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A 2-D Hypersingular Time-Domain BEM for Dynamic Crack Analysis in
Generally Anisotropic Solids

S. Beyer1, Ch. Zhang2, S. Hirose3, J. Sladek and V. Sladek4

Abstract: This paper presents a hypersingular
time-domain boundary element method (BEM)
for transient dynamic crack analysis in two-
dimensional (2-D), homogeneous, anisotropic
and linear elastic solids. A finite crack in an in-
finite or a finite solid subjected to impact load-
ing conditions is investigated. A combination
of the classical displacement boundary integral
equations (BIEs) on the external boundary and the
hypersingular traction BIEs on the crack-faces is
applied. The present BEM uses the time-domain
dynamic fundamental solutions for anisotropic
solids derived by Wang and Achenbach (1994).
An explicit time-stepping scheme based on collo-
cation method is developed. Numerical examples
for computing the dynamic stress intensity factors
(SIFs) are presented and discussed.

Keyword: Hypersingular time-domain BEM,
Collocation method, Transient elastodynamic
crack analysis, Anisotropic elastic solids

1 Introduction

Dynamic crack analysis is of special importance
to linear elastic fracture mechanics and quantita-
tive non-destructive material testing by ultrason-
ics or acoustic emission. Time-domain bound-
ary integral equation method (BIEM) or bound-
ary element method (BEM) provides an effi-
cient and accurate numerical tool for this pur-
pose. Although the BIEM/BEM has been suc-
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cessfully applied to dynamic analysis of homoge-
nous, isotropic and linear elastic solids since
many years (e.g., Aliabadi, 2002; Antes, 1985,
1987; Beskos, 1987, 1997; Bonnet, 1999; Cruse
and Rizzo, 1968; Cruse, 1968; Cole et al., 1978;
Dominguez, 1993; Estorff, 1986; Manolis, 1983;
Mansur, 1983; Niwa et al., 1980), its applications
to anisotropic and linear elastic solids are yet still
very limited. The main reason lies in the fact
that in contrast to homogeneous, isotropic and
linear elastic solids, the fundamental solutions
for homogeneous, anisotropic and linear elastic
solids cannot be given in an explicit form and
they have a much more complicated mathemat-
ical structure, which may affect the numerical
implementation and the efficiency of the time-
domain BEM for transient dynamic crack anal-
ysis in generally anisotropic solids. Recent de-
velopments on time-domain BIEM/BEM for ho-
mogeneous, anisotropic and linear elastic solids
with holes or cracks have been reported by Wang,
Achenbach and Hirose (1996), Hirose (1999), Hi-
rose, Wang and Achenbach (2000), Zhang (2000,
2002a,b), Zhang, Savaidis and Savaidis (2001),
Hirose, Zhang and Wang (2002), Tan, Hirose,
Zhang and Wang (2005), Tan, Hirose and Zhang
(2005). A review on dynamic crack analysis
in anisotropic solids has been given by Zhang
(2004).

In this paper, a 2-D hypersingular time-domain
BEM is presented for transient dynamic crack
analysis in infinite and finite anisotropic solids
with a finite crack under impact loading condi-
tions. A combination of the classical displace-
ment boundary integral equations (BIEs) on the
external boundary and the hypersingular traction
BIEs on the crack-faces is used. The method ap-
plies the time-domain elastodynamic fundamen-
tal solutions for anisotropic solids, which have
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been derived by Wang and Achenbach (1994). In
2-D case, the time-domain elastodynamic funda-
mental solutions for anisotropic solids can be de-
composed into a time-independent singular static
part and a regular dynamic part, which can be
expressed in terms of line integrals over a unit-
circle. To solve the strongly singular and hyper-
singular time-domain BIEs numerically, an ex-
plicit time-stepping scheme is developed. For
both spatial and temporal discretizations a col-
location method is adopted. A linear temporal
shape-function is applied for the temporal approx-
imation of the boundary data. For the spatial ap-
proximation of the boundary data, two different
kinds of spatial shape-functions are implemented.
A “square-root” crack-tip shape-function is cho-
sen for boundary elements adjacent to the crack-
tips, while for all other boundary elements a con-
stant spatial shape-function is used. Time in-
tegrations of the system matrices are performed
analytically, while strongly singular and hyper-
singular spatial boundary integrals are treated by
special analytical and numerical techniques. To
verify the accuracy of the present time-domain
BEM, several numerical examples for the dy-
namic stress intensity factors (SIFs), which can
be directly obtained from the numerically com-
puted crack-opening-displacements (CODs), are
presented and discussed.

