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An Alternative 2D BEM for Fracture Mechanics in Orthotropic Materials

G. Davì1 and A. Milazzo1

Abstract: An original and alternative single do-
main boundary element formulation and its nu-
merical implementation are presented for the
analysis of orthotropic two-dimensional cracked
bodies. The problem is formulated employing the
classical displacement boundary integral repre-
sentation and an alternative integral equation de-
duced on the basis of the stress function theory.
This integral equation written on the crack pro-
vides the relations needed to determine the prob-
lem solution in the framework of linear elastic
fracture mechanics. Numerical examples are re-
ported and discussed to demonstrate the accuracy
of the proposed approach.

Keyword: Fracture mechanics, orthotropic ma-
terials, stress function, stress intensity factor.

1 Introduction

On a microscopic scale failure of composite mate-
rials involves different mechanisms like fiber frac-
ture, matrix cracking, fiber debonding etc. that,
together with anisotropy, affect their fracture be-
havior on a macroscopic scale. Such features need
an accurate assessment in the framework of dam-
age tolerance design and maintenance. The deter-
mination of stress intensity factors is the primary
concern in the field of fracture mechanics since
these parameters are related to fracture resistance
and propagation. The solution of crack problems
in composite materials generally requires the use
of numerical techniques and actually both the fi-
nite element method and the boundary element
method have been employed for fracture mechan-
ics analyses in both isotropic and anisotropic ma-
terials. The boundary element method (BEM) has
proved to be an efficient and powerful technique
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to deal with fracture mechanics problems where
an accurate description of the high stress gradi-
ents at the crack tip and the numerical efficiency
are essential. The application of BEM to the frac-
ture mechanics of composites was proposed by
Cruse and Svedlow (1971) and, starting from their
pioneering work, different approaches have been
proposed to analyze fracture mechanics problem
in both isotropic and anisotropic media [Aliabadi
(1997)]. Such approaches have been developed to
overcome the impossibility of applying standard
BEMs to deal with general crack problems, since
the application of the displacement integral equa-
tion to coincident crack surfaces leads to a math-
ematical degeneration. The first approach is the
Green function method, in which a special form
of fundamental solution is introduced to avoid
the modeling of crack surfaces; this approach is
very accurate and advantageous for simple crack
geometries for which the analytic expression of
the Green function is known [Snyder and Cruse
(1975), Chan and Cruse (1986)]. However, this
Green function approach can be applied to any
kind of geometry by numerically computing the
corresponding Green function [Telles, Castor and
Guimarães (1995); Castor and Telles (2000)].A
general approach is the multidomain technique,
which allows to model any crack problem. It is
based on the artificial subdivision of the original
domain into sub-regions whose boundaries con-
tain the crack faces; the subregions are then joined
along the fictitious boundaries or interfaces by
means of the equilibrium of tractions and com-
patibility of displacements. This solution scheme
gives rise to additional degrees of freedom and
then the solving system has a greater order than
that strictly required by the problem, with the
consequent computational effort [Blandford, In-
graffea and Ligget (1981), Tan and Gao (1992),
Sollero and Aliabadi (1993), Saez, Ariza and
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Dominguez (1997), Davì and Milazzo(2001)]. On
the other hand, single-domain BEMs have been
proposed and developed with the aim of analyz-
ing general crack geometries without the compu-
tational effort of the multidomain technique. The
fundamental single-domain approach, known as
Dual Boundary Element Method, involves two
different sets of boundary integral equations, one
related to displacements and the other to stresses
or tractions, which are simultaneously collocated
on the crack boundaries. This method leads to
a system of integral equations involving hyper-
singular integrals appearing in the traction equa-
tions, with consequent constraints on the kind
of employed boundary elements [Gray, Martha
and Ingraffea (1990), Portela, Aliabadi and Rooke
(1992), Sollero and Aliabadi (1995), Chang and
Mear (1995), Pan and Amadei (1996), Ammons
and Vable (1996), Pan (1997), Garcia, Saez and
Dominguez (2004)]. In this paper, an alternative
single domain approach for fracture mechanics in
orthotropic materials is presented. The paper is
the extension of a previous authors’ work [Davì
and Milazzo (2006)] and is based on the employ-
ment of the stress function theory to obtain the
integral equations needed for the solution of the
crack problem. The approach preserves the com-
putational advantages of single domain formula-
tions without involving hypersingular kernels, so
that the treatment of the resolving integral equa-
tions model requires no particular care. Numeri-
cal results are presented to show the accuracy and
effectiveness of the proposed approach.

