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An Automated Procedure for the Geometrical Modelling
of a Surface Crack Front

J. Toribio1, J.C. Matos2, B. González1 and J. Escuadra2

Abstract: In this paper an automatic (analytical-numerical) procedure is pro-
posed to model the front of a transverse surface crack located in the circular section
of a lineal structural element (wire, cable, strand, rod, shaft,..., i.e., a cylindrical
geometry) by means of a fitting ellipse, obtaining the ellipse parameters from a
series of points in the real crack front and adjusting them to the theoretical fitting
ellipse by a least square method. For symmetric cracks two modelling procedures
are formulated: (i) in the first one, a fitting ellipse is used wit its centre belonging
to the periphery of the circular section of the cylinder; (ii) in the second one, a cir-
cle is used with no restrictions regarding the position of its centre. Both methods
were compared and applied to real cracks in high-strength steel wires subjected to
fatigue.

Keywords: Semi-elliptical surface cracks, round bars, geometrical modelling,
crack fronts, fatigue.

1 Introduction

In the field of structural integrity the circular cylinder with a transverse surface
crack of semi-elliptical shape is one of the key geometries in engineering fracture
mechanics. Such a cracked geometry is representative of a wide set of linear struc-
tural elements working in tension such as wire, cables, tendons, strands, shafts,
. . . subjected to monotonic or cyclic loading, working in an inert or aggressive en-
vironment and thus susceptible to suffer subcritical crack growth in the form of
fatigue, stress corrosion cracking or corrosion-fatigue.

To model a transverse surface crack an a cylinder, previous researchers have cho-
sen geometrical entities such as lines, circles or ellipses [James and Mills (1988);
Carpinteri (1993); Levan and Royer (1993); Couroneau and Royer (2000); Toribio
and Toledano (2000); Shin and Cai (2004)], sometimes applying restrictions to fit
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such geometrical entities to the real shape of the crack. In this framework, the el-
lipse is the most widely used geometry to model a surface crack front, due to its
simplicity and adequacy to most real cases because two only parameters (the crack
depth a and the length of the major semiaxis of the ellipse b) are needed to define
the crack shape.

In this paper the crack front is modelled by means of elliptical and circular geome-
tries. The analysis was focussed on two cases of special interest: (i) an ellipse with
its centre located at the cylinder surface [Carpinteri (1993); Couroneau and Royer
(2000); Toribio and Toledano (2000); Shin and Cai (2004)] and (ii) a circle with no
restriction regarding the location of its centre [James and Mills (1988); Levan and
Royer (1993)].

2 General procedure

The shape of the most general ellipse able to model the crack front has five degrees
of freedom {a, b, ϕ , β , l}, as shown in Fig. 1. Variables of analysis will be named
z1 = a, z2 = b, ..., z5 = l throughout this paper. The origin (0,0) of the coordinate
axes is located at the centre of the cylinder section. Each elliptical crack front is
modelled by means of an ellipse obtained from a set of n points (xi, yi).
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Figure 1: Elliptical modelling of the crack front

The starting point was the choice of the initial parameters z∗, calculated using the
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minimum necessary points at the crack front to obtain the initial ellipse. With these
values z∗ and with the points (xi, yi) of the elliptical line, an iterative procedure was
used to obtain a difference between consecutive numerical results z lower than a
defined error, thus obtaining a set of points (xi, yi) fitted to the real crack front. It
was an automated procedure in which several numerical programs were assembled
using Mathematica®.

The process was based on the minimization of the following function,

F(z) =
n

∑
i=1

(ŷi− yi)2 (1)

where ŷi is the coordinate of the ellipse corresponding to the parameters z and the
point xi (i.e., the ellipse of parameters z contains the set of points (xi, ŷi)).
Using the Taylor series expansion of the function ∂F/∂ zk at the point z∗ with regard
to the z variables, and calling R to the remaining points (not considered in the
calculation of the optimal curve),

∂F
∂ zk

(z) =
(

∂F
∂ zk

)
(z∗)+∑

j

(
(z j− z∗j)

(
∂ 2F

∂ z j∂ zk

)
(z∗)
)

+R (2)

and applying the minimisation condition,

∂F
∂ zk

(z) = 0 for k = 1, . . . ,5 (3)

finally a mathematical expression is obtained so that, using it iteratively, gives the
z value to determine the optimal ellipse which best fits the real crack front.

