle is evalu-
ated using dual sensor approach. The detail procedure of time-series damage state
estimation and its validation are discussed in the following sections.

2 Theoretical Approach

Real-time damage state estimation is an integral part of SHM and prognosis sys-
tems. For this purpose, the condition of the structure has to be assessed at real
time using sensor signals acquired either continuously or discretely. As mentioned
earlier, nonparametric system identification approaches based on ultrasonic deter-
ministic input signals are explored to estimate the current state of a structure. In
the present paper the effectiveness of both narrow and broadband input signal is
studied. It is noted that for low frequency identification applications, where the
additive noise is independent of the deterministic input signal, the noise can be re-
moved easily using correlation analysis. However, in the case of high frequency
state identification applications usually the additive noise in the acquired signals
contains the input dependent noise in addition to the input independent noise. With-
out knowledge of a time dependent noise transfer function, it is difficult to remove
the input dependant noise from the measured outputs. To avoid this problem, two
sensors are placed close together. It is expected they will receive the same input de-
pendent and independent noise, then it can be removed by taking the difference of
each sensor measurement. In addition to the noise removal, the dual sensor config-
uration will also help to improve the spatial resolution in damage state estimation.
It is noted that if two sensors are placed adjacent, they would receive ideally same
signal at a given damage condition. However, if there is a small change in damage,
this will be reflected as large differential change in sensor signals received at the
adjacent sensors. As the damage grows this differential change grows with respect
to the healthy of reference condition. This phenomenon of large differential sig-
nal change for small change in damage condition can be used for improving the
spatial resolution in damage state estimation. The dual sensor configuration block
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diagram is shown in Figure 1. In the figure, u is the deterministic narrow or broad-

Figure 1: Input-output block diagram.

band input signal, Pn
1 is the nth damage level transfer function associated with input

u and output y1 from sensor 1. Similarly Pn
2 is the nth damage level transfer func-

tion for sensor 2. It is noted that even though the two sensors are identical and
placed nearby, the transfer function associated with sensor 1 will be different com-
pared to the transfer function associated with sensor 2. This difference is because
each sensor will be receiving different reflected signals from a propagating crack or
damage. However, the input dependant noise transfer function Qn is assumed to be
the same for both sensors since it is usually due to electromagnetic interference and
electromagnetic compatibility. In addition, the sensor might receive input indepen-
dent noise, denoted as ν . With the above information, the measurement equation
for both sensor 1 and 2 can be written as:

y1 = Pn
1 ( jw)u+Qn( jw)u+ν (1)

y2 = Pn
2 ( jw)u+Qn( jw)u+ν (2)

2.1 Damage state estimation using empirical transfer function estimation (ETFE)
approach

Differencing Eq. 2 from Eq. 1,

y1− y2 = (Pn
1 ( jw)−Pn

2 ( jw))u (3)

Eq. 3 can be equivalently written as,

y = Pn( jw)u (4)
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where y = y1− y2 and Pn( jw) = Pn
1 ( jw)−Pn

2 ( jw). Using spectral analysis, the
transfer function Pn( jw) can be expressed as

Pn( jw) =
Sn

uy( jw)
Sn

uu( jw)
(5)

where Sn
uy( jw) and Sn

uu( jw) are the cross-spectral density between u and y, and
auto-spectral density of u respectively. These densities can be expressed in terms
of cross-covariance coefficients Cuy(m) and auto-covariance coefficients Cuu(m) as

Sn
uy( jw) =

L

∑
k=−L

Cn
uyω(k)e− jωk (6)

Sn
uu( jw) =

L

∑
k=−L

Cn
uuω(k)e− jωk (7)

where ω(k) is the lag window used for smoothening and L is the truncation pa-
rameter for the window. Substituting y1− y2 for y in Eq. 6 Eq. 5 can be rewritten
as

Pn( jw) =
Sn

uy1
( jw)−Sn

uy2
( jw)

Sn
uu( jw)

= Pn
1 ( jw)−Pn

2 ( jw) (8)

where

Pn
1 ( jw) =

Sn
uy1

( jw)
Sn

uu( jw)
; Pn

2 ( jw) =
Sn

uy2
( jw)

Sn
uu( jw)

(9)

