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FE Analysis of a Notched Cylinder under Multiaxial Cyclic Loading Using
the Multilayer Model of Besseling
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Abstract: This paper presents an elastic-plastic
finite element analysis of a circumferentially
notched cylinder subjected to multiaxial non-
proportional fatigue loading. Two different load
combinations are investigated: (1) constant ten-
sion with cyclic torsion and (2) constant torsion
with cyclic tension. The multilayer plasticity
model of Besseling in conjunction with the von
Mises yield criterion is applied to describe the
elastic-plastic material behaviour. The paramet-
rical study contains a coarse and a fine finite ele-
ment mesh with and without mid-nodes as well
as three different types of multilinear approxi-
mations of the material law, namely, a twenty-
segments, a five-segments and a three-segments
one. The comparison between the present nu-
merical results and those from previous works
obtained from Prager-Ziegler’s bilinear material
model shows an improved accuracy of the numer-
ical modelling. By using the numerical results,
the basic relations between the applied loads and
the local stress-strain responses at the notch-root
are analyzed.

Keywords: Notched cylinder, Multiaxial fa-
tigue; Finite element method, Elastic-plastic anal-
ysis, Multilayer plasticity model.

1 Introduction

Geometrical discontinuities, such as notches exist
in many engineering components and structures
due to special functional and design requirements.
These geometrical irregularities may cause sig-
nificant stress concentrations at the notch-root.
Such stress concentrations often result in the de-
velopment of intense plastic deformations at the
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notch-root, and hence induce an early crack ini-
tiation under service loading conditions. At the
notch-root of an engineering component, a multi-
axial stress-strain state exists in general even if the
component is subjected to a uniaxial cyclic load-
ing. A realistic and reliable fatigue-life prediction
model should take both the stress-strain concen-
trations and the local multiaxiality at the notch-
root into account.

To develop a life prediction model, the basic local
stress-strain relations and the damage evolution
process at the notch-root should be well under-
stood. In previous works of Savaidis, Savaidis and
Zhang (2001) and Savaidis, Savaidis and Zhang
(2002) some basic investigations using the kine-
matic hardening rule of Prager (1955) and Ziegler
(1959) in conjunction with the von Mises yield
criterion, see von Mises (1913), have been per-
formed. The Prager-Ziegler’s kinematic hard-
ening rule is capable to describe linear material
hardening in a reliable way. Due to its simplic-
ity, it is implemented in many commercial fi-
nite element programs. However, neither the ma-
terial cyclic stress-strain curve nor the hystere-
sis loops can be described adequately by a lin-
ear hardening rule, see Lemaitre and Chaboche
(1990). In this case, the stress-strain responses
under fatigue loading may not be accurately mod-
eled, which could lead consequently to unreliable
material damage estimations. Such situations may
occur for instance in low-cycle fatigue where high
plastic strains are introduced, or in fatigue loading
with variable amplitudes where a linear kinematic
hardening model is not capable to provide a real-
istic transposition of the yield surface within the
whole stress spectrum.

To overcome the abovementioned drawbacks,
several improvements have been proposed during
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the last decades. Some of the improved mod-
els aimed at providing a satisfactory represen-
tation of the stress-strain material responses on
smooth specimens, see e.g. Hassan and Kiri-
akides (1994), while others incorporated the pres-
ence of structural discontinuities such as notches
to the stress-strain responses in the critical re-
gion of the structures, see e.g. Hoffmann and
Seeger (1985) and Köttgen and Seeger (1993).
For a better approximation of the nonlinear stress-
strain responses, several multisurface models
or multilayer (overlay) models have been pro-
posed in literature, e.g. Mroz (1967), Bessel-
ing (1958), Iwan (1966), Iwan (1967), Owen,
Prakash and Zienkiewicz (1974), Pande, Owen
and Zienkiewicz (1977), Chiang and Beck (1994),
Schiffner (1995) and Yoon, Hong and Lee (2004).
Logically, a nonlinear stress-strain curve can be
approximated more accurately by means of multi-
segments instead of only two segments.

Within the framework of the finite element
method, a material model describing accurately
cyclic plasticity is indispensable. However, a uni-
versal material model has yet not been provided
for commercial FE codes. In this context, we
just mention the recent significant work of Her-
tel, Döring, Hoffmeyer, Seeger and Vormwald
(2005), who implemented the superior plastic-
ity model of Döring, Hoffmeyer, Seeger and
Vormwald (2003) for computing the stress-strain
responses under multiaxial non-proportional fa-
tigue loading into the commercial FE package
ABAQUS.

With this motivation in mind, the present work
takes a further step to the previous investiga-
tions of Savaidis, Savaidis and Zhang (2001) and
Savaidis, Savaidis and Zhang (2002) by incorpo-
rating an advanced and more efficient multilayer
plasticity model into the multiaxial fatigue analy-
sis of the notched cylinder problem. Special atten-
tion of the present analysis is devoted to achieve a
better understanding of the local mechanical re-
sponses at the notch-root under multiaxial non-
proportional fatigue loading, and to obtain quan-
titatively reliable numerical results.

