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On the Estimation of Notch Fatigue Limits by Using the Theory of Critical
Distances: L, a0 and Open Notches

L. Susmel1,2, D. Taylor2, R. Tovo1

Abstract: This paper investigates some theo-
retical aspects related to the use of the Theory
of Critical Distances (TCD) when employed to
estimate notch fatigue limits. The linear-elastic
TCD takes as a starting point the hypothesis that
notched components are in their fatigue limit con-
dition when an effective stress, whose value de-
pends on a characteristic length, equals the mate-
rial plain fatigue limit. Such an idea can be for-
malised by following different strategies: either
assuming that the effective stress depends only on
the profile of the stress field damaging the fatigue
process zone and the reference distance is a ma-
terial property or assuming that, for a given mate-
rial, the values of both critical stress and critical
distance change as the geometrical feature weak-
ening the component to be assessed changes. The
accuracy of the above different formalisations of
the TCD was systematically checked by using ex-
perimental data taken from the literature and gen-
erated by testing metallic samples containing dif-
ferent types of notches. This systematic validation
allowed us to confirm that the simplest formalisa-
tion of the TCD, in which both critical distance
and critical stress are material constants, is also
the most accurate one, giving predictions falling
within an error interval of about ±20%. Subse-
quently, in order to better explore the peculiarities
of the above formalisation of the TCD, its accu-
racy was also checked considering notches hav-
ing large values of the opening angle. This type
of notch represents an interesting testing ground
for our theory because, when the opening angle
becomes larger than about 90◦, the profile of the
linear elastic-stress in the fatigue process zone is
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strongly influenced by such an angle. The com-
parison with the experimental data proved that
the TCD formalisation based on the assumption
that both critical distance and critical stress are
material constants is successful also in assessing
these particular geometrical features. The exer-
cises summarised in the present paper allowed us
to further confirm that the simplest formalisation
of the TCD is a powerful engineering tool, allow-
ing real components to be assessed with an ade-
quate degree of safety by simply post-processing
linear-elastic Finite Element (FE) models.

Keyword: Theory of Critical Distances, Notch
fatigue limit, open notches.

Nomenclature

r, θ Polar coordinates
rn Notch root radius
DLM Critical distance to apply the Line

Method
DPM Critical distance to apply the Point

Method
DAM Critical distance to apply the Area

Method
L Material characteristic length
R Load ratio (R = σmin/σmax)
θ Angle locating the plane experien-

cing the maximum normal stress
σθ , σr, τrθ Stress components referred to the

adopted polar coordinates
ΔKth Range of the threshold value of the

stress intensity factor
Δσ0 Range of the plain fatigue limit
ΔσA,g Range of the nominal notch fatigue

limit (referred to the gross area)
Δσ1 Range of the maximum principal

stress
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Δσe f f Range of the effective stress
calculated according to the TCD

1 Introduction

At the beginning of the last century, Neuber (Neu-
ber, 1936; Neuber, 1958) formalised the so-called
Line Method (LM) to predict fatigue strength of
notched mechanical components. In particular, he
formed the hypothesis that the elastic-stress distri-
butions close to the stress riser apices do not reach
values as high as the ones calculated according
to the continuum mechanics theory. Following
this intuition, he suggested averaging the linear-
elastic stress over materials units in order to calcu-
late an effective stress suitable for quantifying fa-
tigue damage in the presence of stress concentra-
tion phenomena. A few years later, Peterson (Pe-
terson, 1959) simplified Neuber’s idea even more
by observing that the above effective stress could
simply be calculated at a given distance from the
apex of the stress concentrator (Point Method,
PM). Finally, in recent years, the TCD was suc-
cessfully reformulated by taking full advantage
of some LEFM findings (Tanaka, 1983; Lazzarin,
Tovo and Meneghetti, 1997; Taylor, 1999). In this
scenario, the present paper attempts to investigate
some peculiar aspects of the use of the TCD to
predict notch fatigue limits. In particular, by using
several experimental datasets taken from the lit-
erature, the accuracies of some formalisations of
the TCD, devised by forming different initial hy-
potheses, were systematically compared, investi-
gating also the TCD capability of assessing stress
concentrators characterised by large values of the
notch opening angle.