2 Problem formulation and time-domain
BIEs

Let us consider a homogeneous, anisotropic and
linear elastic solid containing a crack in a 2-D
plane as depicted in Fig. 1. Here, Γex denotes
the external boundary of the linear elastic solid
and Γ+

c and Γ−
c represent the upper and the lower

crack-face of the crack. In the absence of body
forces, the cracked solid satisfies the equations of
motion and Hooke’s law

σi j, j = ρ üi, (1)

σi j = Ci jkluk,l, (2)

where σi j and ui represent the stress and the dis-
placement components, ρ is the mass density, and
Ci jkl is the 4th-order elasticity tensor. Through-
out the analysis, superscript dots denote deriva-
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Figure 1: A crack in an anisotropic solid

tives with respect to time, and a comma after a
quantity represents spatial derivatives.

In the present boundary integral equation formu-
lation, a combination of the classical displace-
ment BIEs and the traction BIEs is used. The clas-
sical displacement BIEs are applied to the exter-
nal boundary Γex of the cracked solid, which can
be written as

δ (x)uk(x, t) =∫
Γex

[gik(x,y; t)∗ fi(y, t)−hik(x,y; t)∗ui(y, t)]dsy

+
∫
Γc

hik(x,y; t)∗Δui(y, t)dsy, x ∈ Γex (3)

where fi are the traction components, Δui denotes
the CODs, Γc represents the lower crack-face, and
δ (x) is a constant term depending on the smooth-
ness of the boundary. Also, an asterisk in Eq. (3)
denotes the Riemann convolution, which is de-
fined by

gik(x,y; t)∗ fi(y, t)=
t∫

0

gik (x,y; t−τ) fi (y,τ)dτ .

(4)

Furthermore, gik and hik in Eq. (3) are the
time-domain elastodynamic fundamental solu-
tions for homogeneous, anisotropic and linear
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elastic solids, which have been derived by Wang
and Achenbach (1994) via Radon transform.
They can be expressed as line integrals over a unit
circle

gik(x,y; t) =
H(t)
4π2

∫
|n|=1

L

∑
l=1

Pl
ik

ρcl

dn
clt +n · (y−x)

,

(5)

hik(x,y; t) = Ciγ pδ eγ(y)
∂gpk(x,y; t)

∂yδ

=
H(t)
4π2

∂
∂ t

∫
|n|=1

L

∑
l=1

Ql
ik[n,e(y)]

ρc2
l

dn
clt +n · (y−x)

,

(6)

where H(t) denotes the Heaviside function, cl are
the phase wave velocities, and eγ (y) denote the
components of the outward unit normal vector at
y. Also, Pl

ik and ρc2
l represent the projection oper-

ator and the eigenvalues of the Christoffel matrix

Γik(n1,n2) = Ciαkβ nαnβ . (7)

The projection operator Pl
ik in Eq. (5) is defined

by

Pl
ik =

El
ik

El
qq

, (8)

in which

El
ik = Eik (cl,n1,n2) = adj

[
Γik(n1,n2)−ρc2

l δik
]
,

(9)

and δik is the Kronecker delta. In Eq. (6), Ql
ik is

determined by

Ql
ik(n,e) = Ciγ pδ eγ(y)nδPl

pk(n). (10)

The following traction boundary integral equa-
tions are used on the crack-face Γc

δ (x) f j(x, t) =∫
Γex

[
ĥi j(x,y; t)∗ fi(y, t)−wi j(x,y; t)∗ui(y, t)

]
dsy

+
∫
Γc

wi j(x,y; t)∗Δui(y, t)dsy, x ∈ Γc, (11)

with wi j being the higher-order elastodynamic
traction fundamental solution defined by

wi j(x,y; t)