2 Displacement boundary integral equation
for orthotropic materials

Let us consider an elastic, orthotropic, two-
dimensional body occupying the domain Ω with
contour Γ and containing a crack whose represen-
tative boundary is denoted by Γ f . The boundary
integral representation of the displacement at the
field point P0 is given by the Somigliana identity
which reads [Aliabadi (2002)]

cu(P0) =
∫

Γ
[uT

j (P,P0)p−pT
j (P,P0)u]dΓ

−
∫

Γ f

pT
j (P,P0)ΔudΓ+

∫
Ω

uT
j (P,P0)fdΩ (1)

where u is the displacement vector, p is the vec-
tor containing the boundary tractions, f are the
body forces, Δu are the relative displacements
along the crack, whereas u j(P,P0) and p j(P,P0)
are the displacements and tractions of the prob-
lem fundamental solution associated with a con-
centrated body force f j applied at the source point
P0. The anisotropic elasticity fundamental so-
lution has been derived following different ap-
proaches which are based on the Lekhnitskii’s
stress functions [Lekhnitskii (1963), Sollero and
Aliabadi (1993)] and the Stroh formalism [Stroh
(1958), Stroh (1962)]. In the present paper an al-
ternative notation introduced by the authors is em-
ployed [Davì and Milazzo (2001)] to infer the fun-
damental solution. This notation mixes the classi-
cal Lekhnitskii approach and the Stroh formalism
producing a powerful matrix tool for the numer-
ical implementation of the fundamental solution
of 2D anisotropic elasticity and its extension to
other problems. According to Davì and Milazzo
[(2001)] the expressions of the 2D anisotropic
fundamental solutions is obtained by introduc-
ing the complex variable Zk = [x1(P)− x1(P0)]+
μk[x2P)−x2(P0)] (k=1, 2) associated with the pos-
itive imaginary part eigenvalues μk of the follow-
ing problem[
IT

1 EI1 + μ
(
IT

1 EI2 + IT
2 EI1

)
+ μ2IT

2 EI2
]

a = 0

(2)

where E is the stiffness matrix whose elements
are denoted by Ei j. The matrices Im (m=1, 2) are
obtained from the compatibility operator

ΞT =
[

∂/∂x1 0 ∂/∂x2

0 ∂/∂x2 ∂/∂x1

]
(3)

by setting the derivatives with respect to xm equal
to one and replacing all the other terms with ze-
ros. Denoting by ak the eigenvectors related to the
eigenvalues μk through Eq. (2), the fundamental
solution displacements and tractions are written
as

u j =
2

∑
k=1

2Re
[
λk jak lnZk

]
(4)

t j =
2

∑
k=1

2Re

[
λk jΞT

n EΞμk ak
1
Zk

]
(5)
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where ΞT
n is the boundary traction operator ob-

tained from the compatibility operator by replac-
ing the derivatives with respect to x1 and x2 with
the direction cosines α1 and α2 of the boundary
outer normal, respectively. The matrix Ξμk is ob-
tained from the compatibility operator by replac-
ing the derivative with respect to x1 with one and
the derivative with respect to x2 with μk. The vec-
tor λ j = [λ1 j λ2 j ]T is then computed by

λ j = (B+ B̃Ã−1A)−1f j (6)

where the tilde denotes the complex conjugate,
A is the matrix of the eigenvectors ak and the
columns bk of the matrix B are defined by

bk = ΞT
k EΞμk ak (7)

In Eq. (7) the matrix ΞT
k is again obtained

from the compatibility operator by replacing the
derivatives with respect to x1 with the quan-
tity−π

(
1+

√−1μk
)
/
(
1+ μ2

k

)
and the derivative

with respect to x2 with π
(√−1−μk

)
/
(
1+ μ2

k

)
.