2 Different Formalisations of the TCD

The TCD postulates that notched components are
in the fatigue limit condition when the effective
stress, Δσe f f , calculated using the linear-elastic
stress field damaging the fatigue process zone, is
equal to the material plain fatigue limit, Δσ0. In
more detail, and according to the most modern
formalisations of the TCD, Δσe f f can be calcu-
lated variously, as follows (Fig. 1a):

Δσe f f = Δσ1 (θ = 0, r = DPM) = Δσ0 (1)

Δσe f f =
1

2DLM

∫ DLM

0
Δσ1 (θ = 0, r)dr = Δσ0

(2)

Δσe f f =
4

πD2
AM

∫ −π/2

0

∫ DAM

0
Δσ1 (r,θ ) ·dr ·dθ

∼= Δσ0 (3)

Eq. (1) formalises the Point Method, PM (Tanaka,
1983; Taylor, 1999), Eq. (2) the Line Method,
LM (Tanaka, 1983; Lazzarin, Tovo, Meneghetti,
1997; Taylor, 1999;) and, finally, Eq. (3) the
so-called Area Method, AM (Taylor, 1999). In
these equations DPM, DLM and DAM are the crit-
ical lengths to be used to apply the PM, the LM
and the AM, respectively.
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Figure 1: Definition of the local polar coordinates
used to determine the linear-elastic stress fields
damaging the fatigue process zone in notched
specimens.
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According to suggestions by Tanaka (Tanaka,
1983), Lazzarin and co-workers (Lazzarin, Tovo,
Meneghetti, 1997) and Taylor (Taylor, 1999),
these critical lengths take on the following values:
DPM = L/2, DLM = 2L and DAM = L, where L is
the material characteristic length, which is defined
as (El Haddad, Smith, Topper, 1979):

L =
1
π

(
ΔKth

Δσ0

)2

(4)

Here ΔKth is the range of the threshold value of
the stress intensity factor and Δσ0 is the plain
fatigue limit, both determined at the appropriate
load ratio, R.

Previously, the accuracy of the above formali-
sations of the TCD was systematically checked,
considering both standard notches (Taylor, Wang,
2000; Susmel, Taylor, 2003; Livieri, Tovo, 2004)
and real components (Taylor, Bologna, Bel Knani,
2000): these investigations allowed us to prove
that the TCD is successful in estimating notch fa-
tigue limits, giving predictions falling within an
error interval of about ±20%. This raises the
simple question: “Why does the TCD work?”.
Even though it is very difficult to answer this
question coming to a definitive conclusion, we
have noted that the TCD may work because it
is capable of predicting the propagation (or non-
propagation) of cracks initiating at the tip of the
stress raiser and having length equal to 2L (Tay-
lor, 2001). In other words, according to this
idea, non-propagating cracks (NPCs) should have
a length equal to 2L when initiated at the apex
of crack-like notches. Though this justification is
appealing, it does not explain the reason why the
TCD is successful also in predicting fatigue lim-
its of blunt notches (Taylor, 2001; Susmel, Taylor,
2003).

In any case, assuming that the TCD’s accu-
racy is due to its capability of predicting NPCs’
length, one may argue that, according to Yates and
Brown’s idea (Yates, Brown, 1987), the critical
lengths in Eqs. (1), (2) and (3) are not related to L
but to a0, which is defined as follows:

a0 =
1
π

(
ΔKth

F ·Δσ0

)2

(5)

Here F is the geometrical correction factor for the
LEFM stress intensity factor, which depends on
notch geometry and other factors, thus a0 is not
a material constant. If the maximum length of
NPCs were correctly predicted by Eq. (5), then an
alternative formulation of the TCD would use the
following three critical distances: DPM = a0/2,
DLM = 2a0 and DAM = a0. Now the question is:
“Are the predictions made using a0 more accurate
than the ones obtained using L?”. In order to an-
swer this question, in the next section the accu-
racy of these two different ways of using the TCD
will be checked and compared by using experi-
mental data taken from the literature.

Contrary to the PM formalisation discussed
above, in 1997 Lazzarin, Tovo and Meneghetti ar-
gued that, in order to correctly apply such a pre-
dictive method, the range of the maximum princi-
pal stress at the point having coordinates θ=0 and
r = L (see Fig. 1a) must be corrected by using an
adimensional function depending on both L and
the notch root radius, rn. Their PM was defined
then as (LTM-PM):

Δσe f f = Δσ1 (θ = 0, r = L) · f (rn,L) = Δσ0 (6)

In order to obtain an explicit expression for func-
tion f (rn,L), Lazzarin and co-workers initially
observed that when conventional notches are con-
sidered, and as long as the notch opening angle
is lower than 90◦, the maximum principal stress
along the notch bisector can satisfactorily be de-
scribed by using Glinka’s equation (Glinka, New-
port, 1987), that is, by assuming that the profile
of the stress field in the vicinity of stress con-
centrators is mainly influenced by the tip radius,
rn. Therefore, if Glinka’s analytical stress field
is used together with Eq. (6), function f (rn,L)
can be calibrated by considering the two extreme
cases of a plain (rn = ∞) and of a cracked com-
ponent (rn=0), obtaining the following expression
for the LTM-PM:

Δσe f f = Δσ1 (θ = 0, r = L)
1+

√
2 L

rn

1+ L
rn

= Δσ0 (7)

Thus, for these workers, the effective stress range
depends on both the geometrical feature con-
tained by the component to be assessed and the
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material fatigue properties (through length L). In
the next section, the selected data will be used also
to discover what formalisation of the PM is the
most accurate one.

