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Sample Size Determination for Development of S-N Curve of A356.2-T6
Aluminum Alloy

P. Ramamurty Raju1, B. Satyanarayana2 and K. Ramji3

Abstract: This paper presents the details of
method of sample size determination to estimate
the characteristic fatigue life of aluminum alloy.
The characteristic fatigue life of Aluminum al-
loy A356.2-T6 has been estimated by assuming
a two parameter Weibull distribution model. A
stepwise procedure is outlined to determine the
number of specimens required at a predetermined
stress amplitude to estimate the fatigue life within
an acceptable error at a given probability and con-
fidence level. The percentage of error is calcu-
lated at various probabilities and confidence lev-
els (C.L). The probabilities considered are 50%,
90% and 95% whereas C.Ls considered are 90%,
95% and 97.5%. Maximum percentage of errors
has also been calculated for the above probabil-
ities and C.Ls. Details of development of S-N
curve for aluminum alloy A356.2-T6 have been
explained. Weibull slope have been plotted to rep-
resent the variation in the sample data at a partic-
ular stress level. From this study, it is concluded
that the estimated fatigue life is reliable and the
sample size considered for fatigue life estimation
is adequate.

Keywords: Aluminum alloy; fatigue; Weibull
distribution; fatigue life; S-N curve

1 Introduction

In recent years aluminum alloy materials have de-
veloped rapidly for structural applications. Appli-
cations include automobile industry particularly
for the manufacturing of wheels. The wheels are
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one of the most critical components of automo-
biles, which must perform their intended function
to human safety. Most of the structural compo-
nents/structures made up of these aluminum al-
loys are subjected to fatigue loading during their
service conditions.

The loading may be of either constant am-
plitude loading or variable amplitude load-
ing. In the present scenario, the interest to
researchers/designers is to understand the fa-
tigue/fracture behaviour of these alloys under fa-
tigue loading. Statistical evaluations are impor-
tant because of different distributions of the test
results in aluminum samples. For safe and reliable
applications of the materials in industry, their fa-
tigue data as statisticallymust be known well. The
statistical properties used, in general related to
distribution in mean strength. Weibull distribution
is widely used statistical model than other distri-
butions in fatigue data evaluations from the point
of variables in endurance life and strength pa-
rameters. Applications of Weibull distribution in-
cludes aero- space, electronics, materials and au-
tomotive industries. Recent advances in Weibull
theory have also created numerous specialized
Weibull applications. Modern computing technol-
ogy has made many of these techniques accessible
across the engineering spectrum. Luko (1999) re-
viewed generally used Weibull distribution mod-
els including discussion and illustrations. Monto
Carlo method was also discussed in brief.

It is generally known that life testing of compo-
nents during the period of useful life is generally
based on the exponential model. The failure rate
of a component may not be constant throughout
the period under investigation. In some instances,
the period of initial failure may be so long that
the component’s main use is during this period.
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In other instances the main purpose of life testing
may be that of determining the time to wear out
failure rather than chance failure. In such cases,
the Weibull distribution adequately describes the
failure times of components when their failure
rate either increases or decreases with time. Fur-
ther, the exponential distribution, because of its
constant hazard function, is not very useful for
modeling life data in components that wear out
with age (i.e. mechanical components).

It is generally known that fatigue life of any struc-
ture/structural component is the number of stress
or strain cycles to cause failure in anticipated
stress amplitude. Fatigue life is a function of
many variables, including environmental and met-
allurgical conditions of the material, and exhibits
scattered results, even where the specimens are
taken from the same lot and the applied stress or
strain cycles are equal. Due to this scattered na-
ture, it is difficult to evaluate the fatigue life of the
component or to establish the prediction interval
from a limited number of sample data.

Ramamurtyraju et al. (2007) generated S-N curve
for aluminum alloy A356.2-T6 and estimated fa-
tigue life under radial fatigue load. Safety fac-
tor has been suggested for reliable fatigue life
estimation by conducting a parametric finite el-
ement studies. Many researchers have devel-
oped graphical and analytical methods to eval-
uate the fatigue life or strength and S-N curve
from a limited amount of data (Gope 1994, Parida
et al. 1990, ASTM STP 9 1963, Gao 1984,
Nakazawa 1987). Most of the analytical methods
are based on either normal or log normal distri-
bution. As the fatigue testing is time consuming
and costly, setting of the minimum sample size
required to extract the statistical information is of
great importance (Parida et al. 1990, ASTM STP
9 1963, Gao 1984, Nakazawa 1987, Wilks 1942,
Lawless 1973, Gope 1999,2002). Gope (1999,
2002) presented a method of sample size deter-
mination to estimate the fatigue life, confidence
level and maximum acceptable error. Log nor-
mal or Weibull distributions were used for statis-
tical analysis. Castillo et al. (2006) deals with
the problem of estimating the S-N field based on
samples with different lengths and testing the hy-

