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On Fatigue Damage Computation in Random Loadings with Threshold Level and
Mean Value Influence

D. Benasciutti1 and R. Tovo1

Abstract: The probability density functions used to
characterize the distribution of fatigue cycles in random
loads are usually defined over an infinite domain. This
means that they give a non-zero probability to count cy-
cles with an infinitely large peak or valley, which how-
ever seems of less physical sense. Moreover, practically
all the methods existing in the literature completely ne-
glect the negative effect on fatigue strength produced by
fatigue cycles with positive mean values. With theses
premises, this work tries to further extending the proba-
bilistic theory used by the frequency-domain methods by
addressing to distinct problems. First, it tries to include
in cycle distributions the effect of both a threshold level
SL (representing a limit state of the system) and the ulti-
mate static strength Su. Secondly, it uses the Goodman
mean value correction to include the effect of mean val-
ues of counted cycles in the fatigue analysis of random
loads by frequency-domain methods. The fatigue load is
modeled as a stationary random process X(t) with con-
stant mean value mc; two approaches of increasing com-
plexity are presented: in the first one, only the effect of
mc is considered, while in the second one also the effect
of the random mean value mr, calculated with respect
to mc, is added. The proposed theoretical formulae are
applied to two frequency-domain methods, namely the
narrow-band approximation and the TB method. Finally,
a comparison of the proposed formulae with the results
from preliminary numerical simulations is shown.

keyword: Random loading, Rainflow count, Fatigue
damage, Mean value effect, Threshold level.

1 Introduction

The fatigue strength of metallic materials under constant
amplitude loads is mainly related to the amplitudes of the
applied cycles, even if mean values are also important.
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In fact, we know that positive mean values cause a re-
duction of fatigue strength, which is usually quantified
by proper analytical formulae (e.g. Goodman, Ger-
ber, Smith corrections), synthesizing results from exper-
iments [Łagoda, Macha and Pawliczek 2001]. Accord-
ing to these formulae, a fatigue cycle with amplitude s
and positive mean value m is transformed to an equiva-
lent cycle which is thought to cause the same damage as
the given one, having a zero mean and greater amplitude
(Goodman correction):

seq =
s

1−m
/

Su
(1)

where Su is the material ultimate static strength.

In random loadings the above situation becomes more
complex, since fatigue cycles are not immediately de-
fined and we first need to use proper counting methods
(e.g. rainflow count) to identify and to extract them. Fa-
tigue damage is then determined by assuming a suitable
damage accumulation law (e.g. Palmgren-Miner linear
rule).

Secondly, all cycles counted in a random load are ran-
domly distributed and they should be handled by prob-
abilistic tools; for example, we use probability density
functions to characterize the statistical variability of their
amplitudes and mean values. Such distributions could be
tentatively assumed and then calibrated on observed re-
sults [Tovo 2001; Nagode, Klemenc and Fajdiga 2001;
Xiong and Shenoi 2005], or alternatively could be cor-
related to the frequency-domain characteristics of the
load, synthesized by a power spectral density function
(frequency-domain approach) (for an extended review on
frequency-domain methods see [Benasciutti 2005]).

In both cases, all such distributions are generally defined
over an infinite domain, which implies that they predict a
finite non-zero probability to have cycles with infinitely
large peak or valley levels, which however seems rather
questionable from a more physical viewpoint.

In fact, all materials have an ultimate static strength, Su,
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above which we have static failures and not fatigue dam-
age.

Furthermore, real systems often possess a threshold level
SL identifying a limit state situation, which once crossed
immediately leads to a not-admissible condition. Other-
wise, in particular cases, a mechanical device could force
the system to work within specified ranges (e.g. a sus-
pension in a vehicle), so that the system can not cross a
specified threshold level (self-limited systems) and then
all the fatigue cycles are necessary confined within pre-
determined bounds. For example, in some testing condi-
tions a clipping test may be used to protect the test ma-
chine [Liou, Wu and Shin 1999].

Consequently, in the fatigue analysis of real systems we
could consider the existence of an ultimate static strength
Su, which discriminates between static failures and fa-
tigue damage, or even of a threshold level SL, which con-
trols the maximum stress.

More specifically, according to the system description
proposed just above, the fatigue cycles counted in a ran-
dom process becomes events randomly distributed within
prescribed bounds correlated to the given threshold, and
hence the fatigue assessment framework should charac-
terize their statistical variability by means of truncated
distributions.

A second problem is that the great part of frequency-
domain methods for the random fatigue analysis often ig-
nores the increment caused on damage by positive mean
values of the counted cycles, only considering the sta-
tistical variability of their amplitudes. Otherwise, when
included, the mean value correction is not explicitly cor-
related to the cycle distribution, but it is only implicitly
included in best-fitting approximated formulae for dam-
age [Petrucci and Zuccarello 2004], or the cycle distribu-
tion is truncated at an arbitrarily chosen limit [Khil and
Sarkani 1999].

On the other hand, a necessary condition to insert the
mean value correction as in Eq. (1) is first to understand
and to include the effect of Su (i.e. a threshold) in the
cycle distribution, as well as in damage formulae, as ex-
plained just above.