With the abovementioned aims, a parametrical
study on a notched axisymmetric circular cylin-

der subjected to multiaxial non-proportional syn-
chronous cyclic loading is performed by means
of an elastic-plastic finite element method. The
multilinear or overlay plasticity model of Bessel-
ing and the von Mises yield criterion are applied
to describe the elastic-plastic material properties.
Two different loading combinations are investi-
gated: a) constant tension-compression combined
with cyclic torsion, and b) constant torsion super-
posed by cyclic tension-compression. Numerical
results for normal stress-normal strain and shear
stress-shear strain curves at the notch-root are pre-
sented and discussed. The influences of the finite
element mesh quality, i.e. the types and the size of
the elements used especially in the critical region
(notch-root), on the numerical results are inves-
tigated. Furthermore, the effects of the segment
number to approximate the material’s stress-strain
curve on the numerical results are analyzed and
discussed.

It should be noted here that the present work
does not incorporate comparisons with experi-
mental results, since such test results for the in-
vestigated shaft-notch geometry, material param-
eters and loading combinations cannot be found in
literature. Until now, only very few experimental
results for the stress-strain responses at mild notch
roots were reported in literature due to the fact
that it is very difficult to access the root of a sharp
notch and it requires quite complex test devices
for multiaxial nonproportional fatigue measure-
ments. As a future research subject, the authors
will conduct experimental verifications by com-
paring the present FE results and the measured
experimental data, which will be determined from
notched specimens as investigated in the present
work.

2 Problem formulation and governing equa-
tions

Let us consider an infinitely long and elastic-
plastic cylinder with a circumferential notch as
shown in Fig. 1.

The geometrical parameters of the cylinder under
investigation are summarized in Tab. 1.

A tensile force N and a torsional moment MT are
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Table 1: Geometrical parameters of the notched shaft

Shaft diameter Crucial diameter Notch depth Notch radius
D (mm) Di (mm) t (mm) ρ (mm)

140 70 35 3

D

ρ

Di

t

t

N

MT

N

MT

Figure 1: The infinite notched shaft

applied to the notched cylinder. For convenience,
the nominal tensile stress S and the nominal shear
stress T , instead of N and MT are used as external
loads in the analysis, which are related by

S =
N

π(Di/2)2 , T =
2MT

π(Di/2)3 (1)

where Di is the inner diameter of the notched
shaft. In general, the loading components S and
T are time dependent and can be written as

S(t) = Sm ±Sa · f (t), T (t) = Tm ±Ta ·g(t), (2)

where f (t) and g(t) are the normalized time func-
tions, Sm and Tm are the mean values, while Sa

and Ta are the amplitudes of the tensile and the
torsional loading components, respectively. The
loading components are regarded as synchronous
and non-proportional, when

f (t) = g(t), S(t)/T(t) �= const. (3)

Equation (3) implies that both loading compo-
nents should have the same phase and frequency,
while their mean values and/or amplitudes may
take different values. It should be noted here that
the important loading case to engineering appli-
cations of superposing a constant loading with a
variable cyclic loading component belongs to the
synchronous non-proportional loading combina-
tion.

In the present analysis a parametrical study of sev-
eral loading combinations is carried out. In the

first group of loading cases, static tensile loading
components are combined with cyclic torsional
ones. In the second loading group, various load-
ing cases with static torsional loading components
superposed by cyclic tensile loading components
are considered.

The notched cylinder satisfies the equilibrium
equations

σi j, j + fi = 0, (4)

where σi j denotes the stress components, fi the
body-force components, and a comma represents
partial derivatives with respect to x j. It is assumed
in the analysis that the deformation is small, i.e.,
the strain components εi j are related to the dis-
placement components ui by the following linear
kinematic relation

εi j =
1
2
(ui, j +u j,i). (5)

The elastic-plastic material properties of the
notched cylinder are described by the multilayer
or overlay plasticity model of Besseling. Accord-
ing to the multilayer plasticity model, the material
is assumed to be consisting of various overlays or
subelements. All the subelements are subjected
to the same total strain, but each subelement has
different yield strength. Each subelement exhibits
an elastic-perfectly plastic material behavior. Al-
though a simple stress-strain behavior is assumed
for each subelement, the multilayer model is able
to properly describe quite complex elastic-plastic
material behaviors such as the Bauschinger ef-
fect or the kinematic hardening. In the multilayer
model, each subelement has the same strain pat-
tern but different stress field (σi j)n. The overall
stresses are the weighted sum of the stresses in
the subelements

σi j =
N

∑
n=1

wn · (σi j)n, (6)
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where the weighting factor satisfies

N

∑
n=1

wn = 1, wn =
E −ET n

E − 1−2ν
3 ETn

−
n−1

∑
i

wi. (7)

In Eqs. (6) and (7), wn is the weighting factor
of the n-th subelement, N is the number of the
subelements, and ET n is the slope of the n-th seg-
ment of the uniaxial stress-strain curve of the ma-
terial.

