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Sensitivity of Eigen Value to Damage and Its Identification
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Abstract: The reduction in natural frequen-
cies, however small, of a civil engineering struc-
ture, is the first and the easiest method of estimat-
ing its impending damage. As a first level screen-
ing for health-monitoring, information on the fre-
quency reduction of a few fundamental modes can
be used to estimate the positions and the magni-
tude of damage in a smeared fashion. The paper
presents the Eigen value sensitivity equations, de-
rived from first-order perturbation technique, for
typical infra-structural systems like a simply sup-
ported bridge girder, modelled as a beam, an end-
bearing pile, modelled as an axial rod and a sim-
ply supported plate as a continuum dynamic sys-
tem. A discrete structure, like a building frame is
solved for damage using Eigen-sensitivity derived
by a computational model. Lastly, neural network
based damage identification is also demonstrated
for a simply supported bridge beam, where the
known-pairs of damage-frequency vector is used
to train a neural network. The performance of
these methods under the influence of measure-
ment error is outlined. It is hoped that the de-
veloped method could be integrated in a typical
infra-structural management program, such that
magnitudes of damage and their positions can be
obtained using acquired natural frequencies, syn-
thesised from the excited/ambient vibration signa-
tures.
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1 Introduction

A structural member can suffer varying degrees
of damage due to reasons such as over loading,
environmental ageing, corrosion, poor quality of
construction, fatigue induced crack growth under
cyclic loading, creep etc. Damage is an effect due
to those causative factors and this manifest in the
form of elongated and widened cracks, increased
and residual deflections, loss of stiffness and in-
creased time periods and damping. On many oc-
casions it is required to take decisions regarding
the repair and improvement of the damaged struc-
ture. The viability of repair has to be weighed
with the cost of new replacement and this is gov-
erned by the state of damage suffered by the struc-
ture. Estimation of the magnitude of damage,
location and its spread thus plays a crucial role
in the repair methodology to be adopted. Also,
residual strength and remaining life depends on
the magnitude and position of damage. A struc-
ture is deemed to have been damaged if the struc-
ture, after un-loading could not return to its orig-
inal state and there is a permanent deformation
with loss of energy. Damage is defined, as per
International Standards Organisation, as an un-
favourable change in the condition of a structure
that can affect the structural performance.

2 Damage Classifications

Damage indicators can be local or global. Lo-
calized damage indicators are better for giving a
good picture of damage, whereas global indica-
tors like frequencies, deflection etc are relatively
less sensitive to local damage but are easier to
measure. Also, it is seen that all the global dam-
age indicators are essentially stiffness based. The
problem in accurately defining damage essentially
arises due to the fact that stiffness and strength are
not linearly correlated. The stiffness and strength
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pair have definitely a correlation, but it is non-
linear. At this stage it is also required to make a
differentiation between concentrated damage and
distributed damage. The damage undergone by a
reinforced concrete bridge due to the effect of ve-
hicle movement may be of distributed damage and
a fatigue crack growth occurring on a steel plate
may be a concentrated damage. For example in
the case of a fatigue failure of a beam due to a cen-
tral notch and subjected to cyclic loading, loss of
stiffness (load per unit deflection) is minimal un-
til just before the failure. It can be surmised that
the correlation between the stiffness and damage
is better for a distributed damage rather than for a
concentrated damage.

Research in the area of damage detection and
identification through changes in the fundamen-
tal frequencies and modal parameters of a struc-
ture saw a quantum jump during late eighties and
early nineties. A comprehensive survey is pre-
sented by Doebling et al. (1996), who have re-
viewed the numerous technical literatures avail-
able on damage detection through vibration test-
ing. Series of experiments and analytical predic-
tions conducted by Swamidas and his colleagues
and students hold a considerable bench-mark data
for future researchers (Owolobi et. al. (2003),
Yang et. al (2001)). Lakshmanan et. al. (1991),
Rajagopalan et. al. (1996, 1999) have correlated
the cracking and yielding stiffness of the normal
and fibre reinforced concrete beams, under var-
ious stages of pre-loading with the fundamental
frequencies. A method is outlined such that from
frequency measurements, maximum load carried
by the bridge in its life time could be estimated.
Hassiotis and Jeong (1993), Hassiotis (2000) out-
lines a method based on first order perturbation
and optimization theory to compute the damage
from measured natural frequencies.

Identification of damage locations in plate-like
structures using strain modal approach is pro-
posed by Li, et. al. (2002), using bending moment
index and residual strain mode shape index. A
combined static and dynamic approach for dam-
age identification using curvature mode shape and
strain frequency response function is proposed by
Yam et. al. (2002). Perturbation theory enhanced

finite element method is used to train the artificial
neural network, using damage response towards
identification by Yu et. al. (2007). A damage
identification theory, based on continuum dam-
age mechanics and the damage modelled as ef-
fective orthotropic elastic stiffness is formulated
and verified from the forced vibration response
of a damaged plate. (Lee et. al. (2003)). Non-
linear elastic wave spectroscopy is used for the
damage identification of composite plates by Meo
and Zumpano (2005). Sensitivity of orhogonal-
ity conditions of the mode shapes is used by San-
tos, et. al. (2000) for the damage identification
of composite plates. An equation error approach
is developed and tested for a coupled beam and
plate system by Roy et. al. (2006). Damage
identification of plate structures using changes in
modal compliances is proposed by Choi et. al.
(2005). Frequency shifts for the first few funda-
mental modes is used to generate the Fourier co-
efficients of stiffness variation caused by damage,
in a rod and beam element by Morassi (2007). A
statistical damage identification algorithm based
on perturbation method with a two stage model
updating is used in damage detection in the pres-
ence of Gaussian noise by Xia and Hao (2003).
A residual-force concept in conjunction with ma-
trix condensation approach is used in the dam-
age identification of a cantilever and a ten-storied
steel frame by Ge and Lui (2005). Spatial wavelet
transforms are used to identify the damages in a
rod subjected to forced vibrations by Castro et. al.
(2000). Global structural force-deformation re-
sponse and averaged local experimental informa-
tion is used to create a well-conditioned inverse
problem for damage identification by Iacono et.
al. (2006). Liu and Yang (2006) propose a novel
three-step (number of damaged elements, localis-
ing and quantification) approach for damage iden-
tification, validated by a planar truss. The system
matrices of a frame element are decomposed into
their static eigen values and vectors and their in-
spection is used to derive the damages by Wu Di
and Law (2007).
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3 Effect of Damage on the Natural Frequen-
cies

