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Deriving Shear Correction Factor for Thick Laminated Plates Using the Energy
Equivalence Method
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Abstract: The cylindrical bending of thick laminated
sandwich plates under static loading is studied based on
the first order shear deformation theory (FSDT). FSDT
generally requires a shear correction factor (SCF) to ac-
count for the deflection owing to the transverse shear. In
this paper the SCF is derived using energy equivalence
method. It is shown that depending on the mechanical
and geometrical properties of the layers, the contribution
of the transverse shear stress to the maximum deflection
of the plate is variable and in some cases account for up
to around 88% of the total deflection. The effects of non-
dimensional parameters such as layers tensile and shear
modulus ratio and layers thickness ratio on the SCF and
on the maximum deflection are investigated. The ana-
lytical results are compared and verified with the finite
element analysis.

keyword: Laminated Plates, Shear Correction Fac-
tor, Energy Equivalence Method, Cylindrical Bending,
Transverse Shear

1 Introduction

Composite materials and structures are increasingly ap-
plied in various designs applications during the recent
past decades, specially in high-tech sectors of industries
such as aerospace and automotive. One of the main ad-
vantages of composite materials is their superiority in
high strength to weight and stiffness to weight ratios.
The rapid broadening areas of applications of composite
materials require a continuous vigorous investigation on
their mechanical behaviour leading to performance im-
provement of these materials.

In thick laminates, i.e. laminates with width-to-thickness
ratio less than about 10, the analysis based on classical
laminate theory (CLT) shows significant differences in
the deflection and stress distributionof the laminates with
the true mechanical behaviour. An improvement was
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introduced by the first order shear deformation theory
(FSDT) proposed by Reissner [Reissner (1945)] based on
stress approach and Mindlin [Mindlin (1951)] based on
displacement approach. The displacement based FSDT
is more widely used, though this leads to a uniform
transverse shear strains through the plate thickness and
this requires a shear correction factor to accommodate
parabolic transverse shear stresses. Discussion about
these approaches can be found elsewhere [Wang, et al
(2001)]. The introduction of correction factors for the
transverse shear moduli of the laminate in FSDT is an
extension to Reissner [Reissner (1945)] and Mindlin
[Mindlin (1951)] theories in the case of isotropic homo-
geneous plates. There has been an elaborate discussion
about the shear correction factor in the literature for dif-
ferent test geometries (see [Whitney and Pagano (1970);
Whitney (1972); Whitney (1973) and Kaneko (1975)]
for an overview). The shear correction factor published
by Stephen [Stephen (1980); Stephen and Hutchinson
(2001)] was the first to incorporate a dependence on the
aspect ratio of the cross-section. The same results were
obtained by Hutchinson [Hutchinson (2001)] with a sim-
ple dynamic beam theory in a recent publication. Isaks-
son et al. [Isaksson , et al (2006)] derived shear correc-
tion factors from an equilibrium stress field for a corru-
gated board sandwich panel. Tanov and Tabiei [Tanov
and Tabiei (2000)] used finite element analysis to obtain
SCF. Puchegger et al. [Puchegger, et al (2003)] validated
the SCF experimentally.

Most of these methods are based on equating certain
global response of FSDT with its peer in elasticity the-
ory. These global responses include transverse shear
strain energy, natural frequency associated with the trans-
verse shear vibration mode, and the velocity of propaga-
tion of a wave [Noor and Burton (1982)]. Many of the
approaches to calculate the SCF can be found in [Cow-
per (1966); Chow (1971); Bert (1973); Dharmarajan and
McCutchen (1973); Bank (1987)]. The most prevailing
method, however, is equating transverse shear strain en-
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Figure 1 : Rectangular Laminated Plate

ergies obtained from FSDT to those obtained from three
dimensional elasticity.

In the present study, the transverse strain energy equiv-
alence method has been adopted to derive the SCF. The
method was applied to derive the SCF for the two cases;
an orthotropic single layer simply supported at its two
opposite edges and a clamped-free laminated sandwich
plate, assuming cylindrical bending. In each case the
maximum deflection of the plate has been calculated and
the contribution of transverse shear stress on the total de-
flection determined. Parametric analysis of the effects
of layers tensile modulus ratio, layers transverse shear
modulus ratio, and layers thickness ratio on the SCF and
maximum deflection of the plate has been explored. The
analytical results were verified using finite element anal-
ysis (FEA). It is shown that the analytical results corre-
late closely with those from the FEA.