Starting from the above premises, this paper aims to de-
velop a theoretical framework, which including the in-
fluence of both the threshold and the cycles’ mean value
aims to provide a more realistic description of the fatigue
damage process under random loadings.

Throughout the paper, symbol SL will indicate a thresh-
old level and Su the ultimate static strength (with SL ≤
Su), being −SL and −Su the corresponding symmetric
values, respectively. Further, in what follows both SL

and Su are considered as a deterministic value (i.e. not
random).

Note, however, that SL and Su determine two different
system behaviors. For what concerns Su, its overcoming
will result in an immediate system failure. On the other
hand, if there exists a system threshold SL < Su imposed
by some physical device to prevent critical conditions,
the event of a static failure will be not possible at all and
the extremes (maxima or minima) of all counted fatigue
cycles will be bounded by SL.

The fatigue load is modeled as a stationary random pro-
cess X(t) with mean value mc (constant), see Fig. 1; each
rainflow cycle counted in X(t) is characterized, besides
its amplitude, also by a mean value m, decomposed as
the sum of the constant component mc and the random
component mr, evaluated with respect to mc.

mr

mc

m = mc + mr

X(t)

t

s

RANDOM LOAD RAINFLOW CYCLE

Figure 1 : Amplitude s and mean value m of a rainflow
cycle; mc is the mean value of process X(t).

The cycle distributions and the formulae for damage es-
timation will be updated by considering the influence of:

• the threshold level SL;

• the constant mean value mc (approximate ap-
proach);

• both mc and mr mean values.

The threshold level SL identifies in the domain defining
the cycle distribution the ”exceeding” region, where there
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are fatigue cycles associated to a threshold crossing oc-
currence (i.e. their peak or valley exceeds the threshold).

If SL = Su, a threshold crossing occurrence will produce
a static failure and not fatigue damage, hence the prob-
ability of the ”exceeding” cycles should be excluded in
principle from fatigue damage computation; for instance,
an approximate method is proposed in Appendix to esti-
mate the failure probability. At the opposite, if SL < Su,
we assume as a simplifying hypothesis that the thresh-
old is imposed to the system by some device, which pre-
vents a threshold crossing occurrence; then SL becomes
the maximum load admissible in fatigue damage compu-
tations. Hence, we propose to not neglect the probability
associated to the ”exceeding” cycles, but to shift it to the
boundary of the ”exceeding” region, so that also these
cycles do contribute to fatigue damage.

Equation (1) is then applied to include in damage compu-
tation the effect of positive mean values. First, only mc

influence is considered; the proposed approximated ap-
proach, applicable to all those methods which give only
the distribution of amplitudes, is asymptotically exact
for narrow-band loadings, in which mr is approximately
zero. Subsequently, mr influence is added, through for-
mulae which however require the joint amplitude-mean
distribution.

The proposed formulae are applied, as an example, to
two frequency-domain methods, i.e. the narrow-band ap-
proximation and the TB method [Tovo 2002; Benasciutti
and Tovo 2005].

Finally, results from preliminary numerical simulations
are shown, in order to judge about the correctness of the
proposed formulae.

2 Spectral characterization of a random process

The fatigue load X(t) is modeled as a stationary random
process with mean value mc (see Fig. 1) and power spec-
tral density (PSD) S(ω), which is characterized by the
spectral moments:

λi =
+∞Z

0

ωi S(ω) dω (2)

which represent some important time-domain properties
of X(t); for example, the variance is given by the zero-
order moment, σ2

X = λ0. Further, if X(t) is Gaussian, the
mean upcrossing rate ν0 and the rate of peak occurrence

νp are, respectively [Lutes and Sarkani 1997]:

ν0 =
1

2π

√
λ2

λ0
, νp =

1
2π

√
λ4

λ2
(3)

Particular combinations of the spectral moments define
the bandwidth parameters, as [Lutes and Sarkani 1997]:

α1 =
λ1√
λ0 λ2

, α2 =
λ2√
λ0 λ4

(4)

Spectral moments and bandwidth parameters are the
main spectral parameters used by the frequency-domain
methods developed for the analysis of random loadings
(see [Benasciutti and Tovo 2005] or, for an extended re-
view, see [Benasciutti 2005]).

3 Theoretical formulae for fatigue damage

Each fatigue cycle counted in X(t) is characterized by an
amplitude s and a mean value m:

s =
u−v

2
, m =

u+v
2

(5)

functions of the peak u and valley v.

According to Fig. 1, the mean value m can be thought as
the sum of the constant mean value mc of process X(t)
and the random mean value mr, evaluated with respect to
mc.

Amplitudes and mean values, as well as peaks and val-
leys, of the cycles counted in random process X(t) are
clearly random variables and, if continuously distributed,
they could be described by a probability density function
(PDF).

Obviously, any counting method (e.g. rainflow, level-
crossing, range-mean counting) applied to random load
X(t) will define its own set of counted cycles and hence
its own cycle distribution. Our attention will mainly fo-
cus on the rainflow method, which has been recognized
as the best counting procedure [Dowling 1972].

Let