In the study damage is modeled as a reduction in
the flexural rigidity (EI or D or AE) of a few ele-
ments. (Fig. 1 to Fig. 3). α is taken as the ratio
of the reduced EI to original EI. The location of
damage is the position of the center of damage
from one end of the beam (lo). This is normal-
ized with reference to the span of the beam (l) .
Similarly extent of damage (2bo) is also normal-
ized with reference to the length. The parameters
that control the natural frequencies of the simply
supported beam with a single damage location is
given as,

fn,d = F(�0,2b0, �,E, I,ρ ,A,α) (1)

where, fn,d is the damaged frequency of the beam
at the ‘n-th’ mode. l = Span of the Beam. l0 =
Location of Centre of Damage. 2b0 = Extent of
length of damage EI = Flexural Rigidity of Beam.
A = Area of Beam. ρ = Mass Density of the
Beam. ∝ = Ratio of reduced EI to the original
un-damaged EI.

After suitably grouping the parameters into non-
dimensional form, it is possible to write the equa-
tion as,

δn = 1−
(

fn,d

fn,ud

)2

= F1(
�0

�
,

2b0

�
,β ) (2)

where, β = (1−α).

In the case of a plate, the equation is written as,

δn = 1−
(

fn,d

fn,ud

)2

= F2(
�0x

�
,
�0y

�
,
2b0x

�
,

2b0y

�
,β )

(3)

∝ = Ratio of reduced flexural rigidity Dd to the
original un-damaged D.

D =
E · t3

12(1−μ2)
(4)

The parameters in the above equation used for
defining the damage for a simply supported plate
structure is as follows: lx, ly = Span of the plate
in X and Y directions. lox, loy = Location of Cen-
tre of Damage in X and Y directions. 2box, 2boy

= Extent of damage in X and Y-directions. D =
Flexural Rigidity of plate. M = Total mass of the
plate. ρ = Mass Density of the plate. β = magni-
tude of damage. n, m = mode numbers in x and
y-direction. f = natural frequency in cycle/sec.

In the case of an axial rod,

δn = 1−
(

fn,d

fn,ud

)2

= F1(
�0

�
,

2b0

�
,β ) (5)

∝ = Ratio of reduced AE to the original un-
damaged AE.

It is seen from the above equation that the change
in the ratio of the damaged and undamaged Eigen
values (square of natural frequencies), which con-
stitute the RHS of equations is a function of the
normalized position of damage, �0

� , normalized
extent of damage 2b0

� and the change in the ratio
of damaged EI (D or AE) with reference to the
original EI (β ). It is seen that, if the LHS is zero,
no damage has occurred to the system, which also
implies that β = 0. Similarly, if LHS is 1.0, dam-

age is full and β = 1. 1−
(

fn,d

fn,ud

)2
is analogous to

the global damage and β is analogous to the local
damage.

4 Estimation of natural frequency reduction
for a known damage

For the condition of a damaged structure, wherein
the mass matrix does not undergo any change
from the original matrix, it is possible to derive
the equation for the changed Eigen values and
vectors from the first-order perturbation technique
:

λi = λ (0)
i + p(0)T

i K1 p(0)
i

pi = p(0)
i +

n

∑
r=1
r �=i

(
p(0)T

r K1 p(0)
i

λ (0)
i −λ (0)

r

)
.p(0)

r
(6)

λi,λ (0)
i : Post and Pre damage i-th Eigen values,

pi, p(0)
i : Post and Pre damage i-th Eigen vectors,

K1: Perturbation content of the stiffness matrix
(Sparse).

From the above expressions, it can be noted that
only the ith un-perturbed parameters enter into the
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Figure 1: A Simply Supported Beam with a reduced EI for portion of its length
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Figure 2: A thin rectangular simply supported plate with a Discrete Defect

calculations of perturbed Eigen values, whereas
the complete un-perturbed Eigen solution is re-
quired for the computation of perturbed Eigen
vectors. The insights from the above equation is
that : The change in Eigen value due to a damage
is equivalent to twice the strain energy release in
the damaged zone, under the action of an ortho-
normalised displacement profile.

l0

2b0 l

αAE

Figure 3: An Axial Bar Element Supported at One
End, with a Discrete Defect

5 Simply supported Beam

5.1 Forward Problem

For a continuous system, the matrix equation,
mentioned earlier can be modified as,

Δω2 =

l0+b0∫
l0−b0

β .EI.
(

∂2y
∂x2

)2
dx

l∫
0

my2dx

(7)

where yn(x) = sin
(πnx

l

)
is the mode shape corre-

sponding to the un-damaged state. Simplifying,
the following expression for the normalized natu-
ral frequency is obtained for the damaged simply
supported beam.

(
ωd

ωud

)
n
=√

1−2β
[

b0

�
− 1

2nπ
(cos

2nπ�0

�
. sin

2nπb0

�
)
]
(8)
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Figure 4: Comparison of Perturbation Analysis with Rigorous Analysis (Beta = 0.1)
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Fig-4 shows a comparison of δn as predicted by
the perturbation equation derived above, vis-à-vis
the actual values, for β =0.1. From similar fig-
ures, drawn for higher β values, (not given in this
paper), It can be noticed that up to 25% dam-
age, both the results are identical. Between 25%
to 30% tolerable deviation is seen. But for 40%
damage and above, the perturbation values are
less than rigorous analysis values. Hence it can be
concluded that the first order perturbation equa-
tion is valid up to 30% damage.

5.2 Simply supported Beam – Inverse Problem

Inverse problem is the one in which the measured
frequencies and mode shapes are used to compute
the damage magnitude and the position of dam-
age. As frequencies of a bridge can be measured,
with relative ease, a method is developed such that
damage could be predicted from the changes in
measured frequencies alone.

For a multiple damage scenario, Equation – 8 in
is modified and written as,

1−
(

ωd

ωud

)2

n
=

∑β j

[
2b0, j

�
− 1

nπ
(cos

2nπ�0, j

�
. sin

2nπb0, j

�
)
]
(9)

In the above equation, β j is the reduction in EI
at the ‘j-th’ segment and the damage exists for a
length of 2b0, j and the distance to the mid-point
of this segment is l0, j. An equation like this can
be written for each measured frequency and there
will be ‘n’ equations corresponding to ‘n’ mea-
sured frequencies. The above equation can be
written in a matrix form in the following man-
ner and the information of damage could then be
obtained for as many locations as the number of
measured frequencies.

