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A Strain Energy Density Rate Approach to the BEM Analysis of Creep Fracture
Problems

C.P. Providakis1

Abstract: This paper explores the concept of strain en-
ergy density rate in relation to the crack initiation in frac-
ture analysis problems arising in creeping cracked struc-
tural components. The analysis of the components is per-
formed by using the boundary element methodology in
association with the employment of singular boundary
elements for the modeling of the crack tip region. The
deformation of the material is assumed to be described
by an elastic power law creep model. The strain energy
density rate theory is applied to determine the direction
of the crack initiation for a center cracked plate in tension
which is subjected to Mode I loading conditions.
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1 Introduction

Cracks can degrade the integrity of structural compo-
nents. This is a particular concern in the design of air-
craft engines and steam turbines where the high temper-
ature prevails and failure by creep components deforma-
tion is a concern. In these high level of temperatures the
time-dependent creep fracture phenomenon can be con-
sidered as of multi-scale nature, particularly when phys-
ical size is scaled down to the dimensions of the material
microstructure. For a dominant crack in metallic com-
ponents that undergo creep deformation, the creation of
macrocrack surface along the main crack (Mode I) path
should be distinguished from the creation of microcrack
surfaces off to the side of main crack where the creep en-
claves are located. In this sense, creep fracture could be
also considered as a multiscale process.

More than two decades ago, the strain energy density cri-
terion was proposed by Sih (1973) as a fracture criterion
in contrast to the conventional theory of G and K of the
Griffith’s energy release rate assumptions in elastic frac-
ture mechanics. This provided an alternative approach
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to failure prediction for the same stress solution. The
distinctions were empasized in the works of Sih (1991).
The strain energy density criterion gained momentum
and credibility in engineering. A review on the use of
this criterion can be found in Gdoutos(1984) and Carpin-
teri (1986).

It is well known that for cases of realistic and practical
problems in time-dependent fracture analysis of creeping
cracked components the use of numerical solutions such
as finite element method (FEM) and boundary element
method (BEM) become imperative. For a review on the
subject on can consult Beskos (1987).

In the search for an accurate, yet generalized, compu-
tational method for evaluating singular crack tip stress
and strain fields, the singular element approach in con-
junction with boundary element method (BEM) has been
properly used in various fracture mechanics applications.
Several researchers have contributed to this field: Bland-
ford, Ingraffea & Ligget (1981) were the first who in-
troduced the traction singular quarter-point boundary el-
ement approach in combination with a multi-domain
formulation to the solution of both symmetrical and
non-symmetrical crack problems. Thereafter, this ap-
proach has been extensively used in the application of
the boundary element method to two- and three- dimen-
sional crack problems. An extension of the quarter-point
element technique was used by Hantschel, Busch, Kuna
& Maschke (1990) who made an attempt to model crack
tip fields arising in two-dimensional elastoplastic cracked
panels by introducing some special singular boundary el-
ements which took into account the HRR singularity field
as presented in Hutchnison (1968) and Rice & Rosengren
(1968) for locations near the crack tip.

In connection with the boundary element determination
of near crack tip stress and strain fields in cracked struc-
tural components undergoing two-dimensional inelastic
deformation one should mention the works of Profes-
sor Mukherjee and his co-workers for Mode I and II in
Mukherjee & Morjaria (1981) and Morjaria & Mukher-
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Figure 1 : Geometry of the crack tip and CR-STSE element configuration

jee (1981) and Mode III in Morjaria & Mukherjee (1982).
A more comprehensive review in BEM solutions of
inelastic could be found in the review article of Ali-
abadi(1977).

In the present paper, the strain energy density rate con-
cept is applied as a fracture criterion in association with
the use of a previously developed, by the present au-
thors, creep strain-traction singular element (CR-STSE)
to determine the crack initiation involved in creeping
cracked two-dimensional plates. A numerical example
is presented for a shallow edge cracked plate (SENT).
The creep constitutive model used in the numerical cal-
culations is the Norton power law creep model (Nor-
tan (1929)) but any other creep constitutive model hav-
ing similar mathematical structure can be easily imple-
mented in the proposed algorithm.