2 Theoretical analysis

2.1 Displacement field

Consider a rectangular laminated plate of length a, width
b and the total thickness H, composed of N orthotropic
homogeneous layers, with a Cartesian coordinate system
as illustrated in Fig. 1. The displacement field of the
FSDT is given as

u(x,y, z) = u0(x,y)+ zψx(x,y),
v(x,y, z) = v0(x,y)+ zψy(x,y),
w(x,y, z) = w(x,y). (1)

where u, v and w are the displacements along x, y and z

directions, u0 and v0 are the displacements of a point on
the mid-plane and ψx and ψy are rotations about y and x
axes, respectively.

The strain-displacement relations associated with Eq. 1
can be stated as

εx = ε0
x + zκx, εy = ε0

y + zκy, εz = 0,

γyz = γ0
yz, γxz = γ0

xz, (2)

γxy = γ0
xy + zκxy.

where

ε0
x =

∂u0

∂x
, κx =

∂ψx

∂x
, ε0

y =
∂v0

∂y
, κy =

∂ψy

∂y
,

γ0
yz = ψy +

∂w
∂y

, γ0
xz = ψx +

∂w
∂x

, (3)

γ0
xy =

∂u0

∂y
+

∂v0

∂x
, κ=

xy
∂ψx

∂y
+

∂ψy

∂x
.

Considering the cylindrical bending about y axis, i.e.,
∂
∂y ≡ 0, Eq. 3 is simplified to:

ε0
x =

du0

dx
, κx =

dψx

dx
, ε0

y = κy = 0,

γ0
yz = ψy, γ0

xz = ψx +
dw
dx

, (4)

γ0
xy =

dv0

dx
, κxy =

dψy

dx
.
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2.2 Constitutive relations

Assume that the orthotropic directions of each layer in
the laminated plate are parallel to xyz directions. The
stress-strain relationships for the kth layer are given by⎧⎨
⎩

σx

σy

σxy

⎫⎬
⎭

(k)

=

⎡
⎣ Q11 Q12 0

Q12 Q22 0
0 0 Q66

⎤
⎦

(k)⎧⎨
⎩

εx

εy

γxy

⎫⎬
⎭

(k)

, (5)

and{
σyz

σxz

}(k)

=
[

C44 0
0 C55

](k){ γyz

γxz

}(k)

. (6)

where in Eq. 5, the reduced stiffness components, Q(k)
i j ,

are

Q(k)
11 =

E(k)
x

1−ν(k)
xy ν(k)

yx

, Q(k)
12 =

ν(k)
yx E(k)

x

1−ν(k)
xy ν(k)

yx

=
ν(k)

xy E(k)
y

1−ν(k)
xy ν(k)

yx

,

Q(k)
22 =

E(k)
y

1−ν(k)
xy ν(k)

yx

, Q(k)
66 = G(k)

xy (7)

Also in Eq. 6, the stiffness components C(k)
i j , are given by

C(k)
44 = G(k)

yz , C(k)
55 = G(k)

xz (8)

where E
(k)
x , E(k)

y are the tensile modulus, G(k)
yz , G(k)

xz are

the transverse shear modulus and ν(k)
xy , ν(k)

yx are the Pois-
son’s ratios of the kth layer.

The stress and moment resultants are

(Nx,Ny,Nxy) =
N

∑
k=1

∫ zk

zk−1

(σ(k)
x ,σ(k)

y ,σ(k)
xy )dz,

(Mx,My,Mxy) =
N

∑
k=1

∫ zk

zk−1

(σ(k)
x ,σ(k)

y ,σ(k)
xy )zdz,

(Qy,Qx) =
N

∑
k=1

∫ zk

zk−1

(σ(k)
yz ,σ(k)

xz )dz. (9)

Now, considering Eqs. 2, 5, 6 and 9, the laminates con-
stitutive relations can be stated by⎧⎨
⎩