pothesis of length independence of fatigue life-
times. A weibull model developed is used to dis-
cuss the problem and analyze two data samples of
prestressing wires and prestressing strands. Zhao
et al. (1998) carried out a statistical investigation
of 23 groups of fatigue life data on Q235 steel –
welded joints in terms of linear regression anal-
ysis. By comparing the effects of fits to the six
assumed distributions (Three parameter weibull,
Two parameter weibull, Extreme minimum value,
Extreme maximum value, Normal and Lognormal
distributions). Gao et al. (1999) describe appli-
cations of the recent developments in modeling
cleavage fracture to predict the behavior for vari-
ous crack configurations of an A515- 70 pressure
vessel steel, including surface crack specimens
loaded by different combinations of tension and
bending. They briefly reviewed the conventional,
two-parameter weibull stress model and the mod-
ified, three-parameter weibull stress model, and
outlined the strategy to calibrate weibull stress
parameters. Belmonte et al. (2008) proposed a
Weibull based methodology for assessing the con-
dition of pipes based on strength characteristics
obtained from small samples. Khandaker et al.
(2008) applied a modified Weibull failure theory
to biomaterial specimen under thermal loading.

From the wide literature, it has been observed that
the research on sample size determination to esti-
mate the characteristic fatigue life of aluminum
alloy A356.2-T6 is limited. The present work fo-
cuses on sample size determination to estimate
the characteristic fatigue life of aluminum alloy
A356.2-T6 at the desired probability of survival
confidence level. Details of development of S-N
curve for aluminum alloy A356.2-T6 have been
explained.

2 Test set-up and experimentation

To find the fatigue properties of aluminum alloy
A356.2-T6 for actual manufacturing conditions,
a test is carried out on specimens taken from the
wheels. For all 43 identical specimens which are
machined from the spokes of alloy wheels (David
Gerkin 1999), rotary bending fatigue test is con-
ducted according to Standards (IS: 5075 1985).
The schematic diagram of specimen geometry
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and dimensions are shown in Figure 1. Test set-
up is shown in Figure 2. The wheels, from which
specimens are machined, are manufactured at low
pressure die casting followed by T6 heat treat-
ment process.

The results obtained from the rotary bending fa-
tigue test are given in Table 1. Results include ap-
plied stress, fatigue life and observation on each
sample. The scattered points obtained from the
rotary bending fatigue test are shown in Figure 3.

One of the premier aluminum alloys for wheels in
use today is AlSi7Mg. The chemical composition
of AlSi7Mg alloy is shown in Table 2.

Figure 1: Rotating bending fatigue test specimen
(All dimensions are in mm)

Figure 2: Typical test set-up

The following are monotonic material data for the
specimens taken from finished wheels.

Ultimate Tensile Strength (Su): 250 MPa

Yield Strength (Sy) : 230 MPa

Elongation (e) : 5%

Hardness (HB) : 90
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Figure 3: Scattered points at different stress levels

The Manufacturing of aluminum passenger car
wheels involves low pressure die casting process.
The molten aluminum kept in a gas tight heat in-
sulated container flows under a mild pressure of
approximately 70-100 KPa via a standpipe to es-
cape through vent-holes and enters the die with-
out turbulence. After solidification of the material
in the die, the container is depressurized and the
molten contents of the standpipe flow back into
the container. The wheel is then machined.

3 Determination of minimum sample size

A stepwise procedure is outlined to determine the
number of specimens required at a predetermined
stress amplitude to estimate the fatigue life within
an acceptable error at a given probability and con-
fidence level (Gope 1999). Figure 4 shows the se-
quential steps to be followed for determination of
minimum sample size.

i) Mean, x =

n
∑

i=1
xi

n−1

ii) Standard deviation, S =

√
n
∑

i=1
(xi−x)2

n−1

iii) Characteristic fatigue life, θ ≈ also known as
scale factor

iv) Weibull slope, β ≈ shape parameter

v) ξ = ln(θ)

vi) δ = 1
β

vii) d =
{

−a12.u2−n.λ+u.∈
n−a22.u2

}
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Table 1: Rotating bending fatigue tests results

Sample
No.