By using two independent fundamental solutions
( j=1, 2), associated with concentrated body forces
f j directed along the coordinate axes, the bound-
ary integral representation of the displacement
components at the point P0 in terms of the dis-
placements and tractions on the boundary is ob-
tained

cu(P0) =
∫

Γ
[U∗(P,P0)p−P∗(P,P0)u]dΓ

−
∫

Γ f

P∗(P,P0)ΔudΓ+
∫

Ω
U∗(P,P0)fdΩ (8)

where U∗ and P∗ are the kernels of the funda-
mental solutions [Aliabadi (2002)]. For points P0

belonging to the boundary, provided that singular
integrals are computed in the sense of their prin-
cipal value and that c is suitably computed [Davì
and Milazzo (2001), Aliabadi (2002)], Eq. (8) be-
comes the boundary integral equation which, tak-
ing the prescribed boundary conditions into ac-
count, models the solution of the elastic prob-
lem in terms of displacements and tractions on the
boundary [Aliabadi (2002)]. It straightforwardly
appears that Eq. (8), in its numerical application
to cracked bodies, when collocated on the two

crack faces, originates a mathematical degenera-
tion in the problem formulation. In particular the
resolving system presents more unknowns than
equations and additional equations are required to
solve the problem [Aliabadi (1997)].

In the present work, such additional equations are
retrieved by an alternative boundary integral rep-
resentation based on the use of the stress func-
tion theory and described in the next section. The
new boundary integral equation, collocated on
the crack representative boundary, determines the
problem solution.

3 Alternative boundary integral equation

For homogeneous, orthotropic two-dimensional
body the stress field can be derived from a sin-
gle function, the stress function Φ = Φ (x1,x2),
so that the equilibrium equations are trivially ful-
filled. Assuming that the body force field f is
conservative there exists a potential function Ψ =
Ψ(x1,x2) such that

f =
[

∂Ψ
∂x1

∂Ψ
∂x2

0
]T

(9)

and one has [Chou and Pagano (1992)]

σ =
[
σ11 σ22 σ12

]T = CΦ− ĨΨ (10)

where the involved operators are defined as

CT =
[

∂2

∂y2
∂2

∂x2 − ∂2

∂x∂y

]
(11)

ĨT =
[
1 1 0

]
(12)

Once the stress function is introduced, the dis-
placement field can be obtained by integrating the
strain-displacement relations and for orthotropic
bodies one obtains the following displacement
field decomposition

u = v+ΛSΦ (13)

where S = [ ∂/∂x1 ∂/∂x2 ]T is the gradient operator
and

Λ =

[
E11μ2

1 +E12 0
0 E22

μ2
1

+E12

]
(14)

In the displacement decomposition given by Eq.
(13) v is a vector, whose components v1 (x1,x2)
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and v2 (x1,x2) are functions that satisfy the or-
thotropic Laplace equation

∂ 2vi

∂x2
1

−μ2
1

E11

E22

∂ 2vi

∂x2
2

= 0 i = 1,2 (15)

Additionally, the functions v1 and v2 are conjugate
according to the following relations

∂v1

∂x1
= −μ2

1
E11

E22

∂v2

∂x2
(16)

∂v1

∂x2
= −∂v2

∂x1
(17)

The boundary tractions p can be also expressed in
terms of stress function and one obtains

p =
∂
∂ s

HSΦ−nΨ (18)

where ∂/∂ s indicates the tangent derivative, n is
the boundary unit normal vector, whereas the ma-
trix H is defined by

H =
[

0 1
−1 0

]
(19)

Taking into account the displacement decomposi-
tion, the integral equation (8) becomes

cv(P0)+cΛSΦ(P0)

=
∫

Γ
[U∗(P,P0)p−P∗(P,P0)u]dΓ

−
∫

Γ f

P∗(P,P0)ΔudΓ+
∫

Ω
U∗(P,P0)fdΩ (20)

Due to the potential nature of the components of
v applying the Green theorem one has

cv(P0) =∫
Γ

[
ϕ∗(P,P0)