{ε}= [A]{β} (10)

εi = 1−
(ωd

ω

)2

i

Ai j =
2b0, j

l
− 1

iπ
(cos

2iπ l0, j

l
. sin

2iπb0, j

l
)

(11)

In the above equation ‘i’ is the variation for the
number of measured modes and ‘j’ is the varia-
tion of number of beam segments. A is the Eigen
sensitivity matrix.

Towards validating the above procedure, a numer-
ical exercise is carried out for a simply supported
beam, in which damage is introduced in the form
of reduced EI at ten equal segments (0.1l). Nat-
ural frequencies for the first five modes are com-
puted during the un-damaged state of the beam
and after inducing damage. This gives rise to LHS
of Equation (10), where the ratio of the change in
the Eigen values after occurrence of damage to
the original Eigen value is to be given. The sen-
sitivity matrix [A] is a function of the length and
mid-positions of segments. Using the information
and making use of symmetry, total numbers of un-
knowns are five and to evaluate these unknowns,
five equations are available. A program is writ-
ten, which takes the frequencies of the beam be-
fore and after damage. Using this input, the pro-
gram computes the damage on each of the beam
segment. The damage distribution is assumed as
symmetric.

Fig-5 shows the comparison of damages predicted
by the method vis-à-vis the actual damages. As
can be seen from these figures, a wide variation of
damage patterns are given and tested to evaluate
the efficiency of the developed method. It is sum-
marized that as in the forward problem, the in-
verse problem using perturbation analysis is able
to predict the damages well up to 40% of local
damage.

6 Simply supported Plate

6.1 Forward Problem

Strain energy function of the plate (Eqn. 12)
and its mode shapes are made use to derive the
changes in Eigen values of a simply supported
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Figure 5: Comparison of Damage Predicted by Perturbation Analysis with Actual Damage Values

thin plate

U =
D
2

∫ {(∂ 2ω
∂x2 +

∂ 2ω
∂y2

)2

−2(1−μ)

[
∂ 2ω
∂x2

· ∂ 2ω
∂y2

−
(

∂ 2ω
∂x.∂y

)2
]

dxdy

}
(12)

where, the mode shape corresponding to un-
damaged state is ωn(x,y) = sin nπx

� · sin mπy
� .

For a single damage case, Eigen value change is

written as,

Δ f 2 =
β .D

0.25M

{[
n2π2

�2
x

+
m2π2

�2
y

]2

C1

+

[
4(1−μ)

n2m2π4

�2
x · �2

y

]
C2

}
(13)

The C1 and C2 are given as,

C1 =
[

box − �x

2nπ

(
sin

2nπbox

�x
cos

2nπ�ox

�x

)]

×
[

boy− �y

2mπ

(
sin

2mπboy

�y
cos

2mπ�oy

�y

)]



124 Copyright © 2008 Tech Science Press SDHM, vol.4, no.3, pp.117-144, 2008

C2 =
[

box · �y

2mπ
sin

2mπboy

�y
cos

2mπ�oy

�y

]

+
[

boy · �x

2nπ
sin

2nπbox

�x
cos

2nπ�ox

�x

]
(14)

Flexural Rigidity D is , D = E·t3

12(1−μ2) .

For the case of a widespread, uniform reduction in
‘D’, substituting, b0y = l0y = ly/2; b0x = l0x = lx/2;
Equation for Eigen-value reduction is

Δ f 2 =
β .D

0.25M

[
n2π2

�2
x

+
m2π2

�2
y

]2
�x�y

4
(15)

The equation can be easily verified.

Validity of Equations – 13 & 14 is verified using
a finite element analysis (ANSYS -5.4) conducted
on a 6 m (x) × 4 m (y) X 50 mm simply supported
steel plate. The plate is subjected to quarter sym-
metric damage profiles with six divisions in X-
axis and four divisions in Y-axis. The position of
damage segments are shown in Fig. 6. β1, β2 , β3

are the damages along the X-edge and β1, β4 are
along Y-edge and β5, β6 are the interior values.
Six damage profiles are used in both forward and
inverse analysis. They are

Case-1: {β } = { 0.20; 0.05; 0.20; 0.05; 0.20;
0.05}

Case-2: {β } = { 0.10; 0.15; 0.17; 0.15; 0.20;
0.25}

Case-3: {β } = { 0.20; 0.10; 0.15; 0.10; 0.25;
0.30}

Case-4: {β } = { 0.25; 0.15; 0.20; 0.20; 0.30;
0.40}

Case-5: {β } = { 0.30; 0.10; 0.25; 0.15; 0.40;
0.50}

Case-6: {β } = { 0.20; 0.25; 0.50; 0.30; 0.40;
0.60}

Using Eqn. (13, 14) and further making use of
Eqns. (16) and (17), the frequencies of the plate
after damage are computed using ANSYS and the

comparison with perturbation equation is shown
in Tables -1 and -2.

fn,m = π2

[(
n
�x

)2

+
(

m
�y

)2
]√

D
m

(16)

f 2
d = f 2

ud −Δ f 2
d (17)

β1

Y

X

β2 β3

β4 β5 β6

Figure 6: A thin rectangular simply supported
plate with number of Damage Locations

6.2 Simply supported Plate – Inverse Problem

An equation like (10) can be written for each mea-
sured frequency and there will be ‘n’ equations
corresponding to ‘n’ measured sets of frequen-
cies. The Equation (10) can be written in a matrix
form in the following manner and the information
of damage could then be obtained for as many lo-
cations as the number of measured frequencies.