= Cjαkβeα(x)Ciγ pδeγ (y)
∂

∂xβ

∂
∂yδ

gpk(x,y; t)

= −H(t)
4π2 ×

∂ 2

∂ t2

∫
|n|=1

·
L

∑
l=1

Rl
i j [n,e(x),e(y)]

ρc3
l

dn
clt +n · (y−x)

,

(12)

where

Rl
i j[n,e(x),e(y)]

= Cjαkβ eα(x)nβCiγ pδ eγ (y)nδPl
pk(n). (13)

In Eq. (11), ĥi j is defined by

ĥi j(x,y; t) = Cjαkβ eα(x)
∂gik(x,y; t)

∂xβ
. (14)

It should be noted here that the time-domain dis-
placement BIEs (3) contain strongly singular in-
tegrals, while the time-domain traction BIEs (11)
have a hypersingularity at y = x.

3 Time-domain fundamental solutions for
anisotropic linear elastic solids

Wang and Achenbach (1994) showed that the
time-domain displacement fundamental solution
for anisotropic solids can be decomposed into sin-
gular static and regular dynamic terms as

gik(x,y; t)∗ fi(y, t)

= gS
ik(x,y) fi(y, t)+gR

ik(x,y; t)∗ ḟi(y, t). (15)

The singular static part has the following closed-
form expression

gS
ik(x,y) =

1
π

Im
L

∑
l=1

Aik(ηl)
∂η D(ηl)

log[dl(y−x)]+Dik,

(L = 3), (16)
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with dl = (1,ηl), while the regular dynamic part
can be expressed only as a line-integral over a
unit-circle

gR
ik(x,y; t)

=
H(t)
4π2

∫
|n|=1

L

∑
l=1

Pl
ik

ρc2
l

log |clt +n · (y−x)|dn.

(17)

The constant term Dik in the static displacement
fundamental solution (16) is defined by

Dik = − 1
4π2

∫
|n|=1

Γ−1
ik (n1,n2) log |n1|dn

= − 1
π

L

∑
l=1

Aik(ηl)
∂η D(ηl)

log(ηl + i).

(18)

It should be mentioned here that this term is
inessential in elastostatic BIE formulations. How-
ever, to maintain the quiescent field ahead of the
wave fronts caused by a point force the constant
term (18) is required for elastodynamic problems.
The functions Aik(η) and D(η) in Eq. (16) can be
expressed as

Aik(η) = adj [Γik(1,η)] , D(η) = det [Γik(1,η)] ,
(19)

where

Γik (1,η) = Likη2 +
(
Mik +MT

ik

)
η +Nik ,

Lik = C2ik2, Mik = C2ik1, Nik = C1ik1.
(20)

Moreover, the complex variable η l in Eq. (16)
denotes the distinct roots of the following sixth-
order characteristic polynomial

D(ηl) = 0 with Im(ηl) > 0. (21)

Equation (21) has three distinct roots ηl (l =
1,2,3) for generally anisotropic solids.

The derivative ∂η D(ηl) can be written as

∂η D(ηl) = [D(ηl)/(η −ηl)] at η = ηl . (22)

In accordance with the decomposition of the dis-
placement fundamental solution, the higher-order

elastodynamic fundamental solutions (6), (12)
and (14) can be also separated into singular static
and regular dynamic terms as

hik(x,y; t)∗ui(y, t)

= hS
ik(x,y)ui(y, t)+hR

ik(x,y; t)∗ üi(y, t), (23)

ĥi j(x,y; t)∗ fi(y, t)

= ĥS
i j(x,y) fi(y, t)+ ĥR

i j(x,y; t)∗ f̈i(y, t), (24)

wi j(x,y; t)∗ui(y, t)

= wS
i j(x,y)ui(y, t)+wR

i j(x,y; t)∗ üi(y, t). (25)

Substitution of Eq. (16) into Eqs. (6), (12)
and (14) and application of the Stroh’s formal-
ism yield the following closed-form expressions
for the static parts of the higher-order fundamen-
tal solutions

hS
ik(x,y)

=
1
π

∂
∂ sy

Im
L

∑
l=1

Bik(ηl)
∂η D(ηl)

log [dl(y−x)] , (26)

ĥS
i j(x,y)

=
1
π

∂
∂ sx

Im
L

∑
l=1

Bi j(ηl)
∂η D(ηl)

log [dl(y−x)] , (27)

wS
i j(x,y)

=
1
π

∂
∂ sx

∂
∂ sy

Im
L

∑
l=1

Ci j(ηl)
∂η D(ηl)

log [dl(y−x)] ,

(28)

where

Bik(η) = (Lipη +Mip)Apk,

Ci j(η) = (Lipη +Mip)Apk
(
Ljkη +Mjk

)
.