The frequency response function Pn( jw) in Eq. 8 represents the change in damage
condition at nth damage level. It is noted that the frequency response function is a
vector and to directly compare the different damage conditions using this function
is difficult. An equivalent root mean square deviation (RMSD) based novel damage
index an is proposed. The damage index is normalized against the healthy condition
frequency response function and is expressed as

an =

√
∑

ω=ωi
ω=ω f

(Pn( jω)−P0( jω))2

∑
ω=ωi
ω=ω f

(P0( jω))2 (10)

where Pn( jω) = Pn
1 ( jω)−Pn

2 ( jω). It is noted that n = 0 represents the reference
damage level. The nth level damage index an is the equivalent change in output
(from piezoelectric sensors) time-series against a fixed input (from the piezoelectric
actuator) time-series measured at the nth damage level.
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2.2 Damage state estimation using correlation analysis (CRA) approach

The accuracy of the damage index estimated using the ETFE approach depends
on how accurately the spectral densities Suy and Suu are estimated. To be noted
that the accurate estimation of the spectral densities depends on the accuracy in the
Fourier transformation of the respective cross-covariance coefficients Cuy(m) and
auto-covariance coefficients Cuu(m). To avoid errors in the frequency domain trans-
formation, the time-domain cross-correlation and auto-correlation coefficients can
be directly used to estimate the time-series damage indices an. For a deterministic,
fixed input signal the auto-correlation coefficients Cuu(m) are fixed for all dam-
age conditions, and ignoring the contribution from the auto-correlation coefficients
Cuu(m), the equivalent damage index can be evaluated as

an =

√√√√∑
m=M
m=−M(Rn

uy(m)−R0
uy(m))2

∑
m=M
m=−M(R0

uy(m))2
(11)

where Rn
uy(m) = Rn

uy1
(m)−Rn

uy2
(m), Rn

uy1
(m) and Rn

uy2
(m) are the mth lagged cross-

correlation coefficients corresponding to sensor 1 and sensor 2 respectively. The
mth lagged cross-correlation coefficients Rn

uyi
(m) are expressed in terms of the mth

lagged cross-covariance function Cuyi(m) as

Rn
uyi

(m) =
Cn

uyi
(m)√

Cn
uu(m)

√
Cn

yiyi
(m)

(12)

It is noted that n = 0 represents the reference damage level, not necessarily the
healthy or pristine condition of the structure. The damage index an is the represen-
tation of the nth damage condition with respect to the reference (n = 0) or known
damage condition. It is also important to mention that both the proposed damage
index estimation approaches (ETFE and CRA) are valid for any complex structure
and the validation of these approaches will be discussed in the following sections.

3 Fatigue Experiment and Finite Element Simulation for Data Generation

To evaluate the performance of the damage index estimation at different damage
conditions, both broadband and narrowband active signals are tested. To generate
the output sensor signal against the broadband actuator input, a fatigue experiment
is performed, whereas for generating the output sensor signal against the narrow-
band actuator input, a finite element simulation is performed. It is noted that the
finite element simulation is time consuming and the computational time and mem-
ory requirements increase significantly with an increase in the length of the input
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signal. In this work, finite element simulations are not performed for the broadband
input, rather only for the narrowband input signal.

3.1 Fatigue Experiment for Broadband Active Sensing

To test the real-time state estimation algorithm, a fatigue test was performed on an
Al-2024 cruciform specimen under biaxial loads. As shown in Figure 2, the cruci-
form specimen was loaded using a MTS biaxial/torsion test frame. The specimen

Figure 2: Experimental setup with instrumented Al-2024 cruciform specimen.

was subjected to a constant amplitude fatigue load with amplitude σmax = 21.36 kN,
load ratio R=0.1, and frequency of 10 Hz. For damage state estimation at different
damage levels, piezoelectric actuators and sensors were used. The instrumented
cruciform specimen with different sensor configurations can be seen in Figure 3.
After each 1500 cycles, the test frame was programmed to stop for 75 seconds and
during this period, piezoelectric sensor signals were collected for a deterministic (or
fixed) input signal. Images of the propagating damage were also collected using a
high resolution camera. The data and image collection started at approximately 10
kcycles. The image and sensor data were collected at 95 different damage levels. It
should be noted that to accelerate the crack initiation process, a circular hole (refer
Figure 3) was made at the center of the web area. Also, as shown in Figure 3, an
EDM notch (in the bottom right quadrant of web area) of length 1 mm was made
at the edge of the circular hole to further accelerate crack initiation. A through
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Figure 3: Cruciform specimen with different sensor configurations.

