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Meshless Method with Enriched Radial Basis Functions for Fracture
Mechanics
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Abstract:  In the last decade, meshless methods
for solving differential equations have become a
promising alternative to the finite element and
boundary element methods. Based on the varia-
tion of potential energy, the element-free Galerkin
method is developed on the basis of finite ele-
ment method by the use of radial basis function
interpolation. An enriched radial basis function
is formulated to capture the stress singularity at
the crack tip. The usual advantages of finite ele-
ment method are retained in this method but now
significant improvement of accuracy. Neither the
connectivity of mesh in the domain by the finite
element method or integrations with fundamen-
tal/particular solutions by the boundary element
method is required in this approach. The appli-
cations of element-free Galerkin method with en-
riched radial basis function for two-dimensional
fracture mechanics have been presented and com-
parisons have been made with benchmark analyt-
ical solutions.

Keyword: Element-free Galerkin method, Vari-
ation of potential energy, Cracks, Enriched radial
base function, Stress intensity factors.

1 Introduction

Engineering computations have made significant
progress over the past three decades and the most
successful methods among them are the finite el-
ement method and the boundary element method.
It is well-known that the finite element method
(FEM) is the most widely used numerical method
which can effectively deal with linear, nonlinear
and large scale problems. However, the finite el-
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ement method suffers from drawbacks of requir-
ing the generation of a mesh cells with thousands
of nodes, particularly for the crack propagation
and moving boundaries. The boundary element
method (BEM) is now a well-established tech-
nique for analysis of certain engineering prob-
lem with particular advantages. But many in-
tegrals over the domain occur in the boundary
integral equations for most nonlinear problems.
Moreover, pure boundary integral formulations
are available only if the fundamental solution of
the governing operator is known.

Meshless approximations have received much in-
terest since Nayroles et al (1992) proposed the
diffuse element method. Later, Belyschko et al
(1994) and Liu et al (1995) proposed element-
free Galerkin method (EFGM) and reproducing
kernel particle methods, respectively. A key fea-
ture of these methods is that they do not require
a structured grid and are hence meshless. Re-
cently, Atluri and co-workers presented a family
of Meshless methods, based on the Local weak
Petrov-Galerkin formulation (MLPGs) for arbi-
trary partial differential equations [S.N. Atluri et
al (1998a, 1998b, 1999, 2002, 2004)] with mov-
ing least-square (MLS) approximation. MLPG
is reported to provide a rational basis for con-
structing meshless methods with a greater degree
of flexibility. Local Boundary Integral Equation
(LBIE) with moving least square and polynomial
radial basis function (RBF) has been developed by
Sladek et al (2004, 2005, 2006) for the boundary
value problems in anisotropic non-homogeneous
media. Both methods (MLPG and LBIE) are
meshless, as no domain/boundary meshes are
required in these two approaches. However,
Galerkin-base meshless methods, except MLGP
presented by Atluri (2004) still include several
awkward implementation features such as numer-
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ical integrations in the local domain. A compre-
hensive review of meshless methods (MLPG) can
be found in the book [Atluri (2004)] by Atluri.

A range of local interpolation schemes that in-
terpolate the randomly scattered points is cur-
rently available. The moving least square and ra-
dial basis function interpolations are two popu-
lar approximation techniques recently developed.
Comparisons of these two techniques have shown
that the moving least-square approximation is the
generally best scheme with a reasonable accu-
racy Wen et al (2007). Lancaster and Salkauskas
(1981) present the properties of MLS approxima-
tion in details. Moreover, the development of
the radial basis function interpolation as a truly
meshless method has drawn the attention of many
investigators (see Golberg et al (1996)). Hardy
(1971), Kansa (1991a, 1991b) Hon et al (1997)
used multiquadric interpolation method for solv-
ing spatial approximation scheme for parabolic,
hyperbolic and the elliptic Poisson’s equationlin-
ear differential equation. Li et al (2003) com-
pared two meshless methods, i.e. the method of
fundamental solution (MFS) and dual reciprocity
method (DRM), by the use of radial basis func-
tions. Numerical results indicate that these two
methods provide a similar optimal accuracy in
solving both 2D Poisson’s and parabolic equa-
tions.