Due to the consideration of only the first terms in the Taylor series expansion,
a factor h�1 must be introduced to guarantee that the remaining terms can be
neglected, the result being,

z = z∗−h

(
∂ 2F

∂ z j∂ zk

)−1

(z∗)
(

∂F
∂ zk

)
(z∗) (4)

and this new value should, theoretically, being nearest to the point at which partial
derivatives are zero, so that the iterative procedure is initiated again taking this
value as the new z∗.

The described general procedure is very complicated and time consuming when
it involves the five variables and it does not significantly improves the quality of
numerical results when compared to similar procedures with some restrictions.
Therefore, two simplified procedures will be used in this paper, as described in
the following sections.
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2.1 Non symmetric modelling

In the case of non symmetric cracks the crack front was characterised as an ellipse
with its centre located at the cylinder surface, as depicted in Fig. 2. In this mod-
elling the l parameter (distance between the centres of the circular section of the
cylinder and the ellipse) is fixed with a value l = D/2 (D being the diameter of the
cylinder), so that the space of parameters has only four variables, and the variation
of the angles β and ϕ is permitted, thus obtaining the following equation for the
ellipse:

(Acosβ +Bsinβ )2

b2 +
(−Asinβ +Bcosβ )2

a2 = 1 (5)

To simplify this expression, two additional parameters A and B, being dependent
on the angular variable ϕ , are introduced as:

A = xcosϕ + ysinϕ (6)

B =−xsinϕ + ycosϕ− D
2

(7)
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Figure 2: Non symmetrical elliptical modelling of the crack front
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In this case the function F to minimize is:

F =
(((

D
2

)(
−
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a2 +b2)cosϕ +

(
a2−b2)cos(2β +ϕ)

)
−

−
√

2ab
(
−a2 −b2 +2x2

i +
(

D
2

)2

(1− cos(2ϕ))+2Dxi sinϕ+

+
(
a2−b2)cos(2(β +ϕ))

)1/2
+a2xi sin(2(β +ϕ))−

− b2xi sin(2(β +ϕ))
)( −1

a2 +b2 +(−a2 +b2)cos(2(β +ϕ))

)
− yi

)2

(8)

including its partial derivatives as:
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where i indicates each of the points considered in the calculation and the subindex
z indicates the point where the partial derivatives are evaluated.

The process is repeated iteratively, introducing at each step the result obtained in
the previous one up to the moment in which the new values of {a, b, ϕ , β} differ
from the previous ones in values lower than {H1, H2, H3, H4}, these being the
admitted tolerances (taken as 0.001 in this paper), i.e.,∣∣a′−a

∣∣< H1 (10)∣∣b′−b
∣∣< H2 (11)∣∣ϕ ′−ϕ
∣∣< H3 (12)∣∣β ′−β
∣∣< H4 (13)

(a′, b′, ϕ ′, β ′) being the new point obtained from (a, b, ϕ , β ).

2.2 Symmetric modelling

This method implies the restriction of considering a symmetric crack, and thus
the centre of the cylinder circular section is contained in the prolonged axis of the
ellipse (Fig. 3). The variables {a, b, l, ϕ} considered in this method are related by
the following expression:

(xcosϕ + y sinϕ)2

b2 +
(−x sinϕ + ycosϕ− l)2

a2 = 1 (14)
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In spite of the fact that this method provides a more exact solution for symmetric
cracks, it is still very complicated with no clear advantages in the matter of accu-
racy. Therefore, an additional restriction will be imposed in the procedure to have
a simpler, flexible and accurate fitting procedure.