To conclude, it is interesting to highlight that, in
order to correctly define function f (rn,L) in Eq.
(6), such an adimensional correction factor should
be determined by using always analytical expres-
sions suitable for accurately describing the linear-
elastic stress field in the vicinity of the geometri-
cal feature to be assessed. This aspect may limit
in a way the use of such a formalisation of the PM
when assessing real components having complex
geometry, because, unfortunately, analytical solu-
tions in close form are available only for standard
notches.

3 Systematic Comparison Using Experimen-
tal Data

In order to answer the questions arising in the
previous section, trying, at the same time, to ex-
press an objective verdict based on the experi-
mental evidence, several data were selected from
the technical literature. The summary of the ex-
perimental results considered in the present work
are reported in Tables 1, 2 and 3. In partic-
ular, Table 1 summarises the fatigue properties
of the investigated materials, whereas Tables 2
and 3 list the experimental fatigue limits gener-
ated by testing specimens of different materials
and containing different geometrical features. It
is worth mentioning that the considered notches
were classified into blunt, short and sharp accord-
ing to the rules proposed by Taylor (Taylor, 2001).
The shape factors, F, were calculated by the Fi-
nite Element (FE) Method following the proce-
dure already adopted by Atzori, Lazzarin and
Meneghetti (Atzori, Lazzarin, Meneghetti, 2003).
Finally, the linear-elastic stress fields damaging
the fatigue process zone and needed to apply the
TCD were determined by post-processing linear-
elastic FE models done by using commercial soft-
ware ANSYS R©.

The above datasets were initially used to attempt
to discover what formalisation of the TCD is
the most accurate one when conventional notches
having notch opening angle lower than 90◦ are

wg

wn

wg wg

wn

h

rn rn

rn

(a) (b) (c)
Figure 2: Geometries of the investigated notched
specimens and definition of the adopted symbol-
ism.

considered. Figures 3, 4 and 5 show the accuracy
of the different formalisations of the TCD when
the critical distance is assumed to be a function
of either L or a0. In more detail, the above fig-
ures report three different charts: the plain fatigue
limit, Δσ0, vs. effective stress, Δσe f f , diagrams
obtained considering L (a) as well as a0 (b) and
the Probability Density Function vs. Error dia-
gram (c). The latter diagram was reported to more
easily compare the accuracy of the different for-
malisations of the TCD and it was built by assum-
ing a normal distribution of the error. The error
index was calculated as:

Error[%] =
(

Δσe f f −Δσ0

Δσ0

)
·100 (8)

According to the above definition, the error in-
dex is equal to zero when predictions are exact,
whereas when such an index takes on positive or
negative values estimates are conservative or non-
conservative, respectively.

Figures 3, 4 and 5 clearly prove that the L based
TCD is much more accurate than the a0 based crit-
ical distance method. In particular, it can be seen
from the Δσ0 vs. Δσe f f diagrams that the use of
L to define the material characteristic length re-
sulted in predictions falling mainly within an error
interval of about ±20%. Further, the Probability
Density Function vs. Error diagrams of Figures 3,
4, and 5 show that, for the data considered in the
present study, the lowest standard deviation value
was obtained by applying the L based LM, even
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Table 1: Fatigue properties of the investigated materials.

Material Ref. R
Δσ0 ΔKth

[MPa] [MPa m1/2]
Mild Steel Frost, 1957; Frost, 1959 -1 420 12.8

C45 Nisitani, Endo, 1988 -1 582 8.1
C36 Nisitani, Endo, 1988 -1 446 7.1

6060-T6 Luise, 2001 0.1 110 6.1
AISI 304 Harkegard, 1981 -1 720 12.0

EN-GJS-800-8 Gasparini, Meneghetti 2002 0.1 440 8.1

Grey Iron Taylor et al., 1996

-1 155 15.9
0.1 99 11.2
0.5 68 8.0
0.7 48 5.2

AA356-T6 Atzori et al., 2004 -1 231 4.4
Ni-Cr Steel Frost, 1959 -1 1000 12.8
Steel 15313 Lukas et al., 1986 -1 440 12

SM41B Tanaka, Nakai, 1983; Tanaka, Akiniwa, 1987
-1 326 12.4
0 274 8.4

0.4 244 6.4
G40.11 El Haddad, 1978 -1 540 11.5
FeP04 Atzori et al., 2006 0.1 247 10.0

HT 60 (1) Usami, 1987 0 580 13.0
SS41 Kihara, Yoshii, 1991 0.1 231 6.4

HT 60 (2) Kihara, Yoshii, 1991 0.1 425 6.6

Table 2: Fatigue results generated by testing, under uniaxial loading, double edge notched plates (see Figure
2a for the specimen geometry as well as for the adopted symbolism).