∂v
∂ ñ

− ∂ϕ∗(P,P0)
∂ ñ

v
]

dΓ (21)

where ϕ∗ is the orthotropic potential fundamental
solution

ϕ∗ =

√
− E22

μ2
1 E11

ln
1

r (P,P0)
(22)

where r (P,P0) is the reduced distance between the
domain point P and the source point P0

r (P,P0) =√
[x1 (P)−x1 (P0)]

2 − E22

μ2
1 E11

[x2 (P)−x2 (P0)]
2

(23)

and ∂/∂ ñ denotes the derivative along the bound-
ary co-normal defined by

∂/∂ ñ = α1∂/∂x1 −α2
(
μ2

1 E11/E22
)

∂/∂x2 (24)

By using the conjugate relations between v1 and
v2, Eqs (16) and (17), and taking the displace-
ment field decomposition and the expression of
the boundary traction in terms of the stress func-
tion into account, Eq. (21) becomes

cv(P0) =
∫

Γ
[u∗(P,P0)p−p∗(P,P0)u]dΓ

+
∫

Γ
ΛSΦ

∂ϕ∗(P,P0)
∂ ñ

dΓ+
∫

Γ
u∗(P,P0)nΨdΓ

(25)

where

u∗(P,P0) =
[

Λ22μ2
1

E11
E22

ϕ∗(P,P0) 0
0 −Λ11ϕ∗(P,P0)

]
(26)

p∗(P,P0) =

[
∂ϕ∗(P,P0)

∂ ñ μ2
1

E11
E22

∂ϕ∗(P,P0)
∂s

∂ϕ∗(P,P0)
∂s

∂ϕ∗(P,P0)
∂ ñ

]
(27)

Finally, by using Eq. (25), the integral equation
(20) is written as

cΛSΦ (P0) =
∫

Γ
[U∗ (P,P0)p−P∗ (P,P0)u]dΓ

−
∫

Γ f

P∗ (P,P0)ΔudΓ

+
∫

Γ
[p∗ (P,P0)u−u∗ (P,P0)p]dΓ

+
∫

Γ f

p∗ (P,P0)ΔudΓ

−
∫

Γ
ΛSΦ

∂ϕ∗ (P,P0)
∂ ñ

dΓ

+
∫

Γ
u∗ (P,P0)nΨdΓ

+
∫

Ω
U∗ (P,P0)fdΩ

(28)
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This equation can be regarded as a boundary inte-
gral representation of the stress function gradient.
Recalling that the components of the resultant of
the tractions applied between the point P and a
generic point PA are defined as

R =
∫ PA

P
pdΓ (29)

by integration of the Eq. (18) one obtains

SΦ = H−1R+k (30)

where k is a vector whose components are arbi-
trary constants. For a source point P0 belonging to
the crack line the integral equation (28) becomes

cΛk =
∫

Γ
[U∗ (P,P0)p−P∗ (P,P0)u]dΓ

−
∫

Γ f

P∗ (P,P0)ΔudΓ

+
∫

Γ
[p∗ (P,P0)u−u∗ (P,P0)p]dΓ

+
∫

Γ f

p∗ (P,P0)ΔudΓ

−
∫

Γ
ΛH−1R

∂ϕ∗ (P,P0)
∂ ñ

dΓ

(31)

This equation allows the problem solution
through the boundary element method.

4 Numerical scheme

The boundary integral formulation proposed is
numerically solved by the boundary element
method [Aliabadi (2002)]. In the following, for
the sake of simplicity, the numerical scheme em-
ployed is described for the case of zero body
forces. The body boundary Γ is discretized into
M boundary elements and over each of these el-
ements Γ〈k〉 the displacements u and the tractions
p, are expressed in terms of their respective nodal
values δ〈k〉 and t〈k〉

u = Nuδ〈k〉 on Γ〈k〉 (32)

p = Npt〈k〉 on Γ〈k〉 (33)

where Nu and Np are shape function matrices.
The crack representative boundary Γ f is dis-
cretized into m boundary elements and over each

of these elements Γ f 〈k〉 the crack relative displace-
ments Δu are expressed in terms of their respec-
tive nodal values Δδ〈k〉 by means of the shape
function matrix N

Δu = NΔδ〈k〉 on Γ f 〈k〉 (34)