(29)

In Eqs. (26)-(28), the vectors sx and sy repre-
sent the unit tangent vectors on the crack-face and
the external boundary at x and y (see Fig. 1).
Moreover, ∂/∂ sx and ∂/∂ sy denote the tangential
derivatives with respect to sx and sy. In the case of
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y = x, Eqs. (26) and (27) involve a strong singu-
larity, while Eq. (28) contains a hypersingularity
.

The regular dynamic parts of the higher-order fun-
damental solutions can be expressed as

hR
ik(x,y; t) =

H(t)
4π2

∫
|n|=1

L

∑
l=1

Ql
ik[n,e(y)]

ρc3
l

×

log |clt +n · (y−x)|dn, (30)

ĥR
i j(x,y; t) = −H(t)

4π2

∫
|n|=1

L

∑
l=1

Ql
i j[n,e(x)]

ρc3
l

×

log |clt +n · (y−x)|dn, (31)

wR
i j(x,y; t) = −H(t)

4π2

∫
|n|=1

L

∑
l=1

Rl
i j [n,e(x),e(y)]

ρc3
l

×

1
clt +n · (y−x)

dn. (32)

4 Numerical solution procedure

A collocation method is developed to solve the
strongly singular and hypersingular time-domain
BIEs. The external boundary and the crack-face
are discretized into E straight elements Γe

Γ = Γex +Γc =
E

∑
e=1

Γe, (33)

while the time t is divided into M constant time-
steps Δt, i.e. t = MΔt.The total element-number is
given by E = Eex + Ec, where Eex is the element-
number for the external boundary and Ec is the
element-number for the crack-face, respectively.

The unknown CODs, the displacements over the
external boundary, and the tractions over the
crack-face as well as the external boundary are
approximated by the following interpolation func-
tions

Δui(y,τ) =
Ec

∑
e=1

M

∑
m=1

μe(Δu)(y) ·ηm
(Δu)(τ) · (Δui)m

e ,

(34)

ui(y,τ) =
Eex

∑
e=1

M

∑
m=1

μe(u)(y) ·ηm
(u)(τ) · (ui)m

e , (35)

fi(y,τ) =
Eex+Ec

∑
e=1

M

∑
m=1

μe( f )(y) ·ηm
( f )(τ) · ( fi)m

e . (36)

A linear temporal shape-function ηm
(·)(τ) is used

for the temporal approximation of the boundary
data

ηm
(·)(τ) =

1
Δt

{[τ − (m−1)Δt]H [τ − (m−1)Δt]

−2 [τ −mΔt]H [τ −mΔt]
+ [τ − (m+1)Δt]H [τ − (m+1)Δt]} .

(37)

Two different spatial shape-functions μe(·)(y) are
implemented for the spatial approximation of the
boundary data. On the external boundary and on
the crack-face away from the crack-tips, a piece-
wise constant spatial shape-function is applied

μe(u)(y) = μe(Δu)(y) = μe( f )(y) =

{
1, y ∈ Γe,

0, y /∈ Γe,

(38)

while on the crack-face near the crack-tips a
“square-root” crack-tip shape-function is adopted.
The use of special crack-tip shape-function en-
sures a proper description of the local behavior of
the CODs at the crack-tips and thus an accurate
computation of the dynamic SIFs.