Material wn wg rn β F Notch type R ΔσA,g

[mm] [mm] [mm] [o] [MPa]

Mild Steel

53.34 63.5 0.1 55 1.12 Sharp -1 84.2
53.34 63.5 0.25 55 1.12 Sharp -1 90.8
53.34 63.5 0.51 55 1.12 Sharp -1 84.2
53.34 63.5 1.27 55 1.12 Sharp -1 104.4
53.34 63.5 7.62 55 1.12 Blunt -1 156.4

6060-T6

45 50 1.25 0 1.12 Sharp 0.1 55.0
30 50 2 0 1.13 Sharp 0.1 31.7
45 50 0.2 0 1.12 Sharp 0.1 47.6
30 50 0.2 0 1.13 Sharp 0.1 25.4

EN-GJS-800-8
19.2 20 0.04 90 1.126 Sharp 0.1 138.9
18 20 0.1 90 1.13 Sharp 0.1 98.6
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Table 3: Fatigue results generated by testing notched cylindrical bars (see Figure 2c for the specimen geom-
etry as well as for the adopted symbolism).

Material wn wg rn β F Notch type R ΔσA,g Load type*
[mm] [mm] [mm] [o] [MPa]

Mild Steel

33.02 43.18 0.05 55 1.308 Sharp -1 68.8

AX

33.02 43.18 0.1 55 1.308 Sharp -1 70.0
33.02 43.18 0.13 55 1.308 Sharp -1 67.7
33.02 43.18 0.25 55 1.308 Sharp -1 69.6
33.02 43.18 0.64 55 1.308 Sharp -1 69.6
33.02 43.18 1.27 55 1.308 Sharp -1 77.0
33.02 43.18 5.08 - 1.308 Blunt -1 121.3

Ni-Cr Steel
21.59 22.61 0.13 55 1.147 Sharp -1 236.0

AX32.84 43 0.05 55 1.308 Sharp -1 88.6
21.64 31.8 0.13 55 1.427 Sharp -1 96.6

C45

5 5.01 0.05 60 1.09 Short -1 546.7

RB

5 5.01 0.02 60 1.09 Short -1 546.7
5 5.01 0.01 60 1.09 Short -1 556.7
5 5.02 0.05 60 1.09 Short -1 484.2
5 5.02 0.02 60 1.09 Short -1 494.0
5 5.02 0.01 60 1.09 Short -1 484.2
5 5.2 0.6 60 1.096 Short -1 373.4
5 5.2 0.3 60 1.096 Short -1 337.8
5 5.2 0.1 60 1.096 Short -1 320.3
5 5.2 0.05 60 1.096 Short -1 320.0
5 5.2 0.02 60 1.096 Short -1 320.0
5 6 0.6 60 1.239 Blunt -1 208.3
5 6 0.3 60 1.239 Sharp -1 173.6
5 6 0.1 60 1.239 Sharp -1 162.0
5 6 0.05 60 1.239 Sharp -1 162.0
5 6 0.02 60 1.239 Sharp -1 167.8
5 6 0.01 60 1.239 Sharp -1 167.8

C36

13 15 0.2 60 1.09 Short -1 288.5

RB

13 14.4 0.2 60 1.09 Short -1 254.0
13 14 0.2 60 1.09 Blunt -1 202.6
13 13.6 0.2 60 1.14 Blunt -1 163.3
13 13.3 0.2 60 1.16 Blunt -1 136.9
13 13.2 0.2 60 1.193 Blunt -1 113.3

AISI 304 32.84 43 0.05 0 1.308 Sharp -1 72.3 AX

Grey Iron

23.64 30 0.3 90 1.28 Sharp -1 91.0

AX
23.64 30 0.3 90 1.28 Sharp 0.1 60.0
23.64 30 0.3 90 1.28 Sharp 0.5 44.0
23.64 30 0.3 90 1.28 Sharp 0.7 32.0

AA356-T6

7.08 7.56 0.1 80 1.141 Short -1 114.8

RB
7.78 9.04 0.18 59 1.201 Sharp -1 109.8
6.43 9.03 0.09 60 1.557 Sharp -1 44.8
6.18 11.98 0.08 68 2.78 Sharp -1 17.7

Steel 15313

4.94 5 0.03 0 1.13 Short -1 429.5

AX

4.9 5 0.05 0 1.133 Short -1 403.4
4.86 5 0.07 0 1.138 Short -1 321.2
4.6 5 0.2 0 1.168 Short -1 237.0
4.2 5 0.4 0 1.229 Short -1 208.9
3.48 5 0.76 0 1.4 Sharp -1 155.0

*AX = axial loading; RB = rotating bending
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Figure 3: PM accuracy in predicting notch fatigue limits when the critical distance is assumed to be equal
to L (a) and to a0 (b); accuracy of the L based and the a0 based PM in terms of Probability Density Function
vs. Error index diagram (c).

if the peak of its error distribution was seen to be
situated on the non-conservative side. On the con-
trary, the systematic application of the PM as well
as of the AM, both applied by using L to define
the material characteristic length, resulted in es-
timates characterised by slightly higher standard
deviation values, with the peaks of the error dis-
tributions located in the conservative zone.

In order to further validate the accuracy of the
L based PM, its error in estimating the selected
notch fatigue limits was subsequently compared

to the one obtained by applying the PM (LTM-
PM) devised by Lazzarin, Tovo and Meneghetti
(Lazzarin, Tovo, Meneghetti, 1997) to the same
set of data. As shortly said above, the main pe-
culiarity of this predictive method is that the ef-
fective stress is assumed to be a complex function
not only of the linear-elastic stress damaging the
fatigue process zone, but also of both L and the
notch root radius, rn.

Observing that the two above formalisations of
the PM take as a starting point the assumption
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Table 4: Fatigue results generated by testing, under uniaxial loading, plates with central hole and having
shape factor, F, equal to unity (see Figure 2b for the specimen geometry as well as for the adopted symbol-
ism).

Material h wg rn Notch type R ΔσA,g

[mm] [mm] [mm] [MPa]

SM41B

6 39 0.16 Sharp -1 95.3
6 39 0.39 Sharp -1 104.0
6 39 0.83 Sharp -1 95.3
6 39 3 Sharp -1 128.3
6 39 0.16 Sharp 0 63.3
6 39 0.16 Sharp 0.4 73.0

G40.11
0.4 70 0.2 Short -1 336.1
0.96 70 0.48 Short -1 238.7
9.6 70 4.8 Blunt -1 205.4

SAE 1045

0.24 44.5 0.12 Short 0 325.0
0.5 44.5 0.25 Short 0 308.0
1.0 44.5 0.5 Sharp 0 270.0
3.0 44.5 1.5 Blunt 0 212.0
5.0 44.5 2.5 Blunt 0 209.0
0.24 44.5 0.12 Short -1 357.0
0.5 44.5 0.25 Short -1 306.0
1.0 44.5 0.5 Sharp -1 273.0
3.0 44.5 1.5 Blunt -1 231.0
5.0 44.5 2.5 Blunt -1 232.0

2024-T351

0.24 44.5 0.12 Short 0 172.0
0.5 44.5 0.25 Short 0 113.0
1.0 44.5 0.5 Sharp 0 107.0
3.0 44.5 1.5 Blunt 0 86.0
0.24 44.5 0.12 Short -1 159.0
0.5 44.5 0.25 Short -1 123.0
1.0 44.5 0.5 Sharp -1 121.0
3.0 44.5 1.5 Blunt -1 84.0
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Table 5: Summary of the experimental results generated by testing open notches (see Figure 3 for the
specimen geometry as well as for the adopted symbolism).

Material wn wg rn β R ΔσA,g Geometry
[mm] [mm] [mm] [o] [MPa]

FeP04
30 50 0.16 45 0.1 45.4

Fig. 7a30 50 0.16 135 0.1 48.8
30 50 0.16 160 0.1 87.2

HT 60 (1)

50 51 0.05 90 0 252.0

Fig. 7a

50 52 0.05 90 0 176.0
50 60 0.05 90 0 90.0
50 75 0.05 90 0 53.9
50 51 0.05 135 0 257.8
50 60 0.05 135 0 118.3
50 75 0.05 135 0 75.3
50 51 0.05 165 0 393.1
50 52 0.05 165 0 375.0
50 60 0.05 165 0 333.3
50 75 0.05 165 0 215.3
50 - 0.05 135 0 261.0

Fig. 7d
50 - 0.05 135 0 162.0
50 - 0.05 135 0 31.0 Fig. 7c

SS41

30 50 0.1 90 .05 25.9
Fig. 7a

30 50 0.1 120 0.05 39.9
30 50 0.1 120 0.05 16.7 Fig. 7b
40 - 0.1 135 0.05 86.1 Fig. 7c

HT 60 (2)

30 50 0.1 90 0.05 31.0
Fig. 7a

30 50 0.1 120 0.05 43.4
30 50 0.1 120 0.05 17.2 Fig. 7b
40 - 0.1 135 0.05 130.0

Fig. 7c
40 - 0.1 150 0.05 144.0

Table 6: Values of constants λ1, λ2, χ1 and χ2 in Lazzarin and Tovo’s equations.

β λ1 χ1 λ2 χ2[Rad]
0 0.500 1.000 0.500 1.000

π/6 0.501 1.071 0.598 0.921
π/4 0.505 1.166 0.660 0.814
π/3 0.512 1.312 0.731 0.658
π/2 0.544 1.841 0.909 0.219
2π /3 0.616 3.003 1.149 -0.314
3π /4 0.674 4.153 1.302 -0.569
5π /6 0.752 6.362 1.486 0.787



10 Copyright c© 2008 Tech Science Press SDHM, vol.4, no.1, pp.1-18, 2008

Line Method

10

100

1000

10 100 1000

Δσeff [MPa]

Δ
σ

0
[M
Pa
]

Sharp

Short

Blunt

E=0%

E=-20%

Conservative

Non-Conservative

(a)

E=20%

2

0

thK1
L

σΔ
Δ

π
=

Line Method

10

100

1000

10 100 1000

Δσeff [MPa]

Δ
σ

0
[M
Pa
]

Sharp

Short

Blunt

E=0%

E=-20%

Conservative

Non-Conservative

(b)

E=20%

2

0

th
0 F

K1
a

σΔ⋅
Δ

π
=

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

Error index [%]

Pr
ob

ab
ili

ty
 D

en
sit

y 
Fu

nc
tio

n

LM - L

LM - a0

Non-Conservative

Conservative

(c)

Figure 4: LM accuracy in predicting notch fatigue limits when the critical distance is assumed to be equal
to L (a) and to a0 (b); accuracy of the L based and the a0 based LM in terms of Probability Density Function
vs. Error index diagram (c).

that the characteristic length is a material prop-
erty, their accuracies were compared not only con-
sidering the data summarised in Tables 2 and 3,
and having F > 1, but also the results reported in
Table 4. In particular, the latter sets of data were
generated by testing plates, of different materials,
with a central hole resulting in a shape factor, F,
equal to unity. The Δσ0 vs. Δσe f f diagrams re-
ported in Figure 6 clearly show that the systematic
application of the above two formalisations of the
PM to the data listed in Tables 2, 3 and 4 practi-

cally resulted in the same accuracy level. This fact
is also confirmed by the Probability Density Func-
tion vs. Error diagram of Figure 6c: the two error
distributionswere characterised by close values of
the standard deviation. Moreover, it is interesting
to highlight that the peak of the error distribution
obtained by applying the LTM-PM was seen to be
slightly non-conservative, i.e. the mean value was
equal to -1.2%, whereas the error distribution of
the L based PM had mean value equal to about
3%. According to the above considerations, and
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Figure 5: AM accuracy in predicting notch fatigue limits when the critical distance is assumed to be equal
to L (a) and to a0 (b); accuracy of the L based and the a0 based AM in terms of Probability Density Function
vs. Error index diagram (c).

remembering the intrinsic data scattering affect-
ing fatigue results, it is possible to conclude say-
ing that the use of both the L based PM and the
LTM-PM results in the same accuracy level, even
if the two approaches are based on different initial
assumptions.

To conclude, it can be observed that the validation
exercise summarised in the present section seems
to strongly support the idea that the critical dis-
tance can be assumed to be a material constant,
that is, unaffected by notch geometry. This fact

suggests that the L based TCD can be applied with
confidence to real stress concentration features on
components, which often have very complex ge-
ometry, because such a simple method allows real
mechanical assemblies to always be assessed with
an adequate degree of safety.
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Figure 6: Accuracy of the L based PM (a) and Lazzarin, Tovo and Menghetti’s PM (b) in predicting notch
fatigue limits and resulting Probability Density Function vs. Error index diagram (c).

4 L Based TCD Accuracy in Predicting High-
Cycle Fatigue Strength in the Presence of
Open Notches

In light of the sound agreement between estimates
and experimental results obtained by assuming
that both critical distance and critical stress are
material constants, such a formalisation of the
TCD was subsequently attempted to be used to
predict fatigue limits generated by testing notches
having opening angles larger than 90◦. The sum-
mary of the considered experimental results is re-
ported in Table 5, whereas the geometries of the

investigated specimens are sketched in Figure 7.

In order to briefly review the peculiarities of the
linear-elastic stress field distributions in the pres-
ence of open notches, consider the V-notched
specimen of Figure 1b. According to the
asymptotic solutions first formalised by Williams
(Williams, 1959), Lazzarin and Tovo suggested
describing the linear-elastic stress fields in the
vicinity of sharp re-entrant corners by using the
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Figure 7: Geometries of the specimens weakened by open notches.

following equations (Lazzarin, Tovo, 1996):
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In the above relationships, K1 and K2 are the
Notch-Stress Intensity Factors (N-SIF) to be de-
termined according to the definition proposed by
Gross and Mandelson (Gross, Mendelson, 1972),
whereas, as clearly shown by Table 6, constants
λ1, λ2, χ1 and χ2 depend on the notch opening
angle value, β . The above equations can also be

used in the presence of finite notch root radii, pro-
vided that they are rewritten as follows (Lazzarin,
Tovo, 1996):
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where constants μ1 and μ2 depend again on the
opening angle value, whereas distance r0 is a
function of the notch root radius value, rn (Laz-
zarin, Tovo, 1996).

Equations (9) and (10), together with Table 6,
clearly show that the opening angle value strongly
affects the stress distribution ahead of lateral V-
notches and it holds true especially when notch
opening angles become larger than about 100◦. In
other words, the notch opening angle is an im-
portant geometrical parameter to be considered,
because, as it varies, the degree of singularity
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of the stress field itself changes. Such an influ-
ence is clearly shown by the stress-distance curves
sketched in Figure 8 and obtained by consider-
ing the samples tested by Atzori, Lazzarin and
Meneghetti (Atzori, Lazzarin, Meneghetti, 2006).
In more detail, the above curves refer to double
edge V-notched specimens (Fig. 7a) subjected to
a gross nominal tensile stress equal to 100 MPa
and characterised by three different values of the
notch opening angle: 45◦, 135◦and 160◦. Figure
8 clearly shows that, given the geometry and the
applied loading, the stress gradient in the vicin-
ity of the notch tip decreases as the notch opening
angle increases.
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Figure 8: Opening angle influence on the max-
imum linear-elastic stress distribution in a V-
notched plate loaded in tension (see Fig. 7a for
the specimen geometry).

The above considerations should make it evident
that open notches definitely represent an interest-
ing and important testing ground to further check
the accuracy and reliability of the TCD in esti-
mating notch fatigue limits. Our theory was then
applied to the experimental results summarised
in Table 5. Again the stress fields damaging
the fatigue process zone were determined by us-
ing ANSYS R© code and the TCD was applied in
terms of maximum principal stress range. Figure
9 reports the Δσ0 vs. Δσe f f charts obtained by
applying the L Based TCD in terms of both the
PM (Fig. 9a), the LM (Fig. 9b) and the AM (Fig.
9c): again such a formalisation of the TCD proved
to be highly accurate, giving predictions falling
within an error interval of ±20%, and this held
true independently of notch opening angle value.
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5 Discussion

This paper is concerned with the accuracy of the
most modern formalisations of the TCD. In par-
ticular two different ways of calibrating such a
theory were considered: either assuming that the
effective stress depends only on the linear-elastic
stress field damaging the fatigue process zone and
the reference critical distance is a material prop-
erty or taking as a starting point the idea that, for
a given material, the value of either the effective
stress or the critical distance changes as the geo-
metrical feature contained by the component to be
assessed changes.

The systematic comparison between the estimates
obtained by using L to determine the critical
length to those done by using a0 (whose value de-
pends, through shape factor F, not only on the ma-
terial fatigue properties but also on the geometry
as well as on the applied loading type) proved that
the L Based TCD is the most accurate one: the use
of L along with both the PM, the LM and the AM
was seen to result in estimates falling within an
error interval of about ±20%, and it held true in-
dependently of geometrical feature, material and
applied loading type.

Subsequently, the accuracy of the L Based PM
was compared to the one of the PM (LTM-PM)
devised by Lazzarin, Tovo and Meneghetti (Laz-
zarin, Tovo, Meneghetti, 1997). The main pecu-
liarity of the latter approach is that the effective
stress is assumed to be a complex function of both
the linear-elastic stress field damaging the mate-
rial in the vicinity of the notch tip, the geometri-
cal feature (through the notch rood radius) and the
material characteristic length, L. The comparison
based on several datasets taken from the literature
allowed us to prove that the systematic use of both
the L Based PM and the LTM-PM practically re-
sults in the same accuracy level.

As to the way the LTM-PM works, it has to be
said that such an approach was applied to the
selected data in the explicit form given by Laz-
zarin, Tovo and Meneghetti and based on the use
of Glinka’s equation to describe the linear elas-
tic stress field damaging the fatigue process zone.
As highlighted by the above authors, in the pres-

ence of particular geometrical features, other ana-
lytical solutions should be considered to properly
describe the profile of the stress-distance curve
needed to calibrate the method itself. This re-
mark should make it evident that the use of other
analytical solutions capable of better describing
the stress fields in the vicinity of the investigated
notches may have resulted in a higher accuracy
level. In any case, it has to be said also that this
aspect may limit in a way the use of such a formal-
isation of the PM, especially when real compo-
nents having complex geometry are involved, be-
cause analytical solutions in close form are avail-
able only for standard notches. Certainly, more
work deserves to be done in this area in order to
better explore all the peculiarities of the PM as
devised by Lazzarin and co-workers.

In light of the sound estimates obtained by apply-
ing the L Based TCD, we subsequently investi-
gated its accuracy in predicting high-cycle fatigue
strength of metallic specimens weakened by open
notches, i.e. by notches having opening angle
larger than 90◦. As shortly said above, this kind of
geometrical features represents a very interesting
testing ground for our theory, because, for a given
geometry, the opening angle value strongly affects
the profile of the stress-distance curve needed to
apply the TCD (and it holds true especially in
the presence of notch opening angles larger than
90◦). The systematic validation done by consid-
ering results generated by testing open notches
weakening specimens of different metallic mate-
rials proved that the L Based TCD is capable of
accurate predictions also when applied to speci-
mens containing this particular type of geometri-
cal feature, giving predictions again falling within
an error interval of about ±20%. In this sce-
nario, it is also worth mentioning that Atzori, Laz-
zarin and Meneghetti came to a similar conclusion
when validating their elegant approach ad hoc de-
vised to assess open notches (Atzori, Lazzarin,
Meneghetti, 2005). It has to be said also that the
capability of the TCD in correctly estimating fa-
tigue damage due to open notches was not surpris-
ing at all: such an approach was already seen to
be very successful in predicting high-cycle fatigue
strength of welded joints, that is, in the presence
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of opening angles equal to about 135◦ (Taylor,
Barret, Lucano, 2002; Crupi, Crupi, Guglielmino,
Taylor, 2005).

As to the constancy of the material characteris-
tic length, it is interesting to highlight here that,
strictly speaking, for a given material, its exper-
imental value is seen to change as the degree of
multiaxiality of the linear-elastic stress field dam-
aging the fatigue process zone changes. For in-
stance, by reanalysing a large amount of experi-
mental results it was proved that, in the high-cycle
fatigue regime, the critical distance under torsion
is different to its value determined under uniax-
ial fatigue loading (Susmel, Taylor, 2006). For-
tunately, it was also seen that the TCD can effi-
ciently be used to estimate notch torsional fatigue
limits by simply keeping L constant and equal to
its value determined under uniaxial fatigue load-
ing: such an engineering assumption allows the
TCD to be applied to torsional situations by cal-
ibrating it through pieces of experimental infor-
mation generated, according to the pertinent stan-
dard codes, by using conventional uniaxial test-
ing equipments. Besides, the fact that L can be
assumed to be constant independently of the de-
gree of multiaxiality of the assessed stress field
results also in the fact that the TCD can be used
to estimate notch fatigue limits independently of
the complexity of the applied loading path, pro-
vided that it is used in conjunction with a suitable
multiaxial fatigue criterion (Susmel, Taylor, 2003;
Susmel, 2004; Susmel, Taylor, 2006). Another
aspect of the problem which deserves to be men-
tioned here is the fact that L was seen to increase
as the number of cycles to failure, N f , increases
(Susmel, Taylor, 2007). Even if the above exper-
imental evidence can easily be taken into account
to successfully extend the use of our theory down
to the medium-cycle fatigue regime, it is worth
noticing that this fact may result in further com-
plications when attempting to use the TCD in the
presence of random fatigue loading. These con-
siderations should make it evident that more work
is needed to be done in this area to formalise a
sound procedure suitable for using the TCD to
perform the fatigue assessment of notched com-
ponents experiencing variable amplitude loading.

To conclude, it is interesting to observe that, by
comparing the linear-elastic stress fields due to
different geometrical features, Atzori, Lazzarin
and Filippi (Atzori, Lazzarin, Filippi, 2001) re-
cently argued that the differences between the PM
and LM in predicting notch fatigue limits depend
on both the notch geometry and the absolute value
of the material characteristic length, L. The above
conclusion, which is totally correct, was based
on the systematic comparison of the linear elas-
tic stress fields due to different notches, without
considering any experimental notch fatigue limit.
On the contrary, in the present work all the anal-
yses we carried out were based on several experi-
mental results generated by testing metallic spec-
imens containing different geometrical features.
Due to their nature, all the experimental values
we considered were affected by two main vari-
ables: the intrinsic data scattering typical of fa-
tigue results and the uncertainty in defining the
actual notch geometry (especially in the presence
of very small notch root radii). In light of this well
known difficulties arising when dealing with prac-
tical problems (and it holds true especially when
real components having complex geometry are in-
volved) and supported by the highly accurate esti-
mates obtained when applying the L Based TCD,
we certainly feel so confident to suggest the use
of such a theory also to assess real components in
situations of practical interest: the main feature of
the L based TCD is that it can directly be applied
by post-processing linear-elastic FE results, with-
out the need for correcting it to account for both
the actual notch geometry and the absolute value
of the material characteristic length, L.

6 Conclusions

1. The use of L to define the critical distance
value was seen to result in more accurate re-
sults than the ones obtained by using short
crack constant a0;

2. The PM devised by Lazzarin, Tovo and
Meneghetti was seen to be highly accurate,
even if more work has to be done to make it
suitable for being easily used to assess real
components;
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3. The L Based TCD proved to be very suc-
cessful also in predicting high-cycle fatigue
strength of metallic materials weakened by
open notches.
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