crack started from the EDM notch at approximately 19 kcycles (refer Figure 4) and
grew towards the bottom edge of the web area. Once the crack reached the bottom
edge of the web, a second crack initiated at the upper boundary (along the vertical
axis) of the central hole. The second crack grew up to the top boundary of the web
before final catastrophic failure occurred. The second crack growth was rapid and
occurred only within 6 kcycles before final failure occurred at 151 kcycles. Out of
the total 95 damage levels, the crack tip was in focus (of the high resolution cam-
era) only for the first 48 images. The crack length measurement corresponding to
different damage levels (or fatigue cycles) and different sequence of events can be
seen in Figure 4. In the case of active sensing, the input signal considered for this
study was a broadband chirp signal with frequency varying from 100 kHz to 300
kHz and is shown in Figure 5a. The persistence of excitation in the chosen band
can be seen from the spectral density plot shown in Figure 5b. A representative
sensor signal from sensor 1 (Ref. S1 in Figure 3) at the healthy condition is shown
in Figure 5c, and the corresponding spectral density is shown in Figure 5d. From
Figure 5d it can be seen that the output power spectral density, between 100 kHz to
300 kHz, is found to be persistently higher than -100dB/Hz. The persistence of ex-
citation can also be seen from the spectrogram plots of the input and output signal
shown in Figure 6a and 6b, respectively. This persistence of excitation of structural
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modes in the chosen frequency band is a good indicator for unbiased state estima-
tion. It is noted that at each damage level, 5 sets of active signals were collected

Figure 4: Visual measurements with different sequence of events.

by exciting the piezoelectric actuator in 5 seconds intervals. These multiple sets of
observations at a single damage level were collected to avoid any measurement loss
due to false actuation and to quantify the error bound in the damage index estima-
tion. The measured sensor signals at different damage levels are used to estimate
the corresponding damage index and will be discussed in the following section.

3.2 Finite Element Simulation for Narrowband Active Sensing

To evaluate the performance of the damage index estimation against the narrow-
band burst signal, finite element (FE) simulations are performed. Ten different
damage cases were considered; damage case 1: healthy condition (with 1 mm
notch), case 2: 5 mm bottom crack, case 3: 10 mm bottom crack, case 4: 15
mm bottom crack, case 5: 20 mm bottom crack, case 6: 25 mm bottom crack,
case 7: 30 mm bottom crack, case 8: 32 mm bottom crack, case 9: 17 mm top
(total crack length of 49 mm) crack, case 10: 32 mm top (total crack length of 64
mm). The finite element model for a typical case (case 10) can be seen in Figure
7a. The piezoelectric actuator and sensors are placed at the same positions as the
experimental specimen shown in Figure 3. A snapshot of the wave propagation
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Figure 5: a) Broadband chirp input with frequency sweep from 100 kHz to 300 kHz
b) Power spectral density of the input signal c) Signal from sensor 1 at a typical
damage level. d) Power spectral density of the sensor signal in c).

simulation for damage case 10 can also be seen in Figure 7b. This wave propaga-
tion simulation study shows that due to the presence of a large crack in front of the
actuator, sensors placed on the opposite side of the crack (e.g. sensor 3 and sen-
sor 4 of sensor configuration 2) become blind to the traveling input waves. For all
ten damage cases, the piezoelectric actuator is excited with a 230 kHz narrowband
burst input as shown in Figure 8a. Figure 8b shows the power spectral density of
the input signal. The sensor signal from sensor 1 and its power spectral density
can be seen in Figure 8c and Figure 8d respectively. In addition, Figure 9a and 9b
show the spectrograms of the actuator and sensor signals shown in Figure 8. The
simulated sensor signals at different damage levels are used to estimate the damage
index, which will be discussed in the following sections.