{ε}= [A]{β} εi = 1−
(

fd

fud

)2

i
= Δ f 2

d (18)

Re-generated damage values are:

Case-1: {β } = { 0.210; 0.054; 0.216; 0.061;
0.194; 0.050}

Case-2: {β } = { 0.102; 0.155; 0.179; 0.159;
0.196; 0.249}

Case-3: {β } = { 0.187; 0.115; 0.167; 0.118;
0.249; 0.303}

Case-4: {β } = { 0.285; 0.151; 0.251; 0.214;
0.272; 0.401}

Case-5: {β } = { 0.360; 0.110; 0.350; 0.200;
0.350; 0.490}
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Table 1: Comparison of Frequencies for Plate after damage

Set no: n m
Natural frequency( fd) Natural frequency( fd) Natural frequency( fd)

For case-1 For case-2 For case-3
Perturbation FEM Perturbation FEM Perturbation FEM

1 1 1 10.167 10.147 9.748 9.7394 9.551 9.5294
2 2 1 19.251 19.202 18.903 18.881 18.621 18.568
3 1 2 31.171 31.071 30.037 29.975 29.828 29.674
4 3 1 35.243 35.144 33.937 33.875 33.635 33.495
5 2 2 40.523 40.400 39.447 39.375 39.182 39.021
6 3 2 56.109 55.900 54.647 54.528 54.206 53.985

Table 2: Comparison of Frequencies of Plate after Damage

Set no: n M
Natural frequency( fd) Natural frequency( fd) Natural frequency( fd)

For case-4 For case-5 For case-6
Perturbation FEM Perturbation FEM Perturbation FEM

1 1 1 9.105 9.0691 8.716 8.6345 8.224 8.1234
2 2 1 17.865 17.799 17.232 17.045 16.330 16.065
3 1 2 28.560 28.312 27.595 27.028 25.007 24.491
4 3 1 32.084 31.941 31.214 30.780 29.147 28.770
5 2 2 37.621 37.418 36.816 36.261 34.476 33.829
6 3 2 51.946 51.515 50.779 49.711 47.420 45.828

Case-6: {β } = { 0.436; 0.220; 0.640; 0.340;
0.300; 0.560}

Figs 7.1 to 7.4 show the actual damage bar graphs
(Left) compared with predicted values (Right) for
case-1 to case-4).

7 Axial Rod Element

7.1 Forward Problem

The strain energy equation for axial element is
given by,

U =
1
2

�∫
0

AE

(
∂u
∂x

)2

·dx (19)

where, the mode shape is u(x) = sin(2k − 1)πx
2�

and corresponding to the initial un-damaged state.
The natural frequency for undamaged axial struc-
tural element is given by,

fud = (2k−1)
π
2

√
EA
M�

(20)

The reduction in Eigen values can be obtained as,

Δ f 2
d =

β AE(2k−1)2π2

4�(0.5M)

[
bo

�
+

1
(2k−1)π{

sin
(2k−1)πbo

�
· cos

(2k−1)π�o

�

}]
(21)

As before, for a widespread uniform reduction in
AE, substituting, l0= b0 = l/2 ,

Δ f 2
d =

β AE(2k−1)2π2

4�M
(22)

The ratio of Eigen value reduction is,

Δ f 2
d

f 2
ud

= 2β
[

bo

�
+

1
(2k−1)π{

sin
(2k−1)πbo

�
· cos

(2k−1)π�o

�

}]
(23)

A five-segment rod is taken for validation in the
forward problem. The damage positions and ex-
tent are kept as un-symmetric. A 5.0 m bearing
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Figure 7.1: Comparison of Damage Predicted by Perturbation Analysis with Actual Damage Values for
Case-1

Figure 7.2: Comparison of Damage Predicted by Perturbation Analysis with Actual Damage Values for
Case-2
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Figure 7.3: Comparison of Damage Predicted by Perturbation Analysis with Actual Damage Values for
Case-3

Figure 7.4: Comparison of Damage Predicted by Perturbation Analysis with Actual Damage Values for
Case-4
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pile with a 300 mm diameter is taken as a case
study.

Three length types chosen are, L1 = {0.5 , 0.75,
1.0, 1.25, 1.5m} , L2 = {0.8 , 0.9, 1.0, 1.1, 1.2m}
and L3 = {0.75, 1.0, 0.75, 1.0, 1.5m}. For each of
these length types four damage profiles are used
for verification. This include, D1 = { 0.10, 0.20,
0.0, 0.15, 0.05}, D2 = { 0.15, 0.25, 0.05, 0.20,
0.10}. D3 = { 0.30, 0.35, 0.15, 0.20, 0.10}, D4 =
{ 0.35, 0.40, 0.15, 0.25, 0.20}.

Tables 3 – 5 give the comparison of damaged fre-
quencies from perturbation equation and finite el-
ement analysis for length types L1, L2 and L3 re-
spectively.

Figures 8-9 show the variation in frequency re-
duction (for five modes) for three magnitudes of
damages, namely, 0.10 and 0.30 respectively. The
position and extent of damage is the dependent
variable in each graph.

7.2 Axial Rod Element – Inverse Problem

The methodology of the inverse problem for an
axial rod is essentially same as beam or plate. The
difference is that symmetry of damage cannot be
assumed. In the case of the sensitivity matrix for
the beam and plate, for equal-length of damage
segments, the matrix columns are mirror images.
The physical reason being that, identical damages
on equi-length segments, symmetric with refer-
ence to centre, produce same drop in frequencies.
Hence, if we do not make use of symmetry explic-
itly, the matrix is singular and cannot be solved.
Hence the sensitivity matrix is generated for only
one half of the beam (or one-quarter of plate) and
multiplied by two ( or four in the case of plates)
and made use of. In cases, where, there is no-
symmetry in damages, segments have to be un-
equal lengths and un-symmetric with reference to
the centre. Though not so explicit, the columns of
sensitivity matrix of the axial rod element, gener-
ated from quarter (odd-multiples of ) sine curves
are linearly dependent (half of them at least) and
un-symmetry of positions and extents have to be
adopted. It is better to fall back upon the engi-
neering judgement that more the damage, less will
be its length. Hence four different length types
are used in the inverse analysis for the axial rod.

Fig. 10 shows the length types used. The dam-
age patterns are similar as used in forward analy-
sis. Retrieved damages, as compared to the actual
damages are shown in Figs 11 to 13, for the three
length types.