Using the finite element method, we calculate the
displacements and stresses in each element by its
nodal values of displacement. In addition, the
material properties such as Young’s modulus and
Poisson ratio are treated as constants in each el-
ement. Apparently the stresses are not continu-
ous crossing each element, although the displace-
ments are continuous everywhere. Hence, these
discontinuities of stress and material properties in
the field reduce the accuracy of numerical sim-
ulation. For instance, to achieve high accuracy
around a sharp corner or in front of the crack tips,
high density elements or special elements must
be introduced in the local region by FEM. The
application of meshless method to fracture me-
chanics, i.e. evaluation of stress intensity fac-
tors at crack tips and analysis of crack growth,
were demonstrated by Fleming et al (1997) and
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Rao et al (2001) by using enriched basis function
in the moving least square interpolation. How-
ever, this method is computationally expensive
because a coefficient matrix must be inverted at
each Gauss integration point. In this paper, a ele-
ment free Galerkin method is presented with com-
pactly supported enriched radial basis function
(RBF) interpolation. Following the same tech-
nique to derive system equations for finite element
method, the stiffness matrix is established by the
variation of potential energy using enriched RBF
interpolations. Therefore, the stiffness matrix is
still symmetric and has a diagonal strip distribu-
tion and also this method can be combined with
FEM directly. The accuracy of proposed method
has been demonstrated through benchmark exam-
ples.

2 Variation of potential energy

In the case of a homogeneous anisotropic and lin-
ear elasticity, relationship between the stress and
strain by Hooke’s law can be written as

0;j(x) = Ciju(x)&r(x) = Cijra(X)ur 1(x), (1)

where &y = (ux;+u;x) /2, and Cjr; denotes the
elasticity tensor which has the following symme-
tries

Cijki = Cjirt = Cuij- (2)
For a homogeneous isotropic solid, we have
Ciju(x) = A (%) 80 + 1 (x) (O 0ji +8udjx)  (3)

where A and u are the Lame’s constants. For the
isotropic plane stress state, Hooke’s law can also
be written, in matrix form, as

O11 €11
0=« O] =D & p = De (4)
O11 €12
where
1 v 0
E
= v 1 0 5
1—v2 1-v
00 7

in which, E is the Young’s modulus and v the
Poisson’s ratio. Consider the domain Q enclosed
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node X

sub-domain Qv

field point y

Figure 1: Sub-domain Q, for RBF interpolation of the field point y and support domains.

by boundary A, we have the total potential energy
for the plane stress by

Mn=vU-w (6)

where the initial elastic strain energy
L[
U =3 [o"eyday)
Q
1
— [ mpemaa) @
Q

and the external energy, the sum of contributions
from known interior and boundary forces, is

W= [u@bEd(y)+ [uTWHyT(y) ©)
Q r

where b = {b,b,}" is the body force vector,
t={11,1}" in which#; = 6j;n;, the vector of trac-
tion on the boundary and n; denotes a unit outward
normal vector. We assume that the displacements
u(y) at the point y can be approximated in terms
of the nodal values in a local domain (see Figure
1) as

wi(y) =Y, oy, x)tf = ®(y, x)iy; )

(IA)(yv X) - {¢1 (Y7 X )7 ¢2(Y7 X2)7 cr ey ¢n(y)(Y7 Xn(y))}

and

4;(x) is the nodal values at point x; =
{xgk),xgk)}, k = 1,2,...,n(y),¢x the shape
function and n(y) the total number of node in the
local domain named as the supported domain. For

the two dimensional plane stress case, we can re-
arrange the above relation as follows

u(y) = {ur,u2}" = ®(y, %)
® 0
o = .
(y7X) |:O ¢:|
10
_[d)] 0 ¢ 0 .. Gy O ] (10
0 ¢1 0 ¢2 0 ¢n(y)
T
a={a},a}at.a3....a", a5}
Therefore, the relationship between strains and
displacements is given by

e(y)
W g I Wy
ij‘ 991 (z; 99 (z; IOy | &
= = == L. —Xla
dy dy dy
991 901 9% 9% I0ny)  In(y)
dy ox dy ox dy ox