D

ϕa

b

X

Y

l

(0,0)

 
Figure 3: Symmetrical elliptical modelling of the crack front

2.2.1 Elliptical symmetrical modelling with its centre at the cylinder surface

In this case the crack front is modelled as a symmetrical ellipse with its centre
located at the cylinder surface, thus fixing the l parameter (of the value D/2), as
shown in Fig. 4. The parameters defining the crack front in this modelling are the
dimensionless crack depth a/D, the aspect ratio a/b and the angle ϕ . The three
degrees of freedom characterising this ellipse are {a, b, ϕ}, they being related by
the following expression:

(xcosϕ + y sinϕ)2

b2 +

(
−x sinϕ + ycosϕ− D

2

)2

a2 = 1 (15)
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Figure 4: Symmetrical modelling of the crack front by means of an ellipse with its
centre located at the cylinder surface

The function F to minimize is:

F =
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and the equation to solve is:H1
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(17)

The result of each iteration feeds the input of the procedure up to the instant in
which the values of {a, b, ϕ} differ from those introduced in {H1, H2, H3} in a
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value lower that the tolerance (fixed as 0.001 in this paper), i.e.:∣∣a′−a
∣∣< H1 (18)∣∣b′−b
∣∣< H2 (19)∣∣ϕ ′−ϕ
∣∣< H3 (20)

2.2.2 Circumpherential modelling

The crack front is represented by a circular portion with no restriction at all (Fig.
5), so that the ellopse parameters become only one, the circle radius Rc. The param-
eters defining the crack front in this modelling are the dimensionless crack depth
a/D, the aspect ratio a/Rc and the angle ϕ . The three degrees of freedom are {Rc,
l, ϕ}, obtaining the following equation for the circle,

(x+ l sinϕ)2 +(y− l cosϕ)2 = R2
c (21)

 

 

Figure 5: Symmetrical modelling of the crack front by means of a circle with no
restrictions regarding its centre
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The function F to minimize is:

F =
((

l cosϕ−
√

R2
c− (xi− l sinϕ)2

)
− yi

)2

(22)

where (x0 = l sinϕ , y0 = l cosϕ) are the coordinates of the circle centre. The equa-
tion to solve in this case is:
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The result of each iteration feeds the input of the procedure up to the instant in
which the values of {Rc, l, ϕ} differ from those introduced in {H1, H2, H3} in a
value lower that the tolerance (fixed as 0.001 in this paper), i.e.:∣∣R′c−Rc

∣∣< H1 (24)∣∣l′− l
∣∣< H2 (25)∣∣ϕ ′−ϕ
∣∣< H3 (26)

3 Discussion

To compare the accuracy of the two proposed methods to model the geometry of
real surface crack fronts in cylinders, an evaluation was made of the function F(zi),
taking the same number of points (xi, yi) in the modelling of the crack front, and
dividing by D2 to obtain a dimensionless value. The obtained parameter, ξ , was
used as en estimator of the mathematical error with each fitting method.

Starting from a initially perfect circular crack front, the error ξ was estimated when
the crack front is modelled as an ellipse, for different relations a/D and a/Rc (Fig.
6), using 13 points to represent the circle arch. The aspect ratio a/b is plotted in
Fig. 7 against the relative crack depth a/D for different values of a/Rc.

The evolution from a circular to an elliptical crack front can be represented by
expressing the aspect ratio a/b as a function of a/Rc (a/D being constant) using a
third degree polynomial expression with a regression coefficient of 1.000. A special
case is a/Rc = 1.000 in which both fitting procedures coincide, the crack front being
a circumpherence with its centre at the cylinder surface.

To check the modelling procedures from the experimental point of view, real frac-
tographs were used showing the crack front shape evolution in high strength steel
wires subjected to fatigue (cyclic) loading (Fig. 8). Starting from the modelling
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Figure 6: Error parameter, ξ , as a function of the relative crack depth a/D
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Figure 7: Relationship a/b vs a/D, for different values of Rc

of the visible crack fronts (points located at the real crack fronts) such lines were
modelled with the two procedures of ellipse centred at the cylinder surface and cir-
cle with no restriction. The obtained results showed that the computed parameters
a and ϕ are practically the same in both methods, as plotted in Figs. 9-10.