After substituting the interpolation functions (34)-
(36) into the BIEs (3) and (11) and after collocat-
ing them at the E discrete points, a system of lin-
ear algebraic equations for the unknown boundary
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data is obtained as

δd(uk)M
d

=
Eex

∑
e=1

GS
ik( f )(d,e)( fi)M

e −
Eex

∑
e=1

HS
ik(u)(d,e)(ui)M

e

+
Ec

∑
e=1

HS
ik(Δu)(d,e)(Δui)M

e

+
M

∑
m=1

Eex

∑
e=1

GR
ik( f )(d,e;M−m+1)( fi)m

e

+
Ec

∑
e=1

HR
ik(Δu)(d,e)(Δui)M

e

+
M

∑
m=1

Ec

∑
e=1

HR
ik(Δu)(d,e;M−m+1)(Δui)m

e ,

xd ∈ Γex,

(39)

δd( f j)M
d

=
Eex

∑
e=1

HS
i j( f )(d,e)( fi)M

e −
Eex

∑
e=1

W S
i j(u)(d,e)(ui)M

e

+
Ec

∑
e=1

W S
i j(Δu)(d,e)(Δui)M

e

+
M

∑
m=1

Eex

∑
e=1

HR
i j( f )(d,e;M−m+1)( fi)m

e

−
M

∑
m=1

Eex

∑
e=1

W R
i j(u)(d,e;M−m+1)(ui)m

e

+
M

∑
m=1

Ec

∑
e=1

W R
i j(Δu)(d,e;M−m+1)(Δui)m

e ,

xd ∈ Γc.

(40)

In Eqs. (39) and (40)

δd =

{
1/2,xd ∈ Γex,

0,xd ∈ Γc,
(41)

GS
ik( f )(d,e) =

∫
Γe

{
1
π

Im
L

∑
l=1

Aik(ηl)
∂η D(ηl)

log [dl(y−xd)]+Dik

}
×

μe( f )(y)dsy, (42)

HS
ik(u)(d,e) =∫

Γe

1
π

∂
∂ sy

Im
L

∑
l=1

Bik(ηl)
∂η D(ηl)

log [dl(y−xd)]×

μe(u)(y)dsy, (43)

HS
ik(Δu)(d,e) =∫

Γe

1
π

∂
∂ sy

Im
L

∑
l=1

Bik(ηl)
∂η D(ηl)

log [dl(y−xd)]×

μe(Δu)(y)dsy, (44)

HS
i j( f )(d,e) =∫

Γe

1
π

∂
∂ sx

Im
L

∑
l=1

Bi j(ηl)
∂η D(ηl)

log [dl(y−xd)]×

μe( f )(y)dsy, (45)

W S
i j(u)(d,e) =∫

Γe

1
π

∂
∂ sx

∂
∂ sy

Im
L

∑
l=1

Ci j(ηl)
∂η D(ηl)

log [dl(y−xd)]×

μe(u)(y)dsy, (46)

W S
i j(Δu)(d,e) =∫

Γe

1
π

∂
∂ sx

∂
∂ sy

Im
L

∑
l=1

Ci j(ηl)
∂η D(ηl)

log [dl(y−xd)]×

μe(Δu)(y)dsy, (47)

GR
ik( f )(d,e;M−m+1) =

(m+1)Δt∫
(m−1)Δt

H(t)
4π2 Iik(d,e;τ)η̇m

( f )(τ)dτ , (48)

HR
ik(u)(d,e;M−m+1) =

(m+1)Δt∫
(m−1)Δt

H(t)
4π2 Jik(d,e;τ)η̈m

(u)(τ)dτ , (49)
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HR
ik(Δu)(d,e;M−m+1) =

(m+1)Δt∫
(m−1)Δt

H(t)
4π2 Kik(d,e;τ)η̈m

(Δu)(τ)dτ , (50)

HR
i j( f )(d,e;M−m+1) =

(m+1)Δt∫
(m−1)Δt

H(t)
4π2 Si j(d,e;τ)η̈m

( f )(τ)dτ , (51)

W R
i j(u)(d,e;M−m+1) =

(m+1)Δt∫
(m−1)Δt

H(t)
4π2 Ti j(d,e;τ)η̈m

(u)(τ)dτ , (52)

W R
i j(Δu)(d,e;M−m+1) =

(m+1)Δt∫
(m−1)Δt

H(t)
4π2 Ui j(d,e;τ)η̈m

(Δu)(τ)dτ , (53)

where

t = tM −τ , (54)