Nx

Ny

Nxy

⎫⎬
⎭=

⎡
⎣ A11 A12 0

A12 A22 0
0 0 A66

⎤
⎦
⎧⎨
⎩

ε0
x

ε0
y

γ0
xy

⎫⎬
⎭

+

⎡
⎣ B11 B12 0

B12 B22 0
0 0 B66

⎤
⎦
⎧⎨
⎩

κx

κy

κxy

⎫⎬
⎭ ,

⎧⎨
⎩

Mx

My

Mxy

⎫⎬
⎭=

⎡
⎣ B11 B12 0

B12 B22 0
0 0 B66

⎤
⎦
⎧⎨
⎩

ε0
x

ε0
y

γ0
xy

⎫⎬
⎭

+

⎡
⎣ D11 D12 0

D12 D22 0
0 0 D66

⎤
⎦
⎧⎨
⎩

κx

κy

κxy

⎫⎬
⎭

and{
Qy

Qx

}
=

[
A44
Ky

0

0 A55
Kx

]{
γ0

yz

γ0
xz

}
(10)

where

(Ai j,Bi j,Di j) =
N

∑
k=1

∫ zk

zk−1

Q(k)
i j (1, z, z2)dz (i, j = 1,2,6),

Ai j =
N

∑
k=1

∫ zk

zk−1

C(k)
i j dz (i, j = 4,5). (11)

In Eq. 10, Kx and Ky are the SCFs.

3 Deriving shear correction factors

The strain energy owing to the transverse shear compo-
nent, σxz, can be obtained from

Us =
1
2

∫ ∫ ∫
V

σxzγxzdV =
1
2

∫ ∫ ∫
V

σ2
xz

Gxz
dV (12)

On the other hand, based on the FSDT, the strain energy
owing to the transverse shear can be calculated from

Us =
1
2

∫ ∫ ∫
v

σxzγxzdv =
1
2

∫ a

0

∫ b

0

∫ H
2

−H
2

σxzγxzdzdydx

This can be rewritten as

Us =
1
2

∫ a

0

∫ b

0
(
∫ H

2

−H
2

σxzdz)γxzdydx (13)

The transverse shear force can be obtained from

Qx =
∫ H

2

−H
2

σxzdz

Also from Eq. 11 we have

γyz =
Kx

A55
Qx
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Figure 2 : Orthotropic rectangular plate simply supported at its two opposite edges

Substituting above into Eq. (13) results in

Us =
1
2

∫ a

0

∫ b

0
Kx

Q2
x

A55
dydx. (14)

Equating Eq. 12 to Eq. 14, one can obtain the shear
correction factor, Kx. Through a similar approach Ky can
also be obtained.

4 Case studies

The above procedure will be applied to obtain SCF for
the following two cases and the results will be com-
pared with those from the FEA using ABAQUS software
[ABAQUS User’s Manual].

4.1 Case 1: An orthotropic single layer

Consider an orthotropic single layer rectangular plate,
simply supported at its two opposite edges. The plate car-
ries on the top surface at z = H/2, a uniformly distributed
load of intensity P acting in the z-direction, see Fig. 2.
Under the assumption b >> a, the plate deform under
cylindrical bending about the y axis. Because of sym-
metrical conditions, the governing equilibrium equations
owing to bending are decoupled from those of stretching.
The governing equilibrium equations can be stated as

dMx

dx
−Qx = 0,

dMxy

dx
−Qy = 0,

dQx

dx
−P = 0. (15)

and the boundary conditions (B.C.’s) are

Mx = ψy = w = 0 at x = 0 and x = a. (16)

Considering the constitutive relations, Eq. 15 can be
stated in terms of the displacement components, if solved
regarding B.C.’s Eq. 16, the results will be

w = − 1
24

P
D11

x4 +
1

12
Pa
D11

x3 +
1
2

KxP
A55

x2

− (
1
2

KxPa
A55

+
1

24
a3P
D11

)x,

ψx =
1
6

P
D11

x3 − 1
4

Pa
D11

x2 +
1

24
a3P
D11

,

ψy ≡ 0. (17)

Considering the elasticity equilibrium equations, one can
write

σxz = −
∫ z0

−H
2

∂σx

∂x
dz. (18)

Using Eq. 17 and the constitutive relations, σxz will be
obtained from Eq. 18,

σxz =
1

128

Q11( a
2 −x)(z− H

2 )(z+ H
2 )

D11
P. (19)

From Eq. 19 and Eqs. 13, 14, 17 together with the con-
stitutive relations, Kx will be obtained as

Kx =
6
5
, (20)

Timoshenko obtained this correction factor by comparing
his solution with a 2-D solution of the bending problem,
and found a dependence on the Poisson’s ratio ν [Timo-
shenko (1922)] as KTimoshenko = (6+5ν)/(5+5ν). Cow-
per derived a solution for the shear correction [Cowper
(1966)], which differs only slightly from Timoshenko’s
solution KCowper = (12 + 11ν)/10(1 + ν). Both solution
gave the same results as in Eq. 20 only if ν = 0.
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The maximum deflection can be found from Eq. 17,

wmax = w
(a

2

)
= − 5

32
Pa4 (1−vxyvyx)

ExH3 − 3
20

Pa2

GxzH
,

(21)

where the first term is the deflection due to the moment
and the second term is the deflection due to the transverse
shear. Let’s define the dimensionless maximum deflec-
tion, ŵmax, as