=B(y)a. (11)

To arrive at the system equations in terms of nodal
displacement, consider the variation of the total
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potential energy, with respect to each nodal dis-
placements, to give

STI=68U—86W =0 (12)

Inserting the relations u = @1, € = Bt and 6 = De
into Eq. (12) yields 2 x N linear algebraic equa-
tions in the global coordinate system:

[Kloyswont2xn = faxn (13)

where N is the total number of node in the domain
Q. The stiffness matrix becomes:

K= [ BT(x y)D(y)B(x.y)dOAy)
Q
fornodesx=x; i=1,2,...,N, (14)

and nodal force vector is

f= [T (xyb(yd(y)+ [ (x Hy)ar(y)
Q I's
(15)

where I's denotes the boundary on which the trac-
tion is given. For a concentrated force acting at
the node i, we may determine the nodal force vec-
tor directly by

f,={F,F}" (16)

where Fj and F> denote the values of concentrated
forces at the node either on the boundary (exter-
nal applied force) or in the domain (inner body
force). Therefore, the distributed loads includ-
ing boundary loads and body forces can be sim-
plified to nodal forces in the same way as FEM,
so that the domain and boundary integrals in Eq.
(15) can be avoided. It is worth to notice that for
the finite element method, displacements at point
y can be approximated by the nodal values of its
own element only, and the number of node to be
involved in interpolation depends on the element
type, for instance, 3 for triangle element and 4 for
rectangular. From the interpolation point of view,
the accuracy of MLS and RBF should be higher
than that of the finite element method, due to more
nodes being involved.
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3 The approximation scheme

The multiquadric RBF was introduced by Hardy
(1971) in 1971 for interpolation of topographi-
cal surfaces. In 1991 Kansa (1991a, 1991b) pre-
sented an enhanced multiquadrics scheme devel-
oped for spatial approximations. Since all radial
basis functions are defined globally, the resulting
matrix for interpolation is dense and can be ill-
conditioned, particularly for a large number of in-
terpolation points. It also poses serious stability
problems and is computationally inefficient.

A sub-domain Q,as shown in Figure 1 is the
neighbourhood of a point y and is also called sup-
port domain to an arbitrary point y. The distri-
bution of function u in the sub-domain €, over a
number of randomly distributed notes {x;}, i =
1,2,...,n(y) can be interpolated, at the point y,
by

n(y)
u(y) =Y Ri(y,x;)a; = R"(y,x)a(y) (17)
=1

where  RT(y,x) = {Ri(y,x), Rx(y,X),...,
R, y)(y,x)} is the set of radial basis functions
centred at the point y, {ak}zgl) are the unknown
coefficients to be determined. To capture the
singular stresses in front of the crack tip, the
enriched radial basis function has been selected
to be the following

Ri(y,x) =R(y —xx) + O(y)

=/ +]y—xe[*+ (B+Vre ™) (18)

; o, B and c are three free pa-

where r = |y —y.
rameters; Y. (ygc), ygc)) denotes the crack tip. Also
we select ¢ = b(b is specified length, such as the
width of the rectangular plate or the radius of the
circular disk) in this paper. From the interpolation
strategy in Eq. (18) for RBE a linear system for

the unknowns coefficients a is obtained by
Roa =1 (19)
where coefficient matrix

Ri(x1,X1) Ra(X1,X2) ... R,
R

(y) (Xl -,Xn(y))
R (Xz,Xl) RZ(XZ-,XZ) (

u(y) (X2 Xu(y) )

R) =

R (Xn(y) -,Xl) Ry (Xn(y) ,Xz) Rn(y) (Xn(y) -,Xn(y))
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(20)

As the RBFs are positive definite, the matrix Ry is
assured to be invertible. Therefore, we can obtain
the vector of unknowns from Eq. (19)

a =R, (x)i(x) 21)