According to ANSYS (2007), the yield stress for
each subelement is determined by

(σy)n =
1

2(1+ν)
[3Eεn − (1−2ν)σn] , (8)

where (εn,σn) is the n-th vertex of the multi-linear
uniaxial stress-strain curve. The total number of
subelements is equal to the number of vertexes
specified.

The von Mises yield criterion for each subelement
takes the following form

F = J′2 (σi j)−σy = 0, (9)

where the subscript n for the n-th subelement is
omitted here and in what follows for the sake of
brevity. In Eq. (9), J′2(σi j) is the second invariant
of the stress deviator

J′2(σi j) =
1
2

σ ′
i j ·σ ′

i j, (10)

where σ ′
i j is the stress deviator

σ ′
i j = σi j − 1

3
σkkδi j, (11)

and δi j denotes the Kronecker symbol.

The consistency condition during plastic loading
is given by

dF =
∂F
∂σi j

·dσi j = 0. (12)

The total strain increment is written as a sum of
an elastic part and a plastic part

dεi j = dεe
i j +dε p

i j. (13)

The elastic strain increment is determined by
Hooke’s law

dσi j = Ei jkldεe
kl, (14)

where Ei jkl is the elasticity tensor. The plastic
strain increment is determined by the flow or nor-
mality rule

dε p
i j = dλ · ∂F

∂σi j
, (15)

where dλ is the plastic multiplier. By using Eqs.
(12)-(15) the plastic multiplier dλ can be obtained
as

dλ =
(∂F/∂σi j) ·Ei jkl ·dεkl

(∂F/∂σpq) ·Epqrs · (∂F/∂σrs)
. (16)

Substitution of Eqs. (13), (15) and (16) into Eq.
(14) results in the following incremental constitu-
tive equations

dσi j = E∗
i jkldεkl, (17)

where the elastic-plastic tangent stiffness tensor
E∗

i jkl is given by

E∗
i jkl = Ei jkl −α

Mi jMkl

Mmn · (∂F/∂σmn)
, (18)

Mi j = Ei jmn · ∂F
∂σmn

, (19)

α =

{
0, F < 0 or F = 0 and dF < 0,

1, F = 0 and dF ≥ 0.
(20)

The von Mises yield criterion with the associated
flow rule as described afore is implemented in the
commercial FEM-package ANSYS, which is ap-
plied in the present analysis to compute the plas-

tic strain increment
(

Δε p
i j

)
n

for the n-th subele-

ment. The overall plastic strain increments are the
weighted sums of the plastic strain increments of
the subelements

Δε p
i j =

N

∑
n=1

wn ·
(

Δε p
i j

)
n
, (21)

where N is the total number of the subelements.

An Euler backward scheme is applied in the nu-
merical implementation. The current plastic strain
and the current elastic strain at the m-th iteration-
step are updated by means of the following equa-
tions(

ε p
i j

)m
=

(
ε p

i j

)m−1
+Δε p

i j, (22)
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(
εe

i j

)m =
(
ε tr

i j

)m −Δε p
i j, (23)

where the trial strain
(

ε tr
i j

)m
is defined as the total

strain minus the plastic strain from the previous
iteration-step

(
ε tr

i j

)m = (εi j)
m −

(
ε p

i j

)m−1
. (24)

3 Finite element discretization

A Cartesian coordinate system is introduced in
the analysis, where the Z-axis coincides with the
symmetry axis of the cylinder. The X- and Y -axes
are located on the plane of symmetry perpendicu-
lar to the Z-axis as shown in Fig. 2.

Figure 2: Finite element discretization and notch
root mesh detail

In the pure linear elastic case for multiaxial ten-
sile and torsional loading combination, an equiv-
alent stress concentration factor Keq is defined by
Savaidis (2002) to describe the local stress con-
centration at the notch-root

Keq =

√
(1−ae −a2

e)(KS
t )2 +3(T

S )2(KT
t )2

1+3(T
S )2

, (25)

or

Keq =
σeq

Seq
, (26)

KS
t =

σZ

S
, KT

t =
τZY

T
, (27)

S=
eq

√
S2 +3T 2, ae =

σY

σZ
. (28)

In Eqs. (25)-(28), Keq represents the ratio be-
tween the local equivalent elastic stress σeq and
the equivalent nominal stress Seq. For the present
geometry the stress concentration factors KS

t =
3.69 for pure tension and KT

t = 2.01 for pure tor-
sion are obtained according to Peterson (1974).