ŵmax =
ExH3

12Pa4 (1−vxyvyx)
wmax, (22)

The selected layer material properties and loading are
Ex=40 GPa, vxy=0.3, vyz=0.075, a=150 mm and P =1
MPa. For this case, the variation of ŵmax versus Ex/Gxz

and H/a is plotted in Fig. 3. It can be seen that by
increasing Ex/Gxz at a constant H/a ratio, the contri-
bution of deflection owing to shear will increase lin-
early, while by increasing H/a at a constant Ex/Gxz

ratio, the contribution of deflection due to shear will
increase parabolically. For example at Ex/Gxz = 100
and H/a = 0.1 about 49.55% of deflection was owing
to the transverse shear. This problem was also solved
with ABAQUS software using shell elements. In the FE
analysis the S4R elements were used, a 4-node doubly
curved thin and thick shell element with linear shape
function and reduced integration. The B.C.’s were en-
castre (U1=U2=U3=UR1=UR2=UR3=0). The deformed
shape of the plate is shown in Figure 4. The relative error
between the analytical and the FEA deflection results is
8.4%.

4.2 Case 2: An orthotropic sandwich plate

The second case study is an orthotropic sandwich plate
with clamped-free B.C.’s, subjected to a uniform load P
on its free edge under the cylindrical bending about yaxis
(see Fig. 5) where b >> a. The governing equilibrium
equations with the symmetrical conditions will become

dMx

dx
−Qx = 0,

dMxy

dx
−Qy = 0,

dQx

dx
= 0. (23)
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Figure 3 : Effect of Ex/Gxz and H/a on the deflection
due to shear

Figure 4 : Deformed shape of the orthotropic single layer
rectangular plate from the FEA

The imposed B.C.’s are

ψx = ψy = w = 0 at x = 0,

Mx = Mxy = 0, Qx = −P at x = a. (24)

Solving the boundary value problem, Eq. 23 and Eq. 24,
and considering the constitutive relations results in

w = −1
6

Px2(3a−x)
D11

− KxPx
A55

ψx =
1
2

Px(2a−x)
D11

ψy ≡ 0 (25)
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Figure 5 : Sandwich orthotropic plate with clamped-free
B.C.’s

From Eq. 18, Eq. 25 and the constitutive relations, σxz

becomes

σxz =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2

Q(1)
11 P

(
z2−H2

1
4

)
D11

, −H1
2 < z < −H2

2

1
8

Q(1)
11 P(H2

2−H2
1 )

D11
+ 1

2

Q(2)
11 P

(
z2−H2

2
4

)
D11

, −H2
2 < z < H2

2

1
2

Q(1)
11 P

(
z2−H2

1
4

)
D11

, H2
2 < z < H1

2

(26)

Using the same approach as in Case 1 and considering
Eq. 7, one can obtain Kx from Eq. 26 as

Kx =
3
[
G(1)

xz (H1−H2)+G(2)
xz H2

]
2
[
E(1)

x (H3
1 −H3

2 )+E(2)
x H3

2

]2

×
⎧⎨
⎩

E(2)
x H3

2

[
E(1)

x H2
1 +( 4

5 E(2)
x −E(1)

x )H2
2

]
G(2)

xz

+
E(1)

x
2
( 4

5H5
1 + 1

5H5
2 −H2

1 H3
2 )

G(1)
xz

+ 3E(1)
x

2
H2(H2

1 −H2
2 )

×

[
1
3 H2

2 +H2
1 (G(1)

xz

G(2)
xz
−1)−H2

2
G(1)

xz

G(2)
xz

(1− 2E(2)
x

3E(1)
x

)
]

2G(1)
xz

⎫⎪⎪⎬
⎪⎪⎭ (27)

The detail derivations of Eq. (27) are presented in Ap-
pendix A.

4.2.1 Isotropic sandwich plate

First consider the case that each layer has isotropic prop-
erties. The variation of Kx with respect to E(1)

/
E(2) and

H2
/

H1 is shown in Fig. 6.

6/5

Figure 6 : Variation of Kx with E(1)/E(2) and H2/H1 for
an isotropic sandwich plate.