8 Effect of Measurement Errors in Damage
Prediction

Any damage prediction work is in-complete un-
less the effect of errors on the measured signals
is investigated. There could be two sources of er-
rors in a bridge response and frequency computa-
tion using FFT (Fast Fourier Transform). Typical
medium span bridges have low frequencies rang-
ing from 3 to 5 Hz in the first flexural mode and
75-125 Hz in the fifth mode. Typically 16384 (214

in octave range) points could be easily acquired
either in ambient or in forced excitation modes.
This is equivalent to 6400 lines in frequency scale.
To capture up to 125 Hz, the frequency span could
be set as 200 Hz with an effective sampling rate of
2.56X200 : 512Hz. Thus the resulting frequency
resolution is 0.08 Hz. Hence the maximum error
possible is 0.04 Hz. For a 5 Hz system, this is
equivalent to an error of 1%. A still lower res-
olution is also achievable if FFT block could be
raised beyond 214 data points. However, in the
higher modes this error ratio may fall by more
than an order of magnitude. The second error
source is through reduced energy levels at higher
modes than compared to lower modes. Thus the
two error sources affect each mode differently and
in the present study a uniform error of 1% for all
modes are assumed.

The error vectors injected into the simulation is
(a) E1: uniform 1% rise in Eigen values (b) E2 :
uniform 1% drop (c) E3: An oscillating 1% (+1%,
-1% , +1%, -1%, +1%) and (d) E4 : another oscil-
lating 1% drop (-1%, +1%, -1% , +1%, -1%).

Many damage patterns are subjected to these er-
ror profiles and typically those, which show large
deviations are shown. Fig-14 shows the perfor-
mance of a simply supported beam under the in-
fluence of errors. Fig-15 and Fig-16 show the per-
formance of the axial rod element under the influ-
ence of errors. Similar curves for plates are in
Figs 17 and 18.



Sensitivity of Eigen Value to Damage and Its Identification 129

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

Mode:1

2b0/l  from 0.1(bottom curve) 
to 1.0 (top curve) Beta = 0.10

Fr
eq

ue
nc

y 
R

ed
uc

tio
n 

(%
)

Location of Damage
0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

Mode:2

2b0/l  from 0.1(bottom curve) 
to 1.0 (top curve) Beta = 0.10

Fr
eq

ue
nc

y 
R

ed
uc

tio
n 

(%
)

Location of Damage

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

Mode:3

2b0/l  from 0.1(bottom curve) 
to 1.0 (top curve) Beta = 0.10

Fr
eq

ue
nc

y 
R

ed
uc

tio
n 

(%
)

Location of Damage
0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

Mode:4

2b0/l  from 0.1(bottom curve) 
to 1.0 (top curve) Beta = 0.10

Fr
eq

ue
nc

y 
R

ed
uc

tio
n 

(%
)

Location of Damage

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

Mode:5

2b0/l  from 0.1(bottom curve) 
to 1.0 (top curve) Beta = 0.10

Fr
eq

ue
nc

y 
R

ed
uc

tio
n 

(%
)

Location of Damage
Figure 8: Frequency Reduction of a Rod Element with Variation in position and Extent of Damage (β =0.10)
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Figure 9: Frequency Reduction of a Rod Element with Variation in position and Extent of Damage (β =0.30)
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Table 3: Comparison of Frequencies for Rod Element after Damage (Length Type – I)

Mode No.
Natural frequency( fd) Natural frequency( fd) Natural frequency( fd) Natural frequency( fd)

For case-1 For case-2 For case-3 For case-4
Perturb. FEM Perturb. FEM Perturb. FEM Perturb. FEM

1 163.74 163.11 159.10 158.40 150.73 149.66 146.94 145.41
2 488.44 487.43 474.42 473.32 461.48 459.72 443.02 442.01
3 837.84 836.49 815.16 813.69 788.18 786.24 762.21 760.52
4 1158.56 1156.11 1126.40 1123.73 1093.43 1086.46 1056.70 1048.02
5 1480.13 1475.32 1438.50 1433.32 1394.67 1385.47 1346.32 1337.15

Table 4: Comparison of Frequencies for Rod Element after Damage (Length Type – 2)

Mode No.
Natural frequency( fd) Natural frequency( fd) Natural frequency( fd) Natural frequency( fd)

For case-1 For case-2 For case-3 For case-4
Perturb. FEM Perturb. FEM Perturb. FEM Perturb. FEM

1 163.23 162.64 158.57 157.93 148.57 147.65 144.67 143.24
2 490.74 489.80 476.79 475.76 457.91 457.56 444.57 444.19
3 834.49 831.90 811.72 808.89 772.47 767.15 755.36 747.58
4 1145.33 1142.77 1112.78 1110.03 1064.03 1059.25 1033.50 1027.75
5 1480.00 1478.35 1438.37 1436.60 1375.40 1372.87 1340.58 1336.87

Table 5: Comparison of Frequencies for Rod Element after Damage (Length Type – 3)

Mode No.
Natural frequency( fd) Natural frequency( fd) Natural frequency( fd) Natural frequency( fd)

For case-1 For case-2 For case-3 For case-4
Perturb. FEM Perturb. FEM Perturb. FEM Perturb. FEM

1 162.45 161.90 158.19 157.61 148.09 147.18 143.90 142.57
2 491.47 490.59 472.53 471.31 458.65 458.11 444.61 444.09
3 834.90 832.23 808.20 806.02 772.23 766.66 754.02 746.10
4 1138.71 1136.93 1113.19 1112.06 1060.58 1056.55 1027.47 1022.84
5 1480.91 1478.34 1447.46 1444.60 1376.27 1372.43 1340.56 1335.58

(a) Error injection affects the larger damage re-
gions less.

(b) Low damage regions show large prediction
errors. For example, a 5% damage zone is
depicted anywhere between 3-7%.

(c) If an averaging is done on the generated dam-
age data, there is a tendency to the error min-
imization, similar to a Gaussian error getting
cancelled after many averages.

(d) For the three structural elements, susceptibil-
ity to measurement error is more for plates,
less for beam and the least for rods.