So that the approximation u(y) can be repre-
sented, at domain point y, as

R n(y)

u(y) =R'(y,x)R; ' (x)8(x) = D(y, x) 0=’ uilx
k=1

(22)

where the nodal shape function are defined by

®(y,x) =R7(y, R, (%) (23)
It is worth noticing that the shape function de-
pends uniquely on the distribution of scattered
nodes within the support domain and has the prop-
erty of Kronecker Delta. As the inverse matrix
of coefficient R;'(x) is a function only of dis-
tributed node x; in the support domain, it is much
simpler to evaluate the partial derivatives of shape
function. From Eq. (22), we have

n(y)

ur(y) = @iy, x)a = ¢l (24)
i=1

where

@ (y,x) =R (v, )R, (x)

= [Rl-,k(yv X)vRZ,k(yv X)v s 7Rn(y),k(Y7 X)]Ral (X)
(25)

From Eq. (18), we have

Yk — x,(:)

Ve +ly—xif?

(c)
Yk — Vi 1 _ —ar
i (2\/; a)e . (26)

Therefore, the displacement derivatives have
1/4/r singularity near the crack tip.

Ri,k(vai) -

4 Numerical process to evaluate stiffness ma-
trix

To determine the stiffness matrix K in Eq.(13),
a domain integral in Eq.(14) over the domain Q
should be carried out. For convenience of anal-
ysis, we assume that the domain can be divided
into M rectangular sub-regions as shown in Figure
2 (for irregular shape of integral sub-domain, co-
ordinate transformation, i.e. mapping technique,
should be used). The 2D domain integral over
a rectangular of area A is approximated by the
Gaussian integration formula as

L
//f(xl ,Xo)dxidxy ~ A sz(xgl),xg)) (27)
A i=1

where w; denotes the weight of integral, L the

2h,

—— 2/, ——

Figure 2: Gaussian integration points y; (ygl), ygl))

for a two-dimensional problem.

number of Gaussian points and (xgl),xgl)) is the
coordinate of Gaussian points as shown in Figure
2. If domain Q is divided into M sub-domain, then
the matrix of stiffness can be written, using four
Gaussian points scheme, as the following

K(x) = [ BT(xy)D(y)B(x.y)dAy)
Q

I
3
i M=
M-
>
E
=
H
—~~
JN
e
S=
'l
—~
)
S=
=
—~
JN
)
S=

I
Mz
M-

>

A
=3

3
Il
—_
—
Il
—_

(28)
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where the integration points y (ygml),ygml)) and
coefficients w; are given by

y(1234 < mifh],yz \/7]/12)
(29)

Wi234 = 4_1

in which y,,(y]', %) presents the centre of sub in-
tegral domain with area A,, (rectangular), #; and
hy are half of the width and height of the rect-
angular region respectively and A,, = 4h h,. For
each Gaussian point y;, the elements in the stiff-
ness sub-matrix AK}" can be simplified to

(30)

where i and j denote the number of nodes in the
local support domain centred at y;, ¢; = ¢;(y;,X),
i,j=1,2,...,n(y;). These four values in Eq. (30)
should be added to the global system stiffness ma-
trix K, i.e. to the elements ky;—127-1, kor—12,
kar27—1 and kp; oy respectively, as shown in the
Figure 3, where [ and J denote the numbers in
the global system for the node i and j in the local
support domain centred at y;. For each Gaussian
point y;, the number of node i varies due to the
change of centre of the support domain.