Iik(d,e, t) =
∫
Γe

∫
|n|=1

L

∑
l=1

Pl
ik

ρc2
l

log |clt +n · (y−xd)|

×dnμe( f )(y)dsy, (55)

Jik(d,e, t) =
∫
Γe

∫
|n|=1

L

∑
l=1

Ql
ik[n,e(y)]

ρc3
l

×

log |clt +n · (y−xd)|dnμe(u)(y)dsy, (56)

Kik(d,e, t) =
∫
Γe

∫
|n|=1

L

∑
l=1

Ql
ik[n,e(y)]

ρc3
l

×

log |clt +n · (y−xd)|dnμe(Δu)(y)dsy (57)

Si j(d,e, t) = −
∫
Γe

∫
|n|=1

L

∑
l=1

Ql
i j[n,e(x)]

ρc3
l

×

log |clt +n · (y−xd)|dnμe( f )(y)dsy, (58)

Ti j(d,e, t) = −
∫
Γe

∫
|n|=1

L

∑
l=1

Rl
i j

ρc3
l

1
clt +n · (y−xd)

×

dnμe(u)(y)dsy, (59)

Ui j(d,e, t) = −
∫
Γe

∫
|n|=1

L

∑
l=1

Rl
i j

ρc3
l

1
clt +n · (y−xd)

×

dnμe(Δu)(y)dsy. (60)

To compute the system matrices containing
strongly singular and hypersingular boundary in-
tegrals, special analytical and numerical tech-
niques are developed. Time integrations arising in
the system matrices are carried out analytically. In
the case of constant shape-functions spatial inte-
grations can also be performed analytically, while
in the case of crack-tip shape-functions analytical
and numerical integrations are required. The line-
integrals over a unit-circle in the dynamic part
of the fundamental solutions are computed nu-
merically. Finally, the present time-domain BEM
yields an explicit time-stepping scheme for com-
puting the time-dependent CODs and other un-
known boundary quantities.

5 Computation of dynamic stress intensity
factors

After the time-dependent CODs have been com-
puted numerically by using the time-domain
BEM as presented in the previous section, the
mode-I and the mode-II elastodynamic SIFs can
be obtained directly from the CODs. For this pur-
pose, the following relation between the elastody-
namic SIFs and the CODs is applied (Sih, Paris
and Irwin, 1965; Zhang, 2004)

{
KI(t)
KII(t)

}
=
√

2π
4Δ

[
H11 H12

H21 H22

]
lim
r→0

1√
r

{
Δu1 (r, t)
Δu2 (r, t)

}
,

(61)

where

[
H11 H12

H21 H22

]
=

⎡
⎣ Im

(
q1−q2
μ1−μ2

)
Im

(
p2−p1
μ1−μ2

)
Im

(
μ1q2−μ2q1

μ1−μ2

)
Im

(
μ2p1−μ1 p2

μ1−μ2

)
⎤
⎦ ,

(62)
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and

Δ = H11H22 −H12H21. (63)

In Eq. (61), r denotes the distance from the crack-
tip to the collocation point closest to the crack-tip,
and μα are the two complex roots of the following
characteristic equation

b11μ4
α −2b16μ3

α +(2b12 +b66)μ2
α −2b26μα +b22

= 0, (64)

where bi j (i, j = 1,2,6) represents the compliance
matrix of the anisotropic solids, and

pα = b11μ2
α +b12 −b16μα ,

qα =
(
b12μ2

α +b22 −b26μα
)
/μα .

(65)

6 Numerical examples

To illustrate the accuracy and the efficiency of the
present time-domain BEM, numerical examples
are presented in this section.