9 Damage Estimation of a Discrete Structure

The structures taken up hitherto for damage es-
timation from Eigen value sensitivity method are
continuum structures for which closed form ex-
pressions for Eigen function is readily available.
Towards illustrating the versatility of the method
for all kinds of structures, where Eigen function
is readily not available, a discrete torsionally-
sensitive L-type frame is taken (Fig. 19). The
frame is un-symmetric in plan and consists of
3 bays along X-direction and 4 bays along Y-
direction. Width of each bay is 4.0 m, thus the
plan dimensions are 16 m × 12 m. There are
three floor each having a storey-height of 3.0m.
The structure is a reinforced concrete type with
column dimensions of 400 mm × 400 mm for all
columns and 300 mm X 300 mm for all beams.
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Figure 10: An Example for Validation of the Developed Method for an Axial rod

It is assumed that the structure is subjected to a
seismic excitation and the bottom most two floors
are assumed to be damaged under the action of a
seismic force. The third floor is assumed as un-
damaged. The purpose of the exercise is to esti-
mate the floor-wise damage suffered by the struc-
ture. This means that a quantity of a percentage
damage for each floor shall be specified but its ac-
tual distribution for individual columns or beams
shall be a function of the ratio of the force (or dis-
placement) demand of the individual element to
its force (or displacement) capacity. The Eigen
value solution of the virgin frame, in its healthy
state is initially carried out and its frequencies and
mode shapes are obtained. Then a uniform flexu-
ral rigidity gain of 5% for all beams and columns
at a specified level is imposed and the frequencies
and mode shapes are again computed. Using the
changes in the Eigen values as the ratio of initial
Eigen values, a column of the sensitivity matrix
is constructed. Then changing the flexural rigid-
ity gain to the next floor, yet another column is
created. The number of rows in the columns are
the number of frequencies for which the change
in Eigen values can be measured.

For the illustrative example, Table-6 give the fun-
damental frequencies :

Numerically computed sensitivity matrix, A is as
follows :

[A] =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.4754 0.3039
0.4853 0.3113
0.4930 0.3188
0.3565 0.1388
0.3569 0.1400
0.3558 0.1484

⎤
⎥⎥⎥⎥⎥⎥⎦

(24)

In the [A] matrix, the first column corresponds to
first floor and the second column corresponds to
second floor. In the simulation study, a damage
of 28% is inflicted for the first floor and 14% for
the second floor. The example is essentially over-
determined with more information available and
less un-known values sought. The frequencies are
computed and given as input and the least square
solution of the problem as given in the following
equation has yielded damage values of 30% and
14% respectively for first and second floors, thus
illustrating the efficacy of the method developed.

[A]{β}= {ε}
{β}=

(
[A]t [A]

)−1 [A]t {ε}
(25)

Let us discuss the practical viability of the method
in which the Eigen sensitivity is generated by an
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Figure 11: Comparison of Damage Predicted by Perturbation Analysis for an Axial Rod with Actual Damage
Values for Length Type-1

Table 6: Frequencies of the example discrete building structure

Mode Number Mode Description Frequency (Hz)
1 Pre-dominant X-Axis –First bending mode 1.568
2 Pre-dominant Y-Axis–First bending mode 1.596
3 Torsional first mode 1.771
4 Pre-dominant X-Axis –Second bending mode 4.928
5 Pre-dominant Y-Axis–Second bending mode 4.984
6 Torsional second mode 5.536

apparent increase of stiffness (and not reduction),
initially and this is later on used to predict the
loss in the stiffness, with sufficient accuracy. It is
possible to extend this method as a field method.
However, un-like computations, a stiffness gain
are invariably accompanied by mass increase and
suitable corrections are required. This important
issue will be covered in a subsequent paper.

10 Damage Estimation through a neural net-
work scheme

Sensitivity equation, connecting the magnitudes
of damage with the frequency reduction is com-
puted assuming a linear relationship between
both, experimentally or analytically. However,
the limitation, as indicated by this study, is that
the magnitude of damage shall be less than 30%,
so that the assumption of linearity is valid. The
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Figure 12: Comparison of Damage Predicted by Perturbation Analysis for an Axial Rod with Actual Damage
Values for Length Type-2

generalised solution strategy hence may be based
on a neural network scheme, which may take care
of both linearity as well as non-linearity. An ar-
tificial neural network based radial basis func-
tion network (RBFN) is trained with a database
of known frequency-damage pair of vectors such
that for any known vector of frequency change ra-
tios, damage vector can be evaluated. Typical er-
ror analysis due to measurement noise is also car-
ried out.

In this study, the bridge is considered as a sim-
ply supported beam and the dynamic analysis (for
extracting the natural frequencies) is carried out
using an in-house program and based on finite el-
ement method. The input parameters are (a) mag-

nitude of damage, (b) location of damage, and (c)
extent of damage. The out put obtained is a set
of natural frequencies for the flexural mode of the
beam. The architecture of an RBFN network con-
sists of an input layer, a hidden layer with a ra-
dial activation function and an output layer. The
network structure uses non-linear transfer func-
tion which may be a typical Gaussian function
after the input layer and one more linear trans-
fer function between the hidden and output lay-
ers (Purelin( ) as in Matlab [24]). Reason being
that, input spaces non-linearly mapped onto high
dimensional domain are likely to be linearly sepa-
rable. This non-linear transfer functions are sym-
metric, maximum at peak points and positive val-
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Figure 13: Comparison of Damage Predicted by Perturbation Analysis for an Axial Rod with Actual Damage
Values for Length Type-3

ued. The two main parameters that characterize
these functions are their centres and spread val-
ues. The spread values for minimum error are es-
timated by a trial and error process.

Problem considered is similar to the one previ-
ously discussed and solved using the Eigen sensi-
tivity matrix. The same ten segment beam is con-
sidered with symmetry in damage but the solution
is through a trained neural network. Hence the
number of un-known values are five (βi, where ‘i’
ranges from 1 to 5) and hence information on the
five frequency ratios are to be made available. EI

reduction is assumed in three steps, 0% or 15% or
30% for each beam segment. This means, for a 10
segment beam, symmetrically damaged, there are
35 (243) training sets.

For checking the performance of neural networks,
induced damage vectors are given as, D1 = {5, 35,
0, 15, 5}, D2 = {35, 5, 35,15,0}, D3 = {5, 18, 30,
18,5} and D4 = {30, 20, 12, 5, 0}. Fig. 20 shows
the comparison of induced and retrieved damage
values. The frequency measurement error analy-
sis has also been done for four types of error pat-
terns, E1: uniform +1% , E2: uniform -1%, E3:
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Figure 14: Performance of First-Order Perturbation based damage identification Method with Measurement
errors (Beam)

fluctuating +1%, -1%... and E4 fluctuating -1%,
+1% and so on. Fig. 21 shows the comparison of
retrieved and induced damage patterns under the
presence of measurement errors.