In the system stiffness matrix K in Eq. (28), the
integral function has strong singularity of O(1/r).
Therefore, we need to use coordinate transforma-
tion technique to cancel that singularity for the in-
tegral sub region at the crack tip. For example, the
sub region (two squares) is divided into four trian-
gular sub domains and each triangular domain is
transformed to a square as shown in Figure 4. The
transformations are

e Triangular I y, = & and y, =

HA+&)EH—(1=&) T =3(1+&)
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e Triangular II: y; = %[(1 +E&1)6 —(1-&1)]
andy, = &3 J. = S(1+&))

e Triangular III: y; = 1 [(1+&)& + (1 — &)
andy, = &35 0. = 3(1+ &)

e Triangular IV: y; = —& and y, =
—3[(14+&)&+(1-&): Je=3(1+&)

Thus, the integral with a strong singularity at
yc(—1,—1) can be written as

F 1,)2
O1.52) ————dyidy,

Fory) ——=J[(&1)dé1d&

1
il

— _\_ _\_
—

MJZ’(éz)déldéz 31)

ot
T

s [ [EOR) e ae a,

—
—

—_
—_

11

+//L(ylr’yzbiv(éz)déldiz

—1-1

where the Jacobian of transformation cancel out
the 1/r singularity. This strong singularity was
ignored in the work (1976, 2001) by the use of
moving least square approximation and no discus-
sion was presented on the accuracy of numerical
calculation with ignoring such strong singularity.

Obviously the system stiffness matrix K is sym-
metric and has a diagonal strip distribution simi-
lar to the stiffness matrix of finite element method.
As there are more nodes located in the local sup-
port domain than FEM, more accurate stress and
strain (continuous) interpolations for stiffness ma-
trix can be expected. The implementation of this
method can be carried out according to the fol-
lowing routine, which is similar to the meshless
method discussed by Atluri (2004):

(i) Choose a finite number of nodes N in the
domain Q and on the boundary A of the
given physical domain; choose interpolation
scheme such as MLS or RBF,
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Figure 3: Stiffness matrix forming process, where i and j are node numbers in the support domain for
integral Gaussian point /; / and J are numbers in the global system of nodes i and ;.
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Figure 4: Transformation of triangle to square.
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Figure 5: Square plate with a central crack (h = b) under tension 0y: (a) a quarter of the plate; (b) uniformly
distributed nodes.
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(i1) Select the size and shape of local support do-
main or the minimum number in the support
domain €,

(iii) Divide domain € into segments and choose
the shape of integral sub-domain

(iv) Loop over integral in sub domain m (m =
1,2,...,M) centred at y,,

e Loop over Gaussian integration points
y; (1=1,2,3,4) in the sub-domain,

(a) Loop over all nodes in the support
domain (i, j);

i. Calculate the shape function
0:i(y,x;) and first derivative
P (¥, %;);

(b) Evaluate the elements AK}" =
] ;; with enrichment at crack
tip;

i. Assemble the system stiff-
ness matrix K(,, 75

ii. End the node loop in the local
domain,

e End the Gaussian point loop,
(v) End the sub-domain of integral loop,

(vi) Introduce the displacement boundary condi-
tion and modify the system equation,

(vii) Solve the linear equations for the nodal val-
ues,

(viii) Calculate the stresses and unknown vari-
ables by using the interpolations in the local
support domain.

In addition, the width of the strip depends on the
size of support domain or on the number of node
in the support region. Therefore, the combination
of element-free Galerkin method with finite ele-
ment method can be realised easily. The stress
intensity factors are evaluated by J-integral and
crack opening displacement (COD) respectively.
For mode I fracture, the stress intensity factor for
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plan stress problem is related to J-integral as fol-
lowing

K, = VEJ

J:/(Wm —tﬁuﬁ_yl)dl“ (32)
r

where boundary I" is an arbitrary contour sur-
rounding the crack tip, n, are the components of
the outward normal to the contour and W denotes
strain energy density, i.e.