6.1 A finite crack in an infinite anisotropic
solid

In the first numerical example, we consider a fi-
nite crack of length 2a in an infinite, anisotropic
and linear elastic solid subjected to an impact ten-
sile loading as shown in Fig. 2.

x2

x1+a-a

σ (t)

t

σ (t)

σ *

Figure 2: A finite crack in an infinite anisotropic
solid subjected to an impact tensile loading

Numerical calculations are carried out for the
following elastic constants, which correspond to
Graphite-epoxy composite with a composition of

65% graphite and 35% epoxy

Ci j =⎡
⎢⎢⎢⎢⎣

95.46 28.93 4.03 0 0 44.67
25.91 4.65 0 0 15.56

16.34 0 0 0.54
4.4 −1.78 0

sym 6.45 0
32.68

⎤
⎥⎥⎥⎥⎦GPa,

ρ = 1600kg/m3.

For convenience, the mode-I and the mode-II dy-
namic SIFs are normalized by

Ki(t) = Ki(t)/Kst
I , (i = I, II), (66)

with

Kst
I = σ

√
πa, (67)

where σ is the amplitude of the impact tensile
loading , and a is the half crack-length.

For the discretization of the crack-face a total
number of 20 elements is chosen and a time-step
cT Δt/a = 0.1 is used, where cT =

√
C66/ρ repre-

sents the transverse wave velocity.

In Figs. 3 and 4 the numerical results for the
normalized dynamic SIFs KI(t) and KII(t) ver-
sus the dimensionless time cT t/a are presented.
A comparison with the numerical results obtained
by other time-domain BEM [Hirose, Zhang and
Wang (2002) and Zhang, Savaidis and Savaidis
(2001)] shows a very good agreement.

Then, we consider a finite crack in an infinite
anisotropic solid subjected to an impact shear
loading as shown in Fig. 5. The same element
number and time-step as in the previous exam-
ple are applied. In this case, the mode-I and the
mode-II dynamic SIFs are normalized by

Ki(t) = Ki(t)/Kst
II , (i = I, II), (68)

where

Kst
II = τ

√
πa, (69)

with τ being the amplitude of the impact shear
loading , and a is the half crack-length.

The corresponding normalized mode-I and mode-
II dynamic SIFs versus the dimensionless time
cT t/a are presented in Figs. 6 and 7. Here again,
one can see a quite good agreement with the nu-
merical results of Hirose, Zhang and Wang (2002)
and Zhang, Savaidis and Savaidis (2001).
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Figure 3: KI(t) for an impact tensile crack-face
loading
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Figure 4: KII(t) for an impact tensile crack-face
loading
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Figure 5: A finite crack in an infinite anisotropic
solid subjected to an impact shear loading

6.2 A central crack in a finite anisotropic plate

In the second numerical example, we consider
a central crack in a rectangular orthotropic plate
subjected to an impact loading normal to the
crack-face as illustrated in Fig. 8. The plate ge-
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Figure 6: KI(t) for an impact shear crack-face
loading
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Figure 7: KII(t) for an impact shear crack-face
loading

ometry is defined by 2w = 20mm, 2h = 40mm and
2a = 4.8mm. The following material constants
are used in the numerical calculations: Young’s
moduli E1 = 118.3GPa, E2 = 54.3GPa, shear
modulus G12 = 8.79GPa, Poisson’s ratio ν12 =
0.083 and mass density ρ = 1900kg/m3. Plane
stress condition is assumed.

The cracked plate is discretized into 136 ele-
ments, 42 for the horizontal boundaries, 84 for
the vertical boundaries and 10 for the crack-
face. The time-step is taken as Δt = 2a/(10cT) =
0,223μs with cT Δt/Δlcrack = 1.0, where Δlcrack is
the element-length of the crack-face.

Figure 9 shows the normalized mode-I dynamic
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t
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Figure 8: A central crack in a rectangular or-
thotropic plate
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Figure 9: Normalized mode-I dynamic stress in-
tensity factor for a rectangular orthotropic plate
with a central crack
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Figure 10: Effects of the time-step on the normal-
ized mode-I dynamic stress intensity factor

SIF versus time t. A comparison of our numeri-
cal results with that of Albuquerque, Sollero and
Aliabadi (2004) using a dual boundary element
method and with Hua, Tian-You and Lan-Quao
(1996) using a finite-difference method shows a
satisfactory agreement. Although there is a small
deviation in the maximum value of KI(t) from
the maximum values of Albuquerque, Sollero and
Aliabadi (2004) and Hua, Tian-You and Lan-
Quao (1996), the global behavior of the three dif-
ferent curves is very similar.