4 Numerical Results for Time Series Damage State Estimation

Sensor signals generated using the fatigue experiment and FE simulation are used
for estimating the time-series damage index. The details of the results are explained
in the following subsections.
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Figure 6: a) Spectrogram of input signal shown in Figure 5a and b) Spectrogram of
output signal shown in Figure 5c.

Figure 7: a) Finite element simulation showing crack path during final catastrophic
failure b) Snap shot of wave propagation with simulated crack path as shown in
Figure a.
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Figure 8: a) Narrowband burst input with central frequency 230 kHz b) Power
spectral density of the input signal c) Sensor signal from sensor 1 d) Power spectral
density of the sensor signal in Figure c.

Figure 9: Spectrogram of input and output signal shown in Figure 8a and 8c.
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4.1 Damage Index Estimation Using Finite Element Simulated Narrowband
Active Sensing

Damage indices based on both the empirical transfer function estimation approach
and the correlation analysis approach are evaluated. It is noted that the narrowband
sensor signals are collected for the different FE simulated damage conditions dis-
cussed earlier. Using empirical transfer function estimation, the respective results
for sensor configuration 1 and 2 are shown in Figure 10 and Figure 11. From Figure
10 it can be seen there is a good trend in the damage index only from damage level
6, which is equivalent to 25 mm of crack length. In case of sensor configuration 2
the damage index estimation is more erroneous and can be found that there is no
proper trend for the entire damage regime. Also, damage indices based on correla-
tion analysis are evaluated for both sensor configurations 1 and 2. The respective
results for sensor configuration 1 and 2 are shown in Figure 12 and Figure 13. Com-
pared to the damage indices estimated using empirical transfer function estimation,
the correlation analysis based damage indices show a slightly better trend of cumu-
lative damage growth. It is also seen that, similar to the empirical transfer function
estimation approach, the correlation approach shows a better trend for sensor con-
figuration 1 compared to sensor configuration 2. The poor performance of sensor
configuration 2 is due to the development of a shadow region that is formed by the
propagating cracks in front of the actuator. This leads to a poor damage signature in
measurements from sensor configuration 2. On the other hand, the sensor configu-
ration 1 receives the reflected actuator signal from a propagating crack throughout
the failure envelope.

Furthermore, it is seen that, the narrowband input based ETFE and CRA approaches
show poor performance of damage index estimation during smaller damage growth
regime (i.e. below damage level 6 equivalently to 25mm crack length). It must
be noted that unlike real life scenario, signals based on FE simulation are noise
free. Although the present narrowband based FE simulation signals are noise free,
the damage index estimation using these signals fails to provide a clear trend of
damage index growth throughout the fatigue life. A potential reason for the lack of
trend in the damage index estimation is the narrowband signals central frequency,
which may not necessarily be optimal for the chosen actuator and sensor location.
Moreover, other structural modes (other than the structural mode associated with
the central frequency of the narrowband signal) associated with the local damage
are not persistently excited. This leads to a weaker signature in sensor signals.
The above mentioned limitations in narrowband based SHM leads to a need for
exploring the usefulness of broadband active sensing, which is discussed in the
following section.



240 Copyright © 2009 Tech Science Press SDHM, vol.5, no.3, pp.227-250, 2009

Figure 10: Estimated damage index using ETFE approach and narrowband input
signal from sensor configuration 1.

Figure 11: Estimated damage index using ETFE approach and narrowband input
signal from sensor configuration 2.
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Figure 12: Estimated damage index using correlation analysis approach and nar-
rowband input signal from sensor configuration 1.

Figure 13: Estimated damage index using correlation analysis approach and nar-
rowband input signal from sensor configuration 2.
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4.2 Damage Index Estimation Using Experimental Broadband Active Sensing