1
W - 5604380,’3.

In this paper, a circle of radius r(y centred at the
crack tip is selected to be the J-integral contour.
By the use of COD, the stress intensity factor is
evaluated simply from

E [2
K,zgw/—nAuz, Ay = ud —u3. (33)
r

5 Numerical examples

5.1 A Single central crack in rectangular plate
under tension

A square plate of width 2b and height 2/ contain-
ing a central crack of length 2a is subjected to
a uniform shear load oy on the top and the bot-
tom. Due to the symmetry, a quarter of plate is
considered as shown in Figure 5 (a). Here Pois-
son’s ratio v=0.3 and Young’s modulus is unit. A
set of 11x11 (Nyo¢q1 = 121) uniformly distributed
nodes is used and the integration is performed by
dividing the square into 10x10 cells with 4x4
Gauss points in each cell in Figure 5 (b). Two
cells near the crack tip need to be divided into
four triangles for the strong singularity of integra-
tion at crack tip and 9x9 Gauss points for these
triangular cells. The support domain is selected
as a circle of radius d, centered at field point y,
which is determined such that the minimum num-
ber of nodes in the sub domain n(y) > Np, here
the number N, is selected to be 10 for all follow-
ing examples. However, we found that for large
number of support nodes in the sub-domain, the
interpolation will become unstable for RBF in-
terpolations due to the computational precision of
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Figure 6: Normalized stress intensity factors vs. ra-
dius of J-integral contour or the distance for COD
in square plate.

S
R
>
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E_ —— J-integral (a=0)
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——o0—— COD (a=0)
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------- Ref [22]
0.4 -
0.2 4
0.0 T
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B

Figure 8: Normalized stress intensity factors vs. ra-
dius of J-integral contour or the distance for COD
in square plate for different free parameter f3.

FORTRAN. Figure 6 shows the sensitivity of the
normalized stress intensity factor K;/0p/7a to
the radius of J-integral contour or the distance be-
tween COD collocation point and crack tip ro/b
when the crack half-length a = 0.5b and two free
parameters o = 3 = 1. It is evident that highly
accurate solutions for both J-integral and COD
techniques can be obtained when rp/A = 1, where
A is the gap between two nodes, i.e. 0.1b in
this case. The analytical solution for a square

1.6
4 W
o N o
s 1.2 4
R
~
o 1.0
& - Rel [22]
0.8 4 —— J-integral (a=1)
—a— J-integral (a=10)
061 —o— 00D (a=1)
—=e— COD (0=10)
0.4
0.2 4
A 2A
0.0 T T T |
0.00 0.05 0.10 0.15 0.20
r/b
0

Figure 7: Normalized stress intensity factors vs. ra-
dius of J-integral contour or the distance for COD
in square plate for different free parameter o when

B=1.
3.0

A Jwithout singular term
2.5 B COD w ithout singular term o
A Jwith singular term A
2.0 4 O CODwith singular term .

—Ref[22]

0
> 0>

T

K/oNma

0.5

0.0

00 01 02 03 04 05 06 07 08 09
a/b

Figure 9: Comparison of normalized stress intensity
factors with/without considering enriched singular
term in RBFs when b/h=1.

plate containing a central crack, if a/b = 0.5, is

K; = 1.32560\/ﬁ[22]. Generally results obtained
by J-integral are stable for the radius of integral
contour. Therefore, in the following examples,
the radius of integral contour for J-integral and
distance for COD ry is selected as A. To study
the sensitivity of numerical solution with differ-
ent free parameter o, two values of ¢ are exam-
ined. Figure 7 shows normalized stress intensity
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Figure 10: Normalized stress intensity factors for

rectangular plate vs. ratio a/b when a=f3=1.
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Figure 12: Normalized stress intensity factors for
rectangular plate with edge crack vs. ratio a/b when

a=pB=1.

factors various with ro when o = 1 and 10, re-
spectively and B = 1. We found that the numeri-
cal solutions are quite stable for different values of
parameter ¢ and the relative error is less than 5%.
In addition, the selection of parameter [ is inves-
tigated in Figure 8 for ¢ = 0 and 1. Obviously
the accuracy of solution is improved when o = 1
and the more accurate results can be obtained for
0 < B < 4 for both stress intensity factors evalu-
ation techniques. Finally solutions with/without
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Figure 11: Geometry of rectangular plate with
cracks: (a) edge crack; (b) symmetric double edge
cracks.
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Figure 13: Normalized stress intensity factors for
rectangular plate with double edge cracks vs. ratio
a/b when a=pB=1.