2 Asymptotic crack-tip fields in a creeping material

The material behavior in this paper is described by the
elastic-nonlinear viscous constitutive relation according
to the Norton power law relation (Nortran (1929))
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σ
σ0
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where E is the elasticity modulus, σ0 is a reference stress,
ε̇0 is a reference creep strain rate and m is the creep ex-
ponent. Under the assumption of multiaxial stress states,

the extension of equation (1) can be read as
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where Si j are the components of the deviatoric stress ten-
sor and Si j = σi j − σkkδi j/3and σe is the Misses effec-

tive stress defined by σe = ((3/2)Si jSi j)
1/2. From the

inspection of (1) and (2) it could be noted that if there is
a singular crack tip field at time t=0 the elastic singular-
ity fields prevail at the crack tip. In subsequent time step
and at distances sufficient close to the crack tip the creep
strain part of the total strain rate is much larger than the
elastic strain rates and it seems to control the crack tip
fields (m¿1). Thus, the constitutive equations (1) and (2)
become power law creep relationships. Using the Hoff
analogy (Hoff(1954)) to contrast the power-law creep re-
lation with the power-law hardening relation, Riedel &
Rice (1988) and Ohji, Ogura & Kubo (1979) presented
the HRR-type singularity fields for power-law creep ma-
terial described by the equations

σi j = σ0

(
C(t)

ε̇0σ0Inr

) 1
n+1

σ̃i j(θ)

ε̇i j = ε̇0

(
C(t)

ε̇0σ0Inr

) n
n+1

ε̃i j(θ)

u̇i = ε̇0r

(
C(t)

ε̇0σ0Inr

) n
n+1
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where the radial distance r from the crack tip and the an-
gle θ in relation to the x axis are shown in Figure 1. The
dimensionless constants In and the θ-variation functions
of the suitably normalized functions σ̃i j, ε̃i j and ũi j de-
pend on the creep exponent m and have been tabulated in
Shih(1983).

3 Derivation of boundary integral equations

The Navier equation for the displacement rates of a struc-
tural component undergoing plane strain deformation
and under the presence of non-elastic strains can be writ-
ten as

u̇i,kk +
1+ν
1−ν

u̇k,ki = − Ḟi

G
+2ε̇n

i j, j +
2ν

1−ν
ε̇n

kk,i (4)

where Fi is the prescribed body force per unit volume, G,
ν and α are the shear modulus, Poisson’s ratio and co-
efficient of linear thermal expansion, respectively, ui is
the displacement vector. Suitable traction and displace-
ment rate boundary conditions must be prescribed. The
integral representation of the solution of a point P on the
boundary of the body (with Ḟi = 0) has the following ini-
tial strain form

(δi j −C) u̇i (P) =
∫
S

[Ui j (P,Q) τ̇ j (Q)

− Ti j (P,Q) u̇ j (Q)]dSq

+
∫
V

Σ jki (P,Q) ε̇n
jk (q)dVq (5)

where δi j is Kronecker delta, P,Q are boundary points,
q is an interior point, Γ and Ω are the boundary and
the surface of the body, respectively. The kernels
Ui j,Ti j ,Σ jkiand Σ jki are known singular solutions due to
a point load in an infinite elastic solid in plane strain
(Mukherjee (1977)). The traction and displacement rates
are denoted by τ̇ and τ̇, respectively. The coefficients Ci j

are known functions of the included angle at the bound-
ary corner at P, the angle between the bisector of the cor-
ner angle and the x-axis. Equation (5) is a system of
integral equations for the unknown traction and displace-
ments rates in terms of their prescribed values on the
boundary, and the non-elastic strain rates. The unknown
quantities only appear on the boundary of the body and
the surface integrals are known at any time through the
constitutive equations.

The stress rates can be obtained by direct differentiation
of equation (5) resulting in

σ̇i j (p) =
∫
Γ

[
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where G and K are the shear and bulk modulus, respec-
tively; Σ jkiand Σ jki are inelastic and temperature effect
kernel functions, respectively, which are also defined in
the work of Mukherjee(1977).

4 Singular element implementation and solution
procedure

The integral equations (5) and (6) are expressed in this
paper by discretizing the boundary and the interior into a
number of standard three-noded quadratic boundary el-
ements and nine-noded quadratic quadrilateral interior
surface elements, respectively, provided that they are not
adjacent to the crack tip.

By following the procedure developed in Providakis &
Kourtakis (2002) to produce a special element which
presents the HRR-type singularity of equations (3) at the
crack tip (Figure 1), one can obtain the following new
set of shape functions Nu

a which depend upon the creep
exponent m
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where l is the length of the new special quadratic ele-
ment, the distance r=l-x and the ratio can be defined in
terms of the intrinsic coordinate ζ as (r/l)=(1-ζ)/2. By
taking the derivatives of the new shape functions (7) one
can observe that these derivatives display a r−m/(m+1) sin-
gularity near the crack tip which is the actual situation for
the strain rate singularities according to (3).