In this paper, detailed finite element analyses are
performed for two types of finite element dis-
cretization, both concerning the circumferentially
notched shaft as shown in Fig. 1. Firstly, a coarse
FE mesh with 1380 elements and 6077 nodes
(consisting of thirty circular segments, each hav-
ing an angle θ=12˚, see detail (a) in Fig. 3) is
applied. A finer FE discretization of the same ge-
ometry with 5760 elements and 23669 nodes is
then used in the second investigation (see detail
(b) in Fig. 3). The finer FE mesh consists of forty
circular segments, each having an angle θ=9˚. A
section of the shaft on the XZ plane is shown in
Fig. 3 for the coarse and the finer FE discretiza-
tion. The accuracy of the numerical results and
the required computing time are discussed in the
following.

In the nonlinear FE analysis a full Newton-
Raphson procedure according to Bathe (1996)
for all degrees of freedom is applied. 3-D solid
elements with 20-nodes and 14 Gaussian inte-
gration points are used in all numerical calcula-
tions presented here. Integration procedures at the
Gaussian points and a subsequent extrapolation to
the nodes of the investigated notch-elements have
been applied for the evaluation of the local stress-
strain responses at the notch-root.

Figure 3: (a) Coarse and (b) fine finite element
meshes
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Aluminum alloy Al5083 is considered in all nu-
merical investigations. Uniaxial low-cycle and
high-cycle fully-reversed fatigue tests on smooth
specimens have been performed by Savaidis
(1995) to determine the cyclic stress-strain curve
of the material. The fatigue tests were accom-
plished until visible small cracks with lengths of
0.5mm were initiated at the surfaces of the speci-
mens, or at least a stabilized condition i.e., a prac-
tically unchanging stress value during the strain-
controlled loading, was reached.

The cyclic hardening coefficient K′ and the cyclic
hardening exponent n′ have been evaluated for the
analytical description of the stabilized stress–stain
curve according to the well-known material law of
Ramberg and Osgood (1943)

εα =
σα

E
+

(σα

K′
) 1

n′
, (29)

where εα and σα correspond to the amplitudes
of the stabilized normal strain and normal stress
values, respectively. The values of K′ and n
determined by means of statistical analyses of
the experimental results are K′=544 N/mm2 and
n′=0.075. The experimentally determined elas-
tic modulus E and Poisson’s ratio ν are given by
E=68000 N/mm2 and ν=0.32, respectively.

4 Loading cases

To examine the influences of the loading am-
plitude and the mean load on the local stress-
strain behaviour at the notch-root, several multi-
axial synchronous loading cases are investigated.
They can be divided into two groups, which are
described in the following.

4.1 Loading group 1: Constant tension com-
bined with cyclic torsion

Six combinations (loading cases L1 to L6) of
constant tension and cyclic fully reversed torsion
(Rτ = Tmin/Tmax = -1) with constant amplitudes
are first investigated. Fig. 4 shows a schematic
representation of the loading type, while Tab. 2
contains the values of the individual loading com-
ponents.

For convenience, the ratio c = Sm/Ta of the con-
stant nominal normal stress Sm to the nominal

Tmax 

Tmin 

Sm

t

S, T

Figure 4: Schematic representation of a constant
tensile and a cyclic torsional loading component

Smax 

Smin

Tm

t

S, T

Figure 5: Schematic representation of a cyclic
tensile and a constant torsional loading compo-
nent

shear stress amplitude Ta is used to describe the
loading combination. The values of Sm and Ta are
chosen in such a way that a wide range of c-values
(c=0 to c=10) can be covered, whereas the nomi-
nal equivalent stress Seq is kept constant and larger
than the value of the material’s yield stress σy.

At the beginning of the loading, the tensile com-
ponent in loading cases L1 to L6 increases lin-
early with increasing time, while the torsional
component is kept to be zero. After reaching the
maximum value of the tensile loading component,
the cyclic torsional loading component takes its
action (see Fig. 4).

4.2 Loading group 2: Constant torsion com-
bined with cyclic tension

Four combinations (loading cases L7 to L10) of
constant torsion and cyclic fully reversed tension-
compression with constant amplitudes (Rσ =
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Table 2: Constant tension - cyclic torsion loading cases

No c Sm N/mm2 Ta N/mm2 Rτ Seq N/mm2

L1 0 0 225.63 -1 390.8
L2 0.623 132.26 212.31 -1 390.8
L3 1.000 195.40 195.40 -1 390.8
L4 1.605 265.62 165.49 -1 390.8
L5 5.000 369.27 73.85 -1 390.8
L6 10.00 385.07 38.50 -1 390.8

Smin/Smax = -1) are investigated. A schematic rep-
resentation of this loading type is shown in Fig.
5, while the details of the loading components are
summarized in Tab. 3.

Here, the ratio d = Tm/Sa of the constant nominal
shear stress Tm and the nominal normal stress am-
plitude Sa is introduced as a characteristic loading
parameter. The values of Tm and Sa are chosen in
such a way that the range of d = 0 to d = 10 is
covered, while the nominal equivalent stress Seq

is taken to be constant.