Unlike the case of narrowband input, for broadband input it is not required to tune
its central frequency with the resonant frequency of the interrogated structure. Also,
the tuned central frequency for narrowband input does not necessarily remain opti-
mal as damage progresses. On the contrary, the broadband input consists of multi-
ple sinusoids with different frequencies spreading over a larger envelope that may
be affected by damage. It is noted that multiple structural modes are affected by the
damage and it is expected that a broadband input will excite those individual struc-
tural modes. Hence a broadband input does not require any frequency tuning of
the input signal with the resonant frequency of the structure. Using the broadband
chirp signals, the damage indices are estimated using Eq. 10 of the ETFE approach
and Eq. 11 of the CRA approach. For both sensor configurations the time series
damage indices are estimated using the ETFE approach and shown in Figure 14
and Figure 15. Whereas, for the CRA approach, the damage indices estimated us-
ing sensor configuration 1 and 2 are shown in Figure 16 and Figure 18. For each set
of sensor signals, five different damage indices are estimated. Figure 14 to Figure
18 show the mean damage index and associated 2σ error bounds at different dam-
age levels. For ETFE approach it is found that (refer Figure 14 and Figure 15) up to
approximately 82 kcycles, there is a good correlation of cumulative damage growth
between estimated damage index and available visual measurements (as shown in
Figure 4) for both sensor configurations 1 and 2. However, after 82 kcycles it can
be seen that (refer Figure 15) the damage index time series estimated using sensor
configuration 2 does not show an increasing trend. This is due to the creation of
a blind zone that leads to weaker signals being received by the sensors in configu-
ration 2. On the other hand, for the entire fatigue loading regime, configuration 1
shows an increasing trend of damage index time series, which is evident in Figure
14. The increasing trend for sensor configuration 1 better resembles the physical
phenomenon associated with cumulative damage growth.

In the case of CRA based approach it is found that (ref. Figure 16 and Figure 18) up
to approximately 110 kcycles there is a continuous increasing trend of damage in-
dex time-series for both sensor configurations 1 and 2. However after 110 kcycles it
can be seen that the damage index time-series estimated using sensor configuration
2 (refer Figure 18) does not show an continuous increasing trend. This is again due
to the creation of a blind zone that leads to weaker signals being received by the
sensors in configuration 2. On the other hand, for the entire fatigue loading regime,
configuration 1 shows (refer Figure 16) an increasing trend of damage index time-
series. This is more evident when Figure 16 is magnified as seen in Figure 17. It
must be noted that although both approaches use the same sensor signals, in both
sensor configurations the CRA based approach shows better trend in damage index
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growth compared to the ETFE based approach. For example, for sensor configura-
tion 2, the ETFE based approach shows the cumulative damage index growth trend
up to 82 kycles (refer Figure 15), whereas for CRA approach the corresponding
trend is up to 110 kcycles (refer Figure 18). As mentioned before, the higher accu-
racy of the damage index estimated using CRA approach is due to the direct use of
cross-covariance coefficients Cuy(m) and auto covariance coefficients Cuu(m) (refer
Eq. 12) rather than performing Fourier transformation of those (refer Eq. 6 and Eq.
7), while evaluating the damage index using ETFE based approach.

In addition to the above mentioned observations Figure 14 to Figure 18 clearly in-
dicate that the rate of damage index growth is higher between 10 to 19 kcycles
compared to that after 10 kcycles. This trend is observed for both sensor config-
uration 1 and 2 and with both damage index estimation approaches. The higher
growth rate is possibly due to creation of multiple surface cracks in front of the
EDM notch (refer Figure 3. These surface cracks coalesce before forming a visible
through crack at 19 kcycles. As seen from Figure 4 these surface cracks were not
captured in the image either because the cracks were developed in the opposite side
of the specimen (opposite to the camera) or due to lack of clarity in the captured
image. For CRA based approach, similar trend in high damage index growth rate is
also observed from 140.5 kcycles to 142 kcycles. From Figure 16 and 18 it can be
seen at 140.5 kcycles, when the top crack has not initiated (see Figure 4 and 19a),
the corresponding damage index was approximately 1.419 for sensor configuration
1 and 1.128 for sensor configuration 2. It can be seen that, at 142 kcycles there is
a sudden jump in damage index from 1.419 to 1.973 for sensor configuration 1 and
from 1.128 to 1.23 for sensor configuration 2. From the acquired image shown in
Figure 19b it is seen that there was no through crack at the top edge of the cen-
tral hole. The jump in damage index again is possibly due to the development of
multiple surface cracks. The snap-shot of the surface cracks coalesces (before the
onset of a through crack at the top edge of the central hole) can be clearly seen
from Figure 18c. Due to the development of multiple surface cracks, the signals
received at the sensors are highly distorted and a jump or high growth in damage
index is observed. It is noted that from 140.5 kcycles to 142 kcycles this trend of
high damage index growth rate is not observed (refer Figure 14 and 15) for ETFE
based approach. This is because the ETFE based approach is not sensitive as CRA
approach to distinguish between large crack opening and the corresponding pre-
cursory surface crack around it. In addition to the above mentioned drawbacks in
ETFE approach, it is also seen that the 2σ error bounds for correlation approach
(refer Figure 16 and Figure 18) is significantly narrower compared to the ETFE
based 2σ error bounds (refer Figure 14 and Figure 15). The lower 2σ error bounds
in case of CRA approach compared to ETFE approach is due to the direct use of
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time response signals rather than Fourier transformed correlation coefficients used
in ETFE approach.