enriched term Q(+/r) in the RBF interpolation are
examined and are shown in Figure 9. We noticed
that accuracy of solutions has been improved sig-
nificantly by using enriched radial base function.
In other words, the relative error without enriched
singular term Q(y/r) would be large than 20%
for different crack length a/b. Furthermore, con-
sider a rectangular plate b/h=2, a set of 21x11
uniformly distributed nodes is used and the in-
tegration is performed by dividing the square in



Meshless Method with Enriched Radial Basis Functions for Fracture Mechanics 117

E crack tip
2a ‘

(a)
Figure 14: A circular disk of radius R with a central crack of length 2a subjected to uniform load ¢y on the
boundary: (a) geometry; (b) distribution of nodes.

20x 10 cells. Two free parameters o = 3 = 1 and
the radius of J-integral contour ro = A = 0.05b.
The normalize stress intensity factors by these
two evaluation techniques are plotted in Figure
10. Good agreement with Reference 22! has been
achieved.

5.2 Square plate with an edge and double edge
cracks

In this example, a plate with an edge and symmet-
ric double edge cracks as shown in Figure 11 (a)
(b) is analysed respectively. Poisson’s ratio v=0.3
and density of node (21 x21) is selected and thus,
441 nodes in total are uniformly distributed in the
domain and on the boundary excluding 9 nodes
in two special cells. The grid of sub-region for
domain integral is selected as (20x20) and there-
fore sub-region number M=400. Uniform stress
0y is applied on the top and on the bottom of plate.
Two free parameters oo = 3 = 1 and the radius
of J-integral contour ro = A = 0.05b in this case.
Figures 12 and 13 show the results of these ex-
amples. It can be seen that the present results are
in good agreements with those presented in hand-
book by Rooke et al (1976) for edge/double edge
crack problems respectively.
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Figure 15: Comparison of normalized stress in-
tensity factors of a circular disk containing a cen-
tral crack for different number of nodes when
a=B=1.

5.3 Circular disk with a central crack under
tension

A circular disk of radius R containing a central
crack of length 2a is subjected to a uniform ten-
sion oy on the boundary as shown in Figure 14
(a). Poisson’s ratio v=0.3, Young’s modulus is
unit and quarter of disk as shown in Figure 14
(b) is analyzed. In this model, we have consid-
ered two densities of uniformly distributed nodes
in the domain including 9 nodes in two special
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cells near crack tip, i.e. Niyia=110 and 362 re-
spectively. Two free parameters oc = 3 = 1 and
the radius of J-integral contour or the distance for
COD rgp = A in this case. Figure 15 shows the
results of this example. In general, the present re-
sults are in good agreements with those presented
in handbook by Rooke et al (1976). We also no-
ticed that for small number of nodes and small
crack half-length a/b = 0.1, the result given by
COD technique is quite poor. It is because the col-
location point is quite far away from crack tip rel-
atively. However, J-integral method can produce
high accurate solution. In the case of a/b > 0.1,
both methods provide same accuracy of stress in-
tensity factors.

6 Conclusion

It was demonstrated that by using enriched RBF
interpolation in the local supported domain, we
are able to capture the singular stresses (1/4/r)
at crack tip and to obtain more accurate solu-
tions. The external boundary distributed load and
internal body forces can be treated as concen-
trated forces in the same way as FEM. The com-
putation of accurate stress intensity factors for
two-dimensional mode I cracked structures were
demonstrated by several examples. We can con-
clude with the following observations:

e The accuracy of SIFs can be improved sig-
nificantly by using enriched RBF for two di-
mensional static elasticity;

e Enriched RBF is more flexible and simple to
program than the moving least square inter-
polation, and less CPU time is required;

e This method is convergent similar to FEM;

e Similar to FEM, the stiffness matrix is ssym-
metric and strip diagonal. Therefore, the
coupling with FEM can be easily realised;

e The numerical solutions are stable for large
range of free parameters selections.

In addition, for mixed mode fracture problem, it is
more complicated to evaluate stress intensity fac-
tor using RBF.
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