The discretized version of eqn. (8) for a colloca-
tion point Pi on the boundary is therefore given
by

c∗i u(Pi)+
M

∑
k=1

Hikδ〈k〉+
M

∑
k=1

Gikt〈k〉+
m

∑
k=1

QikΔδ〈k〉

= 0 (35)

where

Hik =
∫

Γ〈k〉
P∗ (P,Pi)Nu (P)dΓ〈k〉 (36)

Gik = −
∫

Γ〈k〉
U∗ (P,Pi)Np (P)dΓ〈k〉 (37)

Qik =
∫

Γ f 〈k〉
P∗ (P,Pi)N(P)dΓ f 〈k〉 (38)

To obtain the discretized form of eqn. (31) one
observes that the boundary traction resultant at the
point P belonging to the boundary element Γ〈 j〉
can be written as

R(P) =
j−1

∑
r=1

∫
Γ〈r〉

Np (P)dΓ〈r〉t〈r〉

+
∫ P

P〈 j〉
Np (P)dΓ〈 j〉t〈 j〉

=
j−1

∑
r=1

Wrt〈r〉 +Θ j (P) t〈 j〉

(39)

where P〈 j〉 is the first node of the j-th boundary el-
ement. On the other hand, the discretized version
of eqn. (31) for a collocation point Pi on the crack
representative boundary is written as

cΛk+
M

∑
k=1

H̃ikδ〈k〉 +
m

∑
k=1

Q̃ikΔδ〈k〉

+
M

∑
k=1

(
G̃ik + Z̃ik

)
t〈k〉 = 0 (40)
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where

H̃ik =
∫

Γ〈k〉
[P∗ (P,Pi)−p∗ (P,Pi)]Nu (P)dΓ〈k〉

(41)

G̃ik = −
∫

Γ〈k〉
[U∗ (P,Pi)−u∗ (P,Pi)]Np (P)dΓ〈k〉

(42)

Q̃ik =
∫

Γ f 〈k〉
[P∗ (P,Pi)−p∗ (P,Pi)]N(P)dΓ f 〈k〉

(43)

Z̃ik = ΛH−1
M

∑
j=k+1

∫
Γ〈 j〉

∂ϕ∗ (P,P0)
∂ ñ

W jdΓ〈 j〉

+ΛH−1
∫

Γ〈k〉

∂ϕ∗ (P,P0)
∂ ñ

ΘkdΓ〈k〉 (44)

The numerical solution of the problem is achieved
according to the following scheme. The eq. (35)
is collocated at the nodes on the external bound-
ary. The Eq. (39) is collocated on the crack rep-
resentative boundary at a number of source points
equal to the number of unknown nodal crack rel-
ative displacements plus one. By so doing a
linear algebraic system is obtained whose solu-
tion, taking into account the boundary conditions
given in terms of prescribed displacements and
tractions on the external boundary and zero rel-
ative displacement at the crack tips, provides the
unknown displacements and tractions on the ex-
ternal boundary, the unknown crack relative dis-
placements and the constant k.

5 Applications

To demonstrate the accuracy and efficiency of the
proposed approach, some numerical results are
presented for classical fracture mechanics prob-
lems widely analyzed in the literature [Sollero and
Aliabadi (1995), Garcia, Saez and Dominguez
(2004), Bowie and Freeze (1972), Sollero (1994);
Aliabadi and Sollero (1998)].

The first application deals with the computation
of the stress intensity factors for a square plate

 2h 
2a 

2w

E1

E2

   σ 

Figure 1: Square plate with a central horizontal
crack.

h/w = 1 with a central horizontal crack of length
2a. The plate is loaded with a uniform traction
at the two opposite sides parallel to the crack (see
Figure 1). Different material properties have been
considered in such a way that the shear modulus
G12 = 6GPa and the Poisson’s ratio ν12 = 0.03
have fixed values, whereas different values are set
for the Young’s moduli according to the relations
E1 = G12 (ζ +2ν12 +1) and E2 = E1ζ . The dis-
cretization employed consists of 60 linear bound-
ary elements and the influence coefficients are
computed by using 6-point Gauss quadrature. The
crack collocation points corresponds to the mid-
point between the crack element nodes. The stress
intensity factors (SIF) are computed by the ex-
trapolation method of the relative crack displace-
ments [Pan (1997)], which are directly available
from the solution. Results for the normalized
mode I SIF KI/σ