At the beginning of loading cases L7 to L10, the
torsional component increases linearly with in-
creasing time, while the tensile component is kept
to be zero. After the torsional loading compo-
nent reached its maximum value, the cyclic tensile
loading component starts with its action.

It should be mentioned that severe tensile and tor-
sional loading cases are investigated, resulting in
excessive plastic strain values especially at the
notch-root. However, some of the loading levels
are taken intentionally extremely high (compared
to the real in-service loading situations) in order
to clearly reveal the multiaxial plastic material be-
havior and to gain more reliable conclusions.

5 Numerical results and discussion

The obtained numerical results are presented as
normal stress-normal strain and shear stress-shear
strain diagrams at the failure-critical notch-root.
For clarity of the presentation, each loading case
is specified by an abbreviated notation like F20-
L4. Here, the first letter refers to the mesh type
(“F” for a fine FE mesh and “C” for a coarse
mesh). If no mid-nodes in the used elements are
introduced in the numerical calculations, then a

letter “N” follows. The following number (e.g.
20, 5 or 3) refers to the number of segments
used in the multilinear approximation (e.g. 20
for 20-segments, 5 for 5-segments or 3 for 3-
segments approximation of the nonlinear stress-
strain curve, respectively). The last part of the
abbreviated notation refers to the loading case as
described in the last section (e.g., L1 to L10).

5.1 Local stress-strain relations at the notch-
root

5.1.1 Loading group 1: Constant tension com-
bined with cyclic torsion

As a representative example for the loading com-
bination consisting of a constant tension and a
cyclic torsion, the stress-strain relations at the
notch-root are presented in Fig. 6 for the loading
case L4. A fine FE mesh and 20-segments for the
nonlinear elastic-plastic stress-strain curve of the
material are applied in the numerical calculations.

Fig. 6a represents a typical cyclic τyz − γyz-path
for cyclic torsion superimposed by constant ten-
sion. The shear stress-strain curve shows a kind
of “structural” hardening behavior. It should be
remarked here that this “structural” hardening
phenomenon differs from the well known cyclic
hardening or ratcheting behavior that occurs un-
der general non-proportional loading conditions
and which cannot be described by the multilayer
model of Besseling. A comprehensive discussion
and further references dealing with the capability
and the failure of Besseling’s model to describe
the cyclic hardening behavior have been given by
Rother (2005). The stabilized hysteresis of the
cyclic shear stress-strain curve is established after
a few loading cycles. In addition, the stabilized
hysteresis obeys the so-called Masing behavior,
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Table 3: Monotonic torsion - cyclic tension-compression loading cases

No d Tm N/mm2 Sa N/mm2 Rσ Seq N/mm2

L7 0 0 390.80 -1 390.8
L8 0.623 65.49 265.63 -1 390.8
L9 1.000 195.40 195.40 -1 390.8
L10 10.00 225.25 22.52 -1 390.8
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Figure 6: Stabilization procedures of (a) the τyz−γyz path and (b) the σz−εz path corresponding to load case
L4

see Masing (1926).

The corresponding σz − εz-path presented in Fig.
6b shows a typical elastic-plastic material behav-
ior corresponding to the material law as long as
the tensile loading component is acting alone. Af-
ter the onset of the torsional loading component,
the σz − εz curve depicts a diminishing behavior,
i.e. the local stress σz decreases with increasing
strain εz. The decrease of the stress component σz

is a consequence of the applied von Mises yield
criterion. Since the equivalent yield stress for a
given material remains constant independent of
the uniaxial or the multiaxial stress state, the σz-
component has to be decreased in the presence of
an additional shear stress component τyz.

Since stabilized cyclic shear stress-strain curves
can be obtained after few loading cycles, they are
the most important part for the evolution of fa-
tigue damage and the prediction of the fatigue life
of notched structures. The influences of the ra-
tio c = Sm/Ta on the stabilized local shear stress-
strain curves at the notch-root are shown in Fig.
7. Here it can be recognized that the magnitude

of the ratio c affects directly the extension of the
cyclic plastic deformation. The τyz − γyz-curves
presented in Fig. 7 show that a gradual increase
of the loading parameter c (from L1 to L6) results
in a reduction of the stabilized shear stress-shear
strain hysteresis loop.

5.1.2 5.1.2 Loading group 2: Constant torsion
combined with cyclic tension

As a representative example for the loading com-
bination of a constant torsion and a cyclic tension,
Fig. 8 shows the stress-strain curves at the notch-
root for the loading case L8. Also here, a fine
FE mesh and 20-segments for approximating the
nonlinear elastic-plastic stress-strain curve of the
material are used in the numerical calculations.