Stress,
MPa

Fatigue life,
Cycles N

Remarks Sample
No.

Stress,
MPa

Fatigue life,
Cycles N

Remarks

1 88 3960264 Specimen
failed

23 146 413472 Specimen
failed

2 88 1518389 Specimen
failed

24 146 77300 Specimen
failed

3 88 2704850 Specimen
failed

25 176 96453 Specimen
failed

4 88 2317776 Specimen
failed

26 176 185900 Specimen
failed

5 88 3556811 Specimen
failed

27 176 108392 Specimen
failed

6 88 2627425 Specimen
failed

28 176 87413 Specimen
failed

7 88 3493790 Specimen
failed

29 176 132868 Specimen
failed

8 88 4083373 Specimen
failed

30 176 137530 Specimen
failed

9 117 537516 Specimen
failed

31 176 34033 Specimen
failed

10 117 953019 Specimen
failed

32 205 50967 Specimen
failed

11 117 797731 Specimen
failed

33 205 70386 Specimen
failed

12 117 878631 Specimen
failed

34 205 74845 Specimen
failed

13 117 1636424 Specimen
failed

35 205 72999 Specimen
failed

14 117 877734 Specimen
failed

36 205 55365 Specimen
failed

15 117 917730 Specimen
failed

37 205 50326 Specimen
failed

16 117 1081674 Specimen
failed

38 205 25974 Specimen
failed

17 146 236452 Specimen
failed

39 234 19932 Specimen
failed

18 146 409950 Specimen
failed

40 234 26212 Specimen
failed

19 146 269709 Specimen
failed

41 234 25974 Specimen
failed

20 146 183567 Specimen
failed

42 234 26212 Specimen
failed

21 146 259141 Specimen
failed

43 234 26402 Specimen
failed

22 146 312707 Specimen
failed
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Table 2: Chemical composition of AlSi7Mg (in %)

Si Fe Cu Mn Mg Zn Ti
6.5-7.5 0.15 0.03 0.10 0.3-0.45 0.07 0.10-0.18

viii) ∈= [
(
a2

12−a11a12
)
.u2 +n.a11 +2.n.a12.λ +

n.a22.λ 2]1/2, where, u is the normal devi-
ate corresponding to α probability of failure
and ai j are the co-efficient for the asymptotic

variances and covariance of δ
δ and ξ

ξ .

The value of a11=1.10876; a22=0.6079 and a12=-
0.25702.

Initially, along with other distributional parame-
ters (such as mean and standard deviation), Char-
acteristic fatigue life (θ ) and Weibull Slope (β )
is estimated through probability plot. Parameters
ξ and d are calculated to compute the coefficient
of variation of Weibull distribution. Along with
probability and confidence level (C.L), an accept-
able error level is chosen and the corresponding
error factor is selected from tables (Gope 1999).

The Percentage of error is then calculated by mul-
tiplying the error factor with coefficient of varia-
tion. The above procedure is repeated until the
computed percentage of error is less than the ac-
ceptable error level. Once that stage is reached,
the experimentation for that stress level can be
stopped and the fatigue life is calculated based on
the data obtained by the present sample size.

4 Method applied to present study

Initially, a minimum of three tests were conducted
and calculated the error of estimation using a step-
wise statistical procedure. Likewise, tests were
further conducted at each of the stress levels until
the error of estimation converges to an acceptable
level.

If fatigue life (N f ) follows Weibull distribution
with cumulative distribution function (CDF) then,

FN f (Nf ) = 1−exp

{
Nf

θ

}β
(1)

X = ln(Nf ) will then follow extreme value distri-
bution with CDF as

Fx [ln(Nf )] = 1−exp

{(
x−ξ

δ

)}
(2)

The safe fatigue life at α percent of probability
and γ percent of confidence level can be deter-
mined from the relation as

μx = x+(d +λ )δ (3)

where x = ξ +λ .δ and λ = ln[1− ln(1−α)].
The coefficient of variation is given by,

φω =
δ[

μx +(d +λ ) .δ
] (4)

The percent of error involved in the fatigue life
experiment can be defined as the error made when
the sample life is accepted to be the population
life.