10.1 Discussion of Results

Three classes of structural elements and a build-
ing structure are taken up for the study which
involve computation of frequencies for a known
amount and position of damage (forward prob-
lem) and re-generation of flexural or axial rigidi-

ties, once the changes in frequencies are known
(Inverse problem) . These include a simply sup-
ported beam, thin plate element and an axially
loaded element. The known expressions for the
mode shapes and strain energy for the two cases
are made use of to derive the suitable expressions.
Series of damage patterns are tested for the valid-
ity of those developed expressions, which relate
the position and magnitude of the damage to the
changes in Eigen values.

The following points are directly due to the results



Sensitivity of Eigen Value to Damage and Its Identification 137

1 2 3 4 5
0

5

10

15

20 Damage Pattern -1
Error Pattern : E1

D
am

ag
e 

Pe
rc

en
ta

ge

Element Number

 Actual
 Retrieved

1 2 3 4 5
0

5

10

15

20 Damage Pattern -1
Error Pattern : E2

D
am

ag
e 

Pe
rc

en
ta

ge

Element Number

 Actual
 Retrieved

1 2 3 4 5
0

10

20

30

Damage Pattern -1
Error Pattern : E3

D
am

ag
e 

Pe
rc

en
ta

ge

Element Number

 Actual
 Retrieved

1 2 3 4 5
0

10

20 Damage Pattern -1
Error Pattern : E4

D
am

ag
e 

Pe
rc

en
ta

ge

Element Number

 Actual
 Retrieved

Figure 15: Variation of Retrieved Damages for an Axial Rod in the Presence of Measurement Error - Damage
Pattern-1

based on Fig. 4, Fig. 8 and Fig. 9.

(1). Frequency reduction monotonically in-
creases with increased percentage of local
damage (β ).

(2). When the extent of damage is small, com-
pared to the pseudo-span of the structure,
(Pseudo span is the length between adjacent
curvature nodes, �

n , n=No of half cycles) fre-
quency reduction is more , when the loca-
tion of damage coincides with the anti-node
(or peak curvature point) of the beam. Con-
versely, when the extent of damage is more
compared to the pseudo-span of the struc-

ture, ( �
n ) , frequency reduction is more , when

the location of damage coincides with the
node ( or zero curvature point) of the beam.
When the extent of damage is equal to the
pseudo-span, the variation is invariant with
reference to the position of damage.

(3). For small extent of damage, frequency re-
duction varies rapidly depending on the loca-
tion of the damage. However for large extent
of damage, frequency reduction varies less
rapidly, with the location of damage.

(4). Frequency reduction is more in the first
mode, as compared to other modes, for the
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Figure 16: Variation of Retrieved Damages for an Axial Rod in the Presence of Measurement Error - Damage
Pattern-2

same magnitude of damage, extent of dam-
age and critical position of damage.

The derived forward equation, produces, gener-
ally, an error of less than 0.3% in the estimation of
frequencies for β < 20% , an error less than 0.5%
for 20% < β < 30% , less than 1.0% for 30% <
β < 40% and more than 1.0% for β > 40%. The
equation always gives rise to upper-bound values
of frequencies or in other words actual changes in
frequencies get reduced. The error may look ap-
parently low, but what matters, is the comparison
of actual changes in frequencies, vis-à-vis those
predicted by the perturbation equation. For the
inverse problem, in the absence of measurement
errors, re-generation of flexural or axial rigidities

up to β > 40% produces tolerable errors. Be-
yond 40% of damage, regions of low strain en-
ergy density (supports for beams and plates and
free-ends for axial rods) show larger deviations
and the damages are over-estimated. The effect
of artificial error-ingress affects regions of low or
zero damage. Out of the three classes of struc-
tures, plate suffers more fluctuations, particularly
at edge elements. The best way is to do aver-
aging at inverse stage as well as removing those
elements which are not likely to suffer damage,
from the equations, using some form of engineer-
ing judgement.
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Figure 17: Variation of Retrieved Damages for a Plate in the Presence of Measurement Error - Damage
Pattern-1

10.2 Extension of damage identification
methodology for general classes of
structures

The methodology of damage detection for a gen-
eralised class of structure will be on lines similar
to the one adopted for the discrete framed struc-
ture and is stated as follows:

(a) The regions of likely damage are marked.
Suppose there are ‘n’ regions of suspect at
least ‘n’ frequency change information has to
be available. If more information is available
on frequency changes, then a least-square

based solution is to be resorted.

(b) Sensitivity of the frequency change to a unit
change in flexural rigidity (or axial rigidity
or a general stiffness) is to be generated ei-
ther numerically or using closed-form expres-
sions.

(c) The sensitivity matrix is either inverted
(for an evenly determined system) or a
least square based over-determined solution
methodology is adopted to get the damage
values.

(d) If the solution predicts un-reasonable values
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Figure 18: Variation of Retrieved Damages for a Plate in the Presence of Measurement Error - Damage
Pattern-2

like growth in a section or negative damage,
then these regions are imposed to be of zero
damage and the solution is repeated.

10.3 Damage identification in regions of less
strain energy density

Regions of least strain energy density are likely
to show more fluctuations in the predicted dam-
age, than those regions of high strain energy den-
sity. Typically these are the mid-span regions of
simply supported beams or plates and support re-
gions of cantilever. Normally the structural design
methodology is such that these regions of high

strain energy density are also the most likely re-
gions of damage. Hence the most damaged re-
gions will be automatically predicted with high
reliability. However in cases of high damage in
support regions of a simply supported beams or
the tips of cantilever, if the damage magnitude is
large (more than 10%), then the prediction is gen-
erally fine. However if the damage magnitude is
small and if it occurs in these less dense areas,
alternative damage detection using local parame-
ters like strain, slope change and modal curvatures
have to be adopted as damage indicating parame-
ters rather than natural frequencies.
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Figure 19: Illustrative Structure for Damage Estimation - Discrete Structure

11 Conclusions

Closed-form expressions based on first-order per-
turbation technique, relating the reduction in nat-
ural frequencies to the local reduction in stiffness
are derived for a simply-supported beam, plate
and an axial rod element. The inverse problem of
determining the damage from the known changes
in frequencies is out-lined for a smeared damage
model. This could be used in typical infrastruc-
tural management programs such that the natural
frequencies obtained remotely from a site could
be integrated and damages could be simultane-
ously got, as a first-level screening tool. In addi-
tion to classical cases, the methodology is proven
for a discrete structure to estimate the floor-wise
damage of an un-symmetrical building. Sensi-
tivity matrix derived computationally in this case
using an increased stiffness values, is adoptable
in practical cases using experimental evaluation
with mass correction. Near-support zones for the
beam and plates and near-free-end in the case of

rod, where the strain energy density is low, effect
of measurement noise may be more. It is rec-
ommended that an engineering judgement on the
possible damage zones could be made initially,
so as to avoid errors. Lastly, a neural network
based damage identification methodology is also
discussed, wherein the assumption of linearity be-
tween damage and Eigen values is defied.