Figure 8a shows a typical cyclic σz −εz-curve for
constant torsion and cyclic tension. It exhibits a
structural hardening behavior. The stabilized hys-
teresis of the cyclic normal stress-normal strain
curve is established after a few loading cycles.
The stabilized hysteresis obeys the Masing behav-
ior.
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Figure 7: Influence of the c-parameter on the formation of the hysteresis loops for the load cases L1 to L6
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Figure 8: Stabilized (a) σz −εz - curve and (b) τyz − γyz - curve for load case L8

The corresponding τyz − γyz-path is presented in
Fig. 8b, which shows an elastic-plastic material
behavior corresponding to the material law when
the torsional loading component is acting alone.
After the onset of the tensile loading component,
the τyz − γyz-curve depicts a softening behavior,
i.e. the local shear stress τyz decreases with in-
creasing shear strain γyz.

Similar to Fig. 7 for constant tension and cyclic
torsion, a gradual increase of the loading parame-
ter d = Tm/Sa causes a reduction in the extent of
the stabilized normal stress-normal strain hystere-
sis loop, as can be seen in Fig. 9.

5.2 Effect of the FE meshes

To investigate the effects of the used FE-meshes
on the numerical results for the normal stress-

normal strain and shear stress-shear strain curves
at the notch-root, two different meshes with a
coarse and a fine meshing near the notch- root are
investigated, and the results are presented and dis-
cussed in the following. In addition, the influence
of the introduction of mid-nodes is also investi-
gated in conjunction with the fine mesh.

In Fig. 10, the σz − εz-curves corresponding to
the load case L6, for the fine mesh (F) and the
coarse mesh (C) are presented. In addition, the
numerical results for the same load case but with-
out mid-nodes (N) in the finite elements are also
given in Fig. 10. All results are obtained using 20
segments for approximating the material’s stress-
strain curve.

Fig. 10 shows that the mesh refinement has a con-
siderable effect on the computed local stress σz
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Figure 9: Influence of the d-parameter on the for-
mation of the hysteresis loops for the load cases
L7 to L10

Figure 10: Influence of mesh refinement and mid-
node application on the σz−εz - curve for the load
case L6

and local strain εz at the notch-root. The use of
the coarse mesh as presented here causes a radial
stress component σr at the notch-root element,
where no radial stress should appear theoretically.
This is, however, a pure numerical effect caused
by the stress extrapolation from the interior Gaus-
sian points to the element nodes. The influence of
this pure numerical effect on the local σz-εz-path
increases with increasing loading amplitude and
consequently the plastic deformations.

An increase of the integration points for a fixed
number of elements can lead to a significant re-
duction of the stress component σr. On the other
hand, for a fixed number of integration points, an
increase of the element number can also reduce
the stress component σr. Since the material yields
at the same equivalent stress value, the reduction
of σr leads to a smaller σz-value as shown in Fig.
10 comparing the curves resulting from the coarse

and the fine FE meshes.

To clarify the abovementioned effect, the stress
values obtained by using the coarse and the fine
FE meshes for the simple case of a pure static ten-
sile loading of the notched cylinder with a nomi-
nal tensile stress S=233 MPa are presented in Tab.
4. For this loading case, plastic strain occurs at
the notch-root.

Fig. 11 presents the distribution of the stress com-
ponent σr computed at the net section element-
nodes for a pure tension.

Figure 11: Distribution of the calculated σr values
along the y-axis of the net section of the shaft

Similar qualitative findings are reported by Jiang
(2004). Since the σr-distribution in the radial di-
rection possesses a large gradient from the axis of
symmetry to the notch-root, as shown in Fig. 11,
the extrapolation of the stress values from the in-
terior Gaussian points to the surface nodes on the
notch-root results in the presence of an erroneous
σr component. With increasing element size on
the shaft surface at the notch-root the extrapola-
tion error in the computation of the σr-value in-
creases. A significant reduction of the extrapola-
tion error in computing the radial stress compo-
nent σr at the notch-root can be obtained by im-
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Table 4: Influence of mesh refinement on the radial stress percentage relative to the axial stress

σz(N/mm2) σr(N/mm2) σr/σz σr (%)
Fine mesh 463.3 21.63 21.4 4.6

Coarse mesh 496.3 64.67 7.67 13

proving the meshing quality near the notch-root.

The influence of the element mid-nodes on the
numerical results can be quantified by compar-
ing the corresponding results obtained by the fine
mesh with and without mid-nodes as presented
in Fig. 10. Remarkable deviations between the
corresponding curves can be observed even at
small plastic deformations. The deviations in-
crease with increasing plastic deformations.

Figure 12 shows the stabilized σz − εz-hystereses
for the loading cases L7 and L8 determined by
means of the coarse mesh including mid-nodes
and the fine mesh with and without mid-nodes.
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Figure 12: Influence of mesh refinement and mid-
node application on the σz−εz state for load cases
L7 and L8
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Figure 13: Influence of mesh refinement and mid-
node application on the τyz − γyz state for the load
cases L1 to L6

Here, a constant torsional load acts simultane-
ously with a cyclic tensile load component. The
stabilized σz − εz-hystereses determined by the
coarse mesh show smaller plastic deformations
and higher stresses compared to the ones deter-
mined by the fine mesh. This is apparent for the
loading cases L7 and L8, where notable plastic
deformations arise.