Since in boundary element methodology displacement
and tractions are independently represented the above de-
rived singular element for the simulation of crack tip be-
havior of displacement rates, fails to model the expected
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from equations (3) crack tip behavior of tractions which
displays an order of –1/(m+1) singularity. Thus, for the
proper simulation of the traction rate singularity different
shape functions are derived by the use of the derivatives
of the shape functions (7) and finally modified to the fol-
lowing separate forms Nt

a in terms of creep exponent m
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where now r=x and the ratio (r/l)=(1+ζ)/2. A simulta-
neous simulation of displacement and traction rate fields,
by the use of the shape functions (7) and (8), respectively,
yields to the proposed, in the present BEM approach,
creep strain-traction singular element (CR-STSE) (Fig-
ure 1). Then, by applying a boundary nodal point collo-
cation procedure to the discretized versions of equations
(5) and (6) one can obtain the following system of equa-
tions in matrix form

[A]{u̇} = [B]{τ̇}+
{

ḃ
}

(9)

[A]{u̇} = [B]{τ̇}+
{

ḃ
}

(10)

However, the vector
{

ḃ
}

is known at any time through
the constitutive equations and the stress rates of equa-
tion (6) while the vector

{
ḃ
}

could be easily computed
through the known values of temperature profile for the
whole structural component. Half of the total number of
components of {u̇} and {τ̇} are prescribed through the
boundary condition while the other half are unknowns.

Then, the initial distribution of the nonelastic strain has to
be prescribed. Thus, the only existed strains at time step
t=0 are elastic and then, the thermal and initial stresses
and displacements can be obtained from the solution of
the corresponding elastic problem. By the use of equa-
tions (9) and (10) the displacement and stress rates can
be obtained at time step t=0 while the rates of change
of the nonelastic strains can be computed from constitu-
tive equations. Thus, the initial rates of all the relevant
variables are now known and their values at a new time
Δt can be obtained by integrating forward in time. The
rates are then obtained at time Δt and so on, and finally
the time histories of all the variables can be computed.
Another important task in this approach is the choice of

a suitable time integration scheme. For the purposes of
the present paper, an Euler type algorithm with automatic
time-step control is employed.

5 The strain energy rate

For power law creep materials the strain energy density
rate (SEDR) can be analytically determined as

[A]{u̇} = [B]{τ̇}+
{

ḃ
}

(11)

The SEDR was estimated according to the boundary ele-
ment procedure developed previously by solving in time
the system of equations (9) and (10) and then by using
the analytic equation (11) for each time step.

6 Numerical results

Consider a central cracked plate (CCP) specimen with
height (h) and width (w) = 40.6 cm x 20.3 cm made by a
power law creeping material (superalloy Inconel 800H at
650oC) with properties E=153.7 GPa, σ0=417.04 MPa,
ν=0.33, creep exponent m=5 and the parameter

B =
ε̇0

σm
0

= 2.1x10−32x6894.73 (Pa)−5/h (12)

The specimen contains a central crack of depth a=
0.125w. The specimen is subjected to a remote uniform
load of 129.2 MPa which is suddenly applied. The sym-
metry of the specimen was used and thus a quarter of the
plate was analyzed.

The computer software established according to the
BEM methodology presented in this paper can provide
sufficient data related to stress and strain distribution his-
tory. Based on these data and after using equation (11)
the strain energy density rate distribution could be pre-
dicted at each time step. Typical diagrams of contours of
strain energy density rate distributions for a quadrant of
the specimen and for two different time steps (t=0.0 and
5.01 hours) are shown in Figures 2 and 3, respectively.

Depicted in Figure 4 are the angular variations of the
strain energy density rate for different time steps. It could
be noted from the inspection of this figure that the strain
energy density rate decreases with increasing time. This
trend was expected since the applied load remains fixed
in time and the crack is assumed to be stationary. It could
be also noted that all curves posses a minimum at angle
θo=0.
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Figure 2 : Contours of strain energy density rate for time
step t=0.0 hours

Figure 3 : Contours of strain energy density rate for time
step t=5.01 hours

Taking into account the strain energy density criterion
this indicates that crack would initiate at θo=0 and along
the axis of symmetry of load symmetry under present
crack mode I.

7 Conclusions

In this paper a new singular boundary element approach
based on the implementation of a special singular bound-
ary element is performed for the estimation of the strain
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Figure 4 : Angular variation of strain energy rate for dif-
ferent time steps.

energy density rate distribution close to crack tip fields
arising in creeping structural components undergoing
Mode I deformation under the effect of remote loading
condition.
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