As is well known for the explicit time-stepping
scheme, the accuracy and the quality of the
present time-domain BEM are dependent on the
selected time-step. The effect of the used time-
step on the normalized mode-I dynamic stress in-
tensity factor is presented in Fig. 10. Stable and
accurate results can be achieved for a time-step
cT Δt/Δlcrack = 1.0. Smaller time-steps such as
cT Δt/Δlcrack = 0.8 lead to unstable numerical re-
sults for KI(t). On the other hand, for larger time-
steps such as cT Δt/Δlcrack = 4.0, unrealistically
large numerical damping occurs in KI(t) and the
results become less accurate.

6.3 A slanted edge crack in an orthotropic
plate

In the last numerical example, a rectangular or-
thotropic plate with a slanted edge crack subjected
to an impact tensile loading is investigated, see
Fig. 11. Plane stress condition is assumed and
the following geometrical parameters are consid-
ered: w=32mm, h=44mm, c=6mm, a=22.63mm
and α = 45o. The used orthotropic material
properties are: Young’s moduli E1 =82.4GPa,
E2 =164.8GPa, shear modulus G12 =29.4GPa,
Poisson’s ratio ν12 =0.4006 and mass density ρ =
2450kg/m3. The cracked plate is discretized by
a total number of 50 elements, 8 for the crack-
face, 24 for the horizontal boundaries and 18 for
the vertical boundaries. The time-step is selected
as Δt = 0.866μs corresponding to cT Δt/Δlcrack =
1.06, where cT represents the transverse wave
velocity and Δlcrack is the element-length of the
crack-face, respectively.

In Figs. 12 and 13, the numerical results for
the normalized mode-I and mode-II dynamic
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Figure 11: A slanted edge crack in a rectangular
orthotropic plate
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Figure 12: Normalized mode-I dynamic stress in-
tensity factor for a slanted edge crack
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Figure 13: Normalized mode-II dynamic stress
intensity factor for a slanted edge crack

SIFs obtained by the present time-domain BEM
are presented and compared with that of Al-
buquerque, Sollero and Aliabadi (2002) using
a sub-region BEM, Albuquerque, Sollero and
Fedelinski (2003) using a dual reciprocity bound-
ary element method (DRBEM) in the Laplace-
transformed domain, and Albuquerque, Sollero
and Aliabadi (2004) via a dual boundary element
method (DBEM). It can be seen in Figs. 12 and 13
that the normalized dynamic SIF obtained by the
present time-domain BEM agree quite well with
other numerical results.

7 Conclusions

This paper presents a hypersingular time-domain
BEM for transient dynamic crack analysis in 2-
D, homogeneous, generally anisotropic and lin-
ear elastic solids. In particular, a finite crack in
an infinite or a finite solid subjected to impact
loading conditions is investigated. For this pur-
pose, a time-domain boundary integral equation
formulation is developed, which uses a combi-
nation of the classical displacement BIEs for the
external boundary and the hypersingular traction
BIEs for the crack-face. To solve the time-domain
BIEs numerically, a numerical solution procedure
based on a collocation method for both the tempo-
ral and spatial discretizations is developed. Time
integrations are carried out analytically, while
strongly singular and hypersingular spatial inte-
grals are computed by special analytical and nu-
merical integration techniques. Integrations over
the unit-circle arising in the elastodynamic funda-
mental solutions are performed numerically. An
explicit time-stepping scheme is finally obtained
to compute the discrete CODs and other unknown
boundary data. Special crack-tip shape functions
are adopted at the crack-tips to properly describe
the local behavior of the CODs at the crack-tips.
This ensures an accurate and direct computation
of the dynamic SIFs from the numerically de-
termined CODs. To verify the accuracy and the
efficiency of the present time-domain BEM for
transient dynamic crack analysis in 2-D homo-
geneous, generally anisotropic and linear elastic
solids, numerical examples for both infinite and fi-
nite domains containing a central crack or an edge
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crack are presented and discussed. Comparisons
of the present numerical results for the normal-
ized dynamic stress intensity factors with that ob-
tained by other numerical methods show a good
agreement.
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