Similar to the results for the loading group “con-
stant tension + cyclic torsion”, the differences be-
tween the results obtained by a coarse mesh and
a fine mesh are mainly due to a numerically er-
roneous σr-component at the notch-root. Since
σr and σz have the same sign, σr suppresses the
axial deformation, although σr does not produce
any radial plastic deformation at the notch-root
due to its low value. Accordingly, the mate-
rial at the notch-root in the model with a coarse
mesh behaves stiffer than in reality. With increas-
ing element number the value of the erroneous
σr-component decreases and its influence on the
σz − εz response becomes negligible. Here again,
when finite elements without mid-nodes are ap-
plied, the calculated σr-values become remark-
able and may influence the σz −εz-hysteresis sig-
nificantly. As shown in Fig. 12, the σz −εz-curves
obtained using elements without mid-nodes pos-
sess stiffer slopes, lower plastic deformations and
higher stresses compared to the ones with mid-
nodes. The results given in Figs. 10 and 12 point
out the significance of a fine meshing in the notch-
root area and the contribution of the element mid-
nodes to achieve accurate numerical results, espe-
cially when large plastic deformations arise at the
notch-root.

Figure 13 shows the stabilized τyz−γyz-hystereses
at the notch-root for the loading cases L1 to L6
(constant tension + cyclic torsion) determined by
means of various mesh types.

It can be observed that there are no significant in-
fluences of the coarse and fine meshes with mid-
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nodes on the computed results. In the loading
cases L4, L5 and L6, the influence of the mid-
nodes on the numerical results is negligible. Con-
trary to the notable contribution of the element
mid-nodes to the evaluated σz − εz-curves at the
notch-root, which is mainly caused by the numer-
ically erroneous radial stress component σr, the
τyz − γyz-curves are not significantly affected by
the mesh refinement and the application of the el-
ement mid-nodes, as can be concluded from the
numerical results shown in Fig. 13. This is due
to the smaller shear stress gradient and the larger
normal stress gradient in the notch-root area. To
confirm this fact, the distribution of the gradient
of the stress concentration factor under pure ten-
sion (S=80 MPa) and pure torsion (T =40 MPa)
along the notch-surface profile is shown in Fig.
14.

5.3 5.3 Influences of the segment number for
the stress-strain curve approximation

The influences of the segment number used for
the approximation of the stress-strain curve on the
computed stresses and strains at the notch-root are
investigated for three different segment numbers,
namely 3, 5 and 20 segments. The load cases L1
to L10 given in Tab. 2 and 3 are considered.

Figure 15 shows the stabilized τyz − γyz-curve ob-
tained from the coarse FE mesh with mid-nodes
for the load cases L9 and L10.

Significant deviations between the numerical re-
sults from the 3 segments and the 5 segments ap-
proximations can be observed. However, the devi-
ations of the numerical results determined by the
5 and the 20 segments approximations are of less
significance.

The corresponding σz −εz-hystereses for the load
cases L7, L9 and L10 are plotted in Fig. 16.

Noticeable discrepancies between the numerical
results obtained by the 3 and the 5 segments ap-
proximations are observed. On the other hand,
satisfactory agreement between the hystereses de-
termined with the 5 and the 20 segments approxi-
mations are obtained.

Similar conclusions can also be drawn for load
cases consisting of constant tensile and cyclic tor-

sional components. Figures 17 and 18 show some
selected σz − εz-curves and stabilized τyz − γyz-
hystereses, respectively. Here the numerical re-
sults show again that the discrepancies between
the 5 and the 20 segments approximations are
negligible, contrary to the notable discrepancies
between the 3 and the 5 segments approximations.

In general, the 3 segments approximation pro-
vides numerical results with a higher plastic
deformation in all loading cases considered,
whereas the differences in the computed stresses
are not significant. According to the present
study, stress-strain curve approximations with 5
to 20 segments are sufficient to yield qualitatively
and quantitatively satisfactory results.

An additional factor that should be taken into ac-
count is the computational effort of the differ-
ent stress-strain curve approximations, especially
in engineering applications with more complex
geometries than the one investigated here. Tab.
5 contains the required computing times for the
notched cylinder as percentages of the “most re-
liable” computation, i.e. the use of a fine mesh
including mid-nodes together with a 20 segments
approximation. For comparison purposes, the
computing time needed by the bilinear kinematic
hardening rule is also incorporated in Tab. 5.