References

Araujo Dos Santos, J.V., Mota Soares, C.M.,
Mota Soares, C.A., Pina, H.L.G. (2000): De-
velopment of a Numerical model for the damage
identification on composite plate structures, Com-
posite Structures, 48, 59-65.

Castro, E., Garcia Hernandez, M.T., Gallego,
A. (2007): Defect identification in rods subject to
forced vibrations using the spatial wavelet trans-
forms, Applied Acoustics, 68, 699-715.

Choi, S., Park, S., Yoon, S., Stubbs, N. (2005):
Non-destructive damage identification in plate



142 Copyright © 2008 Tech Science Press SDHM, vol.4, no.3, pp.117-144, 2008

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

D
am

ag
e(

%
)

Element number

Rigorous
 ANN

(D1)

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

D
am

ag
e(

%
)

Element number

Rigorous
 ANN

(D2)

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

D
am

ag
e(

%
)

Element number

Rigorous
 ANN

(D3)

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40
D

am
ag

e(
%

)

Element number

Rigorous
 ANN

(D4)

Figure 20: Comparison of Damage Predicted by artificial neural network with the induced damage Values

structures using changes in modal compliance.
NDT&E Intnl., 38, 529-540.

Doebling S.W., Farrar C.R., Prime M.B., She-
vitz, P.W. (1996): Damage Identification. Health
monitoring of structural and mechanical systems
from changes in their vibration characteristics –
A literature review, Los Alamos National Labora-
tory, Los Alamos, New Mexico.

Hassiotis, S., Jeong G.D. (1993): Assessment of
Structural damage from natural frequency mea-
surements, Computers and Structures, 49, 4, 679-
691.

Hassiotis, S. (2000): Identification of damage us-

ing natural frequencies and Markov parameters,
Computers and Structures, 74, 365-373.

Iacono, C., Sluys, L.J., Van Mier, J.G.M.
(2006): Estimation of model parameters in non-
local damage theories by inverse analysis tech-
niques, Compt. Methods Appl. Mech. Engrg.,
195, 7211-7222.

Lakshmanan, N., Srinivasulu, P.,
Parameswaran V.S. (1991): Post cracking
stiffness and damping in reinforced concrete
beam elements, Journal of Structural Engineer-
ing, India, 17, 4, 1405-1411.

Lee, U., Cho, K., Shin, J. (2003): Identifica-



Sensitivity of Eigen Value to Damage and Its Identification 143

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

D
am

ag
e(

%
)

Element number

Rigorous
 ANN

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

D
am

ag
e(

%
)

Element number

Rigorous
 ANN

1 2 3 4 5 6 7 8 9 10
-10

0

10

20

30

40

D
am

ag
e(

%
)

Element number

Rigorous
 ANN

1 2 3 4 5 6 7 8 9 10
-10

0

10

20

30

40
D

am
ag

e(
%

)

Element number

Rigorous
 ANN

(E1) (E2) 

(E3)
(E4)

Figure 21: Performance Neural network under uniform (E1, E2) and fluctuating errors (E3, E4)

tion of orthotropic damages within a thin uniform
plate, Intnl Jl. of Soilds and Structures, 40, 2195-
2213.

Li, Y.Y., Cheng L., Yam ,L.H., Wong, W.O.
(2002): Identification of damage locations for
plate-like structures using damage sensitive in-
dices : strain modal approach, Computers and
Structures, 80, 1881-1894.

Liu, J.K., Yang, Q.W. (2006): A new structural
damage identification method, Jl of Sound and Vi-
bration, 297, 694-703.

Ma Ge, Lui, E.M. (2005): Structural damage
identification using system dynamic properties,
Computers and Structures, 83, 2185-2196.

MATLAB-7, Mathworks Inc, Natick, MA.

Meo, M., Zumpano, G. (2005): Non-linear elas-
tic wave spectroscopy identification of impact
damage on a sandwich plate, Composite struc-
tures, 71, 469-474.

Morassi, A. (2007): Damage detection and gen-
eralised fourier coefficients, Jl. of Sound and Vi-
bration, 302, 229-259.

Owolabi G.M., Swamidas, A.S.J., Seshadri R.
(2003): Crack detection in beams using changes
in frequencies and amplitudes of frequency re-
sponse functions, Journal of Sound and vibration,
265, 1-22.

Rajagopalan, N., Lakshmanan, N., Muthu-



144 Copyright © 2008 Tech Science Press SDHM, vol.4, no.3, pp.117-144, 2008

mani, K. (1996): Stiffness degradation of rein-
forced concrete beams under repeated low energy
impact loading, Indian Concrete Journal, 69, 4,
227-234.

Rajagopalan, N., Lakshmanan, N., Jeyasehar
C.A. (1999): Damage assessment in reinforced
concrete beams using natural frequencies, Journal
of Structural Engineering, India, 26, 3, 165-172.

Roy, S., Chakraborty, S., Sarkar, S.K. (2006):
Damage detection of coupled bridge deck- girder
system, Finite Elements in Analysis and Design,
42, 942-949.

Wu Di, Law, S.S. (2007): Eigen-parameter de-
composition of element matrices for structural
damage detection, Engineering Structures, 29,
519-528.

Yam, L.H., Li, Y.Y., Wong, W.O. (2002): Sen-
sitivity studies of parameters for damage detec-
tion of plate-like structures using static and dy-
namic approaches, Engineering Structures, 24,
1465-1475.

Yang X.F., Swamidas A.S.J and Seshadri R.
(2001): Crack identification in vibrating beams
using the energy-based method, Journal of Sound
and vibration, 244(2), 339-357.

Yong Xia, Hong Hao (2003): Statistical dam-
age identification of structures with frequency
changes, Jl. of Sound and Vibration, 263, 853-
870.

Yu, L., Cheng, L., Yam, L.H., Yan, Y.J. (2007):
Application of Eigen value perturbation theory for
detecting small structural damage using dynamic
responses, Composite Structures, 78, 402-409.