It can be seen from Figure 6 that for H2/H1 = 0 or 1

and for all E(1)
x /E(2)

x , the sandwich plate becomes a sin-
gle layer and Kx = 6/5 = 1.2, as before in case 1. Also

for E(1)
x /E(2)

x = 1 and for all H2/H1, the sandwich plate
becomes a single layer and Kx = 6/5 = 1.2. At any
other constant value of H2/H1, Kx increases by increas-

ing E(1)
x /E(2)

x . At any E(1)
x /E(2)

x , the maximum Kx is at
H2/H1 = 0.5, i.e. a sandwich plate made of half core
material and half skin material.

4.2.2 Orthotropic sandwich plate

In this case it is assumed that all layers have orthotropic
properties. For this case the variation of Kx versus
E

(1)
x /E(2)

x and H2/H1 was investigated for a wide range

of 1≤ G(1)
xz /G(2)

xz ≤ 600. The results for G(1)
xz /G(2)

xz = 1, 2,
200 and 600 are shown in Fig. 7. The general pattern of
Kx for G(1)

xz /G(2)
xz > 10 is similar to G(1)

xz /G(2)
xz = 200 case

but with different Kx value.

It can be seen from Fig. 7 that for H2/H1 = 0 or 1, when

G(1)
xz /G(2)

xz = 1, i.e. a single layer, Kx = 6/5, the same as

case 1. Also, when E(1)
x /E(2)

x = 1, and for all values of
H2/H1, Kx = 6/5.

The general case of SCF for a sandwich plate made of
orthotropic layers happens when G(1)

xz /G(2)
xz > 10. In

these cases as shown in Fig. 7, for the values of
E(1)

x /E(2)
x >about 5 and at any specific H2/H1, there is

not any significant changes in Kx by increasing E(1)
x /E(2)

x .

For the values of E(1)
x /E(2)

x less than about 10, however,

Kx increases rapidly by decreasing E(1)
x /E(2)

x . The mag-
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Figure 7 : Variation of Kxwith E(1)
x /E(2)

x and H2/H1 for an orthotropic sandwich plate for G(1)
xz /G(2)

xz = 1, 2, 200
and 600.
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tal deflection. G(1)
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nitude of this variation depends on the value of H2/H1 at

any specific G(1)
xz /G(2)

xz value.

For this case the dimensionless maximum deflection,
ŵmax, is defined as

ŵmax =
E(2)

x

12(1−νxyνyx)P

×
[

E(1)
x

E(2)
x

−
(

E(1)
x

E(2)
x

−1

)(
H2

H1

)3
](

H1

a

)3

wmax (28)

From Eq. 25 and Eq. 27 and the constitutive relations,
ŵmax will be given by

ŵmax =
1
3

+

E(2)
x

G(2)
xz

(H1
a

)2

80

[
E(1)

x

E(2)
x

−
(

E(1)
x

E(2)
x

−1
)(

H2
H1

)3
]
(1−νxyνyx)

G(1)
xz

G(2)
xz

×
⎧⎨
⎩
(

E
(1)
x

E(2)
x

)2(
H2

H1
−1

)2
[

3

(
H2

H1

)3

(5
G

(1)
xz

G(2)
xz

−1)

+6

(
H2

H1

)2
(

5
G(1)

xz

G(2)
xz

−1

)
+

H2

H1

(
15

G(1)
xz

G(2)
xz

+1

)
+8

]

−20
E(1)

x

E(2)
x

G(1)
xz

G(2)
xz

(
H2

H1

)3(H2

H1
−1

)(
H2

H1
+1

)

+ 8
G(1)

xz

G(2)
xz

(
H2

H1

)5
}

(29)

In Fig. 8 the variation of ŵmax is plotted versus E(1)
x /E(2)

x

for different values of H2/H1 when G(1)
xz /G(2)

xz = 600. Fig.

8a shows that ŵmax varies linearly with E(1)
x /E(2)

x and the
maximum contribution to the deflection due to transverse
shear occurs when H2/H1 = 0.4− 0.5. The maximum
contribution to total deflection due to the transverse shear
is shown in Fig. 8b and it can be as high as 80%.

In Fig. 9, the variation of ŵmax is plotted versus G(1)
xz /G(2)

xz

for different values of H2/H1 when E(1)
x /E(2)

x = 1000.