Let the expected population life be μx and ex-
pected sample life be E (μx), then the percentage
of error (Rw) can be obtained as,

Rw =
E(μx)−μx

μx
×100 (5)

Now the error factor Kw,α ,γ for Weibull distribu-
tion, at α percent of probability and γ percent of
confidence level is defined to be,

Kw,α ,γ =
Rw

φw
(6)

The distributional parameters for the life data at
various stress levels has been calculated and are
shown in Tables 3 and 4. One method of calculat-
ing the parameters of the Weibull distribution is
by using probability plotting and the method de-
scribed in the following paragraph.

Identical specimens are reliability-tested under
identical test conditions at each of the stress lev-
els. It can be observed from Table 3 that, all the
specimens are failed during the test after certain
number of cycles. The procedure for determining
the parameters of the Weibull probability distri-
bution function (pdf) representing the data using
probability plotting are outlined below.
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Determine the Distributional Parameters 

Start

Calculate ∈, d and μx

Select the Probability, Confidence level, 
and Minimum acceptable error Ro

Using tables, select error factor γα,,wK
corresponding to specified probability, C.L and 

Sample size ‘n’ 

Compute the percentage of error 
w,,ww xKR ϕ= γα

If Rw<Ro

Stop Fatigue testing. This Sample 
size could be qualified as 

Minimum required Sample size 

Test one more sample No

Yes

Figure 4: Flow chart for determination of minimum sample size

Table 3: Distributional parameters for the life data at various stress levels

Parameter 88 Mpa 117 Mpa 146 Mpa 176 Mpa 205 Mpa 234 Mpa
x 14.88 13.73 12.39 11.51 10.89 10.1
S 0.33 0.31 0.53 0.54 0.36 0.12
θ 3342140 1067077 303097 125450 63055 25891
β 4.36 3.32 2.86 2.79 4.4 18.24
ξ 15 13.88 12.62 11.74 11.05 10.16
δ 0.23 0.3 0.35 0.36 0.23 0.05
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Table 4: Other parameters at various probabilities

Stress level (s) Sample size (n) %α u λ ∈ d μx

88 Mpa 8
50 0 -0.36 3.29 0.36 14.88
90 1.28 0.83 3.05 -0.32 14.99
95 1.64 1.1 3.33 -0.41 15.03

117 Mpa 8
50 0 -0.36 3.29 0.36 13.73
90 1.28 0.83 3.05 -0.32 13.88
95 1.64 1.1 3.33 -0.41 13.94

146 Mpa 8
50 0 -0.36 3.29 0.36 12.39
90 1.28 0.83 3.05 -0.32 12.57
95 1.64 1.1 3.33 -0.41 12.63

176 Mpa 7
50 0 -0.36 3.08 0.36 11.51
90 1.28 0.83 2.87 -0.28 11.71
95 1.64 1.1 3.14 -0.34 11.78

205 Mpa 7
50 0 -0.36 3.08 0.36 10.89
90 1.28 0.83 2.87 -0.28 11.02
95 1.64 1.1 3.14 -0.34 11.06

234 Mpa 5
50 0 -0.36 2.6 0.36 10.1
90 1.28 0.83 2.45 -0.15 10.13
95 1.64 1.1 2.7 -0.11 10.15

Table 5: Median ranks for the sample data

Cycles-to-failure Failure Order Number Median Ranks
out of a Sample Size of 8

3960264 1 8.33
1518389 2 20.2
2704850 3 32.1
2317776 4 44.0
3556811 5 55.9
2627425 6 67.8
3493790 7 79.7
4083373 8 91.66
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First, rank the cycles-to-failure in ascending or-
der as shown in Table 5. Obtain their median rank
plotting positions. Median ranks can be found ei-
ther from the standard text books or by using the
following equation (Luko 1999).

MR% ≈ i−0.3
n+0.4

∗ 100, (7)

where i is the failure order number and N is the
total sample size.

The times-to-failure, with their corresponding
median ranks, are shown in Table 5.

On a Weibull probability paper, plot the times and
their corresponding ranks. Draw the best possible
straight line through these points, as shown below,
then obtain the slope of this line by drawing a line,
parallel to the one just obtained, through the slope
indicator (refer Figure 5). This value is known as
shape parameter β , in this case β is obtained as
1.4.