4.3 Noise Sensitivity Evaluation

In addition to the damage index estimation at different damage levels, the sensi-
tivity of the damage index to noise is evaluated by estimating the index from 500
different sets of observations acquired at a particular damage level (in this case at
the healthy condition). The 500 observation sets are collected at 2 second intervals
by repeatedly exciting the actuator. The corresponding damage indices for ETFE
based approach are plotted in Figure 20. For the ETFE approach, it can be seen
that, the value of each damage index is restricted to 0.5 for all 500 sets of observa-
tions. This observation suggests that damage indices greater than 0.5 not only have
the contribution from measurement noise but also have the contribution from the
change in damage state. This sensitivity analysis also suggests that at a particular
damage level, the maximum variation (due to electrical noise) of estimated damage
index is limited to 0.5. The sensitivity information can also be correlated with the
2σ error bound presented in Figure 14 and Figure 15, which shows that the maxi-
mum variation in damage index about its mean damage level does not exceed 0.5.
Similar sensitivity analysis is also performed for the CRA approach. The corre-
sponding damage indices for 500 different sets of observations are estimated and
are presented in Figure 21. It can be seen that the damage index value in this case
is much smaller than the one, obtained for the ETFE based approach. The damage
index is restricted to a value of 0.1, except for few outliers, for all 500 sets of ob-
servations. The above sensitivity analysis can also be correlated with the 2σ error
bound, shown in Figure 16 and Figure 18, which shows that the maximum variation
in the damage index (due to electrical noise) at any particular damage level is not
more than 0.1. Comparison of the error bound and the sensitivity analysis results
also shows that the CRA approach is less sensitive to noise compared to the ETFE
based approach.

5 Conclusion

The use of two nonparametric system identification techniques empirical transfer
function estimation approach and correlation analysis approach was investigated
to estimate the time-series fatigue damage states. Novel dual sensing method is
used to perform ultrasound input based system identification. From the numerical
study it was found that the correlation based damage index estimation follows a
better trend of cumulative damage growth compared to the empirical transfer func-
tion estimation based approach. The damage indices were estimated using both
narrowband based burst input and broadband based chirp input. It was found that
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Figure 14: Time series damage index estimated using ETFE approach and sensor
configuration 1

Figure 15: Time series damage index estimated using ETFE approach and sensor
configuration 2
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Figure 16: Time series damage index estimated using correlation analysis approach
and sensor configuration 1

Figure 17: Magnified (from 20 kycles to 140 kcycles) version of Figure 16
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Figure 18: Time series damage index estimated using correlation analysis approach
and sensor configuration 2

Figure 19: Visual image snapshots at a) 140.5 kcycles b) 142 kcycles c) 149.5
kcycles d) 151 kcycles.
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Figure 20: Check of the sensitivity of the damage index estimation using ETFE
approach and 500 different sets of observation collected at a particular damage
level.

Figure 21: Check of the sensitivity of the damage index estimation using CRA and
500 different sets of observation collected at a particular damage level.



On-line Fatigue Damage State Estimation 249

the damage index estimation based on the broadband chirp input outperforms the
narrowband input based damage index estimation. In addition, two different sen-
sor configurations were studied. It was observed that the sensor configuration with
sensors near the actuator was more effective for time series damage state estima-
tion than the sensor configuration that had sensors placed away from the actuator.
The time-series damage estimation approaches are validated on a complex Al-2024
cruciform specimen undergoing biaxial cyclic loading. The proposed unsupervised
approaches can be useful for on-line health monitoring of any complex structure.
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