Fig. 9a shows that for G(1)
xz /G(2)

xz >about 10, for each
specific sandwich plate, i.e. H2/H1 =constant, the de-

flection due to transverse shear for all G(1)
xz /G(2)

xz remains
constant. The maximum contribution to the deflection
happens when H2/H1 = 0.4. Fig. 9b shows that the maxi-
mum contribution to total deflection due to the transverse
shear can be as high as 85%.

In summary, the contribution of the transverse shear to
the total deflection of sandwich thick plate increases

by increasing E
(1)
x /E(2)

x and decreases by increasing

G(1)
xz /G(2)

xz . However, for G(1)
xz /G(2)

xz > 10, the effect of
shear modulus ratio is negligible. The maximum deflec-
tion due to shear for any E(1)

x /E(2)
x and G(1)

xz /G(2)
xz happens

when H2/H1 = 0.4−0.5.

This problem was also solved with ABAQUS software
using shell elements. In the FE analysis as in the pre-
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Figure 9 : Effect of H2/H1on the deflection of or-
thotropic sandwich plate: (a) Variation of ŵmax versus
G(1)

xz /G(2)
xz , (b) Contribution of transverse shear to the to-

tal deflection. E(1)
x /E(2)

x = 1000.

vious case the S4R elements were used, a 4-node dou-
bly curved thin and thick shell element, with linear shape
function and reduced integration. The B.C.’s were pinned
(U1=U2=U3=0). The FEA maximum deflection was
6.662 mm and the analytical one was 6.636 mm, an error
of about 0.4%.

5 Concluding remarks

In this paper, shear correction factor for thick laminated
sandwich plates was derived using energy equivalence

method. In this method, the transverse shear strain en-
ergy obtained from FSDT was equated to that obtained
from three-dimensional elasticity. The method was tested
for two case studies. In the first case, the shear correc-
tion factor for a single layer orthotropic plate simply sup-
ported at its two opposite edges was shown to be the same
as that obtained by Cowper [Cowper (1966)]. The second
case was a general sandwich plate clamped at its edge
made from orthotropic materials. For this case, it was
shown that the SCF is a function of E(1)

x /E(2)
x , G(1)

xz /G(2)
xz

and H2/H1. The effect of these non-dimensional param-
eters on the shear correction factor and the maximum de-
flection of the plate were studied. The conditions under
which the dominant contributing factor to the total plate
deflection is transverse shear were demonstrated.
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Appendix A: Derivation of Eq. 27

From Eq. 12 we have

Us =
1
2

∫ ∫ ∫
V

σxzγxzdV =
1
2

∫ ∫ ∫
V

σ2
xz

Gxz
dV

=
ab
2

∫ −H2
2

−H1
2

σ2
xz

G(1)
xz

dz+
ab
2

∫ H2
2

−H2
2

σ2
xz

G(2)
xz

dz

+
ab
2

∫ H1
2

H2
2

σ2
xz

G(1)
xz

dz. (A.1)

Now From Eq. 26 we may write

∫ −H2
2

−H1
2

σ2
xz

G(1)
xz

dz =
1

1920

× Q(1)
11

2
P2(8H2

1 +9H1H2 +3H2
2 )(H1−H2)3

D2
11G(1)

xz

, (A.2)

∫ H2
2

−H2
2

σ2
xz

G(2)
xz

dz =
1

960

× P2H2(8Q(2)
11

2
H4

2 −20Q(1)
11 Q(2)

11 H4
2 +20Q(1)

11 Q(2)
11 H2

1 H2
2

D2
11G(2)

xz

+
15Q(1)

11

2
H4

2 −30Q(1)
11

2
H2

1 H2
2 +15Q(1)

11

2
H4

1 )

D2
11G(2)

xz

, (A.3)

∫ H1
2

H2
2

σ2
xz

G(1)
xz

dz =
1

1920

× Q(1)
11

2
P2(8H2

1 +9H1H2 +3H2
2 )(H1−H2)3

D2
11G(1)

xz

. (A.4)

From Eqs. 8, 11 we conclude

A55 = G(1)
xz (H1−H2)+G(2)

xz H2. (A.5)

Also we know that

Qx = P. (A.6)

Substituting from Eqs. A.5, A.6 into Eq. 14 we will get

Us =
ab
2

KxP2

G(1)
xz (H1−H2)+G(2)

xz H2

. (A.7)

Next we substitute from Eqs. A.2, A.3, A.4 into Eq. A.1
and set the result equal to Eq. A.7 and then solve the
equation for Kx to obtain Eq. 27.