At the Q(t) = 63.2% ordinate point, draw a
straight horizontal line until this line intersects the
fitted straight line. Draw a vertical line through
this intersection until it crosses the abscissa. The
value at the intersection of the abscissa is the η .
This is always at 63.2% since

Q(T) = 1−e−1 = 0.632 = 63.2%

From Normal distribution tables, u value corre-
sponding to 50, 90 and 95 percent probability
would be 0, 1.28 and 1.64 respectively. Simi-
larly, λ value can be given as -0.36, 0.83 and 1.1
at 50, 90 and 95 percent of probability respec-
tively. Now the values of error factor Kω ,α ,γ corre-
sponding to α percent of probability and γ percent
of confidence level are taken from tables (Gope
1999). The percentage of error is then calculated
by multiplying coefficient of variation with the er-
ror factor, and the results are tabulated in Table 6.
From Table 6, it can generally be observed that
the percentage of error is increasing with increase
of percent of probability and C.L for a particular
stress level.

5 Development of S-N curve

From the study, it has been observed that a min-
imum Weibull slope of 2.79 at 176 MPa and a

maximum Weibull slope of 18.24 at 234 MPa.
This can easily be attributed to the variation in
the corresponding sample data. Consequently,
more number of experiments were conducted at
the stress levels, which showed relatively smaller
Weibull slope. This is done in order to keep the
error factor within the acceptable limit. The fa-
tigue life is estimated from these minimum sam-
ples, represents the population life at 50 percent
probability and 90 percent confidence level with
a maximum of 2.4 percent error. Similarly, the
maximum error percentages in estimating the fa-
tigue life at typical probabilities and confidence
levels are shown in Table 6. The S-N curve ob-
tained from the curve fitting of the experimental
data for the A356.2-T6 is presented in Figure 6.

6 Summary and concluding remarks

The details of method of sample size determi-
nation to estimate the characteristic fatigue life
at the desired probability of survival confidence
level and maximum acceptable error have been
presented. The characteristic fatigue life of alloy
A356.2-T6 has been estimated by assuming a two
parameter weibull distribution model. Fatigue life
for all the samples has been obtained by conduct-
ing rotary bending fatigue test. Detailed proce-
dure for Weibull distribution including estimation
of error has been given. Weibull slopes have been
plotted to represent the variation in the sample
data at a particular stress level. Initially, a mini-
mum of three tests were conducted and calculated
the error of estimation using a stepwise statistical
procedure. Likewise tests were further conducted
at each of the stress levels until the error of esti-
mation converges to an acceptable level. The per-
centage of error is increasing with increase of per-
cent of probability and confidence level for a par-
ticular stress level. Details of development of S-N
curve for aluminum alloy A356.2-T6 have been
explained. From the study, it is concluded that the
estimated fatigue life is reliable and the sample
size considered is adequate.
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Figure 5: Fatigue life vs unreliability

Figure 6: S-N curve of A356.2 material
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Table 6: Percentage of error at various Probability and C.L

C.L=90% C.L=95% C.L=97.5%
Stress level % p φw Kw Rw Kw Rw Kw Rw

88 Mpa (n=8)
50 0.015 0.672 0.01 0.885 0.013 1.093 0.016
90 0.015 1.171 0.017 1.189 0.018 1.721 0.026
95 0.015 1.489 0.022 2.103 0.031 1.992 0.03

117 Mpa (n=8)
50 0.022 0.672 0.015 0.885 0.019 1.093 0.024
90 0.021 1.171 0.024 1.189 0.025 1.721 0.036
95 0.021 1.489 0.031 2.103 0.044 1.992 0.042

146 Mpa (n=8)
50 0.028 0.672 0.019 0.885 0.025 1.093 0.031
90 0.027 1.171 0.032 1.189 0.032 1.721 0.046
95 0.027 1.489 0.04 2.103 0.057 1.992 0.054

176 Mpa (n=7)
50 0.031 0.798 0.024 0.989 0.031 1.231 0.038
90 0.030 1.434 0.043 1.333 0.04 1.886 0.056
95 0.030 1.672 0.05 2.491 0.075 2.109 0.063

205 Mpa (n=7)
50 0.021 0.798 0.017 0.989 0.021 1.231 0.026
90 0.02 1.434 0.029 1.333 0.027 1.886 0.038
95 0.02 1.672 0.033 2.491 0.05 2.109 0.042

234 Mpa (n=5)
50 0.005 1.015 0.005 1.38 0.007 1.767 0.009
90 0.005 1.928 0.01 1.869 0.009 2.615 0.013
95 0.005 2.64 0.013 3.242 0.016 2.852 0.014
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