It can be concluded from Tab. 5 that the com-
puting time without mid-nodes can be reduced
to approximately 1/3 of the time required by the
“most reliable” computation. In combination with
a coarse mesh, the computing time reduction may
reach even 21% of that of the “most reliable”
computation. This significant saving in comput-
ing time may be of practical interest especially
when pure torsional load components affect the
stress-strain response at the failure-critical loca-
tions of an engineering component. On the other
hand, the used segment number to approximate
the material’s stress-strain curve does not have
a worth-mentioning influence on the computing
time.
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Figure 14: (a) Fine mesh detail including mid-nodes, and (b) distributions of the KS
t and KT

t gradients along
the notch surface under pure tension and pure torsion, respectively
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Figure 15: Influence of the number of segments for
the approximation of the material law on the τyz − γyz

state for the load cases L9 and L10
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Figure 16: Influence of the number of seg-
ments for the approximation of the material
law on the σz − εz state for the load cases
L7, L9 and L10
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Figure 17: Influence of the number of segments
for the approximation of the material law on the
σz −εz state for the load cases L4 and L6
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Figure 18: Influence of the number of segments
for the approximation of the material law on the
τyz − γyz state for the load cases L1 and L3

5.4 Comparison of the numerical results from
the bilinear and the multilinear approxi-
mations

To compare the numerical results obtained by
the bilinear and the multilinear approximations,

two representative examples are considered here.
In the first example, a pure cyclic tension-
compression corresponding to the loading case L7
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Table 5: Relative computing time in (%) dependent on the number of finite elements and segments applied
for the approximation of the material law

Mid nodes applied Without mid nodes
Number of segments 20 5 3 2 20 5 3 2

Fine mesh 100 95 91 89 35 32 30 29
Coarse mesh 75 71 68 66 26 23 21 20
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Figure 19: Comparison of stress-strain hystere-
ses determined from the bilinear and the multi-
linear material law approximations for the load
case L7
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Figure 20: Comparison of σz − εz paths deter-
mined from the bilinear and the multilinear ma-
terial law approximations for the load case L2

is investigated. The stabilized stress-strain hys-
tereses at the notch-root of the cylinder, provided
by the bilinear Prager-Ziegler kinematic harden-
ing rule and the multilayer model of Besseling,
are presented in Fig. 19. In the application of
the multilayer model of Besseling, a multilinear
approximation of the cyclic stress-strain curve of
Al5083 is used.

Even in this simple case of uniaxial tension-
compression, where no shear stress affects the
stress-strain state at the notch-root, considerable
deviations in the normal stress-normal strain re-
lation can be recognized. The bilinear approx-
imation gives rise to a larger peak stress, while
the multilinear approximation yields a larger peak
strain.

In the second example, a constant tension su-
perimposed by a cyclic torsion corresponding to
the loading case L2 is investigated. The normal
stress-normal strain paths obtained by the bilinear
and the multilinear approximations are shown in
Fig. 20. Here again, the bilinear approximation

leads to a higher peak stress, while the multilinear
approximation yields a larger plastic strain at the
notch-root. This implies that the bilinear approx-
imation gives rise to a stiffer material response at
the notch-root than the multilinear one.

6 Conclusions

This paper presents an elastic-plastic FE analysis
of a circumferentially notched cylinder subjected
to synchronous non-proportional multiaxial fa-
tigue loading consisting of constant and cyclic
loading components. The multilayer or overlay
model of Besseling in conjunction with the von
Mises yield criterion is applied to describe the
elastic-plastic material behavior. The following
conclusions can be drawn:

• The stabilized hysteresis resulting from the
cyclic loading component is established af-
ter few loading cycles and shows the Masing
behavior.

• The stress-strain path resulting from the con-
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stant loading component possesses a soften-
ing effect.

• The quality of the FE mesh affects the ac-
curacy of the numerical results for the lo-
cal stresses and strains at the notch-root.
The use of a fine mesh with mid-nodes pro-
vides a satisfactory description of the stress-
strain state in the notch-root area. Although
the computing time required by a FE mesh
with mid-nodes may increase up to three
times of the time using the same mesh with-
out mid-nodes, it is necessary to use mid-
nodes in order to achieve sufficiently accu-
rate stress and strain results, especially when
normal stresses and/or large plastic defor-
mations arise at the notch-root. The influ-
ence of the mesh quality on the computed
stresses and strains at the notch-root is of less
significance for a mild notch as investigated
here. However, it is expected that the influ-
ence of the mesh refinement on the computed
stresses and strains for sharper notches with
more pronounced stress concentrations may
become crucial which needs further investi-
gations.

• The segment-number used to approximate
the elastic-plastic stress-strain curve of the
material has a substantial influence on the
numerical results of the local stresses and
strains at the notch-root. The present anal-
ysis confirms that five or more segments
are adequate to accurately compute the lo-
cal stress-strain responses at the notch-root.
The increase in the computing time by using
5 to 20 segments and a fine mesh with mid-
nodes remains below 10% of the time using
an unsatisfactory 3 segments approximation.

• The multilayer model of Besseling yields
a larger plastic strain, while the bilinear
kniematic hardening rule of Prager and
Ziegler results in a larger peak stress. It is
expected that the multilayer model of Bessel-
ing is more adequate to describe the nonlin-
ear elastic-plastic material behavior in gen-
eral cases.
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