For a unique crack front the angle ϕ does not have a high interest. However, it is
relevant when the evolution of the crack front shape has to be analyzed. In this case
the parameters Rc and b, characteristic the two modelling procedures, are related
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Figure 8: High strength steel wire cracked by fatigue

1.5

2.0

2.5

3.0

1.5 2.0 2.5 3.0

a ci
rc

le
 (m

m
)

a
ellipse

 (mm)
 

Figure 9: Crack depth obtained by means of the two fitting procedures (ellipse and
circle)
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- Page 8, Section 2.2.2, two lines below Line 77. It must be 

“…so that the ellipse parameters become only one, the circle radius Rc.” 

instead of 

“…so that the parameters a and b become only one, the circle radius Rc.” 

 

- Page 11, Figure 8: The Figure is not centered in relation to the caption. 

The figure is not centered with respect to the caption. 

 

- Page 12, Figure 10, the vertical axis is erroneous. It must be 

ϕ (º) 
 
instead of 

ϕ (? 

See the image below. 

 

 

- Page 14, Line 116. It must be: 

 “… It may be simplified to use only three parameters and two symmetric modelling options: 
an ellipse…” 

instead of: 
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Figure 10: Plot of the ϕ angle as a function of the relative crack depth (a/D) in the
two fitting procedures (ellipse and circle)
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Figure 11: Parameters Rc and b
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Figure 12: Characteristic dimensionless relations

as shown in Fig. 11, and this relationship may be expressed by means of a second-
order polynomial expression with a regression coefficient of 1.000 as:

Rc = 0.855−0.016b+0.287b2 (27)

Fig. 12 plots the evolution of the dimensionless parameters characteristic of the
experimentally obtained cracks (by fatigue on high-strength steel wires), for the
elliptical modelling centred at the cylinder surface (a/b) and for the circular mod-
elling with no restriction (a/Rc).

These relationships may be expresses by fourth-order polynomial expression with
a regression coefficient of 0.999 as:

a
b

=8.776−78.134
a
D

+289.984
( a

D

)2
−

−465.391
( a

D

)3
+269.108

( a
D

)4
(28)

a
Rc

=16.296−152.026
a
D

+557.274
( a

D

)2
−

−884.522
( a

D

)3
+507.667

( a
D

)4
(29)

Fig. 13 draws the evolution of the crack front shapes in the two modelling proce-
dures on the basis of the real crack fronts experimentally obtained (cf. Fig. 8). It
is seen that the two modelling procedures are similar with regard to the crack front
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shapes contained in the transverse circular section of the cylinder. It should be em-
phasized that both methods provide lines (ellipses or circles) contained many points
located at the real crack fronts. The value of the error parameter ξ (to evaluate the
accuracy of the fitting in both procedures) was very similar in the two methods (Fig.
14), the elliptical one being a little bit more accurate.

 

 
Figure 13: Comparison between the elliptical and the circular fitting

4 Conclusions

A general automated procedure for the geometrical modelling of the surface crack
front in cylinders was proposed on the basis of a least squares method and five
fitting parameters. It may be simplified to use only three parameters and two sym-
metric modelling options: an ellipse with its centre located at the cylinder surface
and a circle with no restriction regarding the location of its centre.

Both methods were experimentally checked using real crack fronts obtained by
fatigue cracking of high-strength steel wires. Both modelling procedures (ellipse
and circle) are very adequate, exhibiting a very high accuracy in the modelling of
the crack front shapes. The error is always small and decreases for deeper cracks,
and the same happens with the differences between both methods. The circular
modelling is not adequate in the case of cracks with an aspect ratio a/b higher that
one, i.e., cracks in which the depth is higher than the other geometrical dimension.
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Figure 14: Plot of the ξ parameter as a function of the relative crack depth (a/D)
in the two fitting procedures (ellipse and circle)

The dimensionless relationships representing the crack shape evolution in the case
of fatigue cracks in high-strength steel wires can me expressed by fourth-order
polynomial expression in both modelling procedures. The relationship between
the geometrical results in both fitting methods can be expressed by a second-order
polynomial expression.
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