√
πa are presented in Table 1

for the parameter ζ varying from 0.1 to 4.5 and
a crack length a = 0.2w. In Table 1 the compar-
ison of the present results with those available in
the literature [Bowie and Freeze (1972), Garcia,
Saez and Dominguez (2004), Sollero (1994)] is
presented. Analyses have also been performed
for a crack length a = 0.5w and the comparison
of the results with those of the references [Bowie
and Freeze (1972), Sollero and Aliabadi (1995),
Garcia, Saez and Dominguez (2004)] is shown in
Table 2.
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Table 1: Normalized mode I SIF for an horizontal central crack a/w = 0.2 in a square plate

ζ = E1/E2 Present Bowie and Freeze Sollero Garcia, Saez and Dominguez
(1972) (1994) (2006)

0.1 1.16 1.16 1.16 1.15
0.3 1.10 1.10 1.10 1.10
0.5 1.08 1.08 1.08 1.08
0.7 1.07 1.07 1.07 1.07
0.9 1.06 1.06 1.06 1.06
1.1 1.05 1.05 1.05 1.05
1.5 1.05 1.05 1.05 1.05
2.5 1.04 1.04 1.04 1.04
3.5 1.03 1.03 1.03 1.03
4.5 1.03 1.03 1.03 1.03

Figure 2: Mesh for the square plate with a central
horizontal crack. (a/w=0.5)

The second example deals with an edge horizon-
tal crack in a rectangular plate with h/w = 2 and
a/w = 0.5 as shown in Figure 3. The plate con-
sists of a graphite-epoxy material with orthotropic
properties as E1 = 114.8GPa, E2 = 11.7GPa,
G12 = 9.66GPa and ν12 = 0.21. The discretiza-
tion employed consists of 50 linear boundary el-
ements (see Figure 4) with the crack collocation
points corresponding to the mid-point between
the crack element nodes. The results obtained
for the normalized mode I SIF are given in Ta-
ble 3 where a comparison with literature values
is presented [Aliabadi and Sollero (1998)]. The
present results show an excellent agreement with
those obtained by other methods and confirm the

soundness of the method for cracks in orthotropic
materials.

σ 

  h 
a

 w 

E1

E2

Figure 3: Rectangular plate with an edge horizon-
tal crack.

6 Conclusions

An alternative single domain boundary element
method for two-dimensional orthotropic elastic
solids has been presented. The method rests
on the use of additional integral equations de-
duced by using the stress function. These inte-
gral equations collocated on the crack representa-
tive boundary provide the relations needed to de-
termine the solution in terms of external bound-
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Table 2: Normalized mode I SIF for an horizontal central crack a/w = 0.5 in a square plate

ζ = E1/E2 Present Bowie and Freeze Sollero and Aliabadi Garcia, Saez and Dominguez
(1972) (1995) (2006)

0.1 1.85 1.85 1.85 1.85
0.3 1.57 1.57 1.57 1.57
0.5 1.46 1.46 1.46 1.46
0.7 1.39 1.39 1.39 1.39
0.9 1.35 1.35 1.35 1.35
1.1 1.32 1.32 1.32 1.32
1.5 1.28 1.28 1.28 1.28
2.5 1.24 1.24 1.24 1.24
3.5 1.22 1.22 1.22 1.22
4.5 1.21 1.20 1.20 1.20

Table 3: Normalized mode I SIF for an horizontal edge crack in a rectangular orthotropic plate plate

Present Aliabadi and Sollero (1998) Asadpoure, Mohammadi and Vafai (2006)*
KI/σ

√
πa 2.94 2.96 2.8

* Extrapolated from graph.

Figure 4: Mesh for edge horizontal crack.

ary displacements and tractions and crack relative
displacements. No hypersingular integrals are in-
volved in the formulation with the resulting sim-
plification in numerical implementation. The nu-
merical results obtained show the accuracy and
efficiency of the proposed approach to determine
the stress intensity factors pertaining to cracks in
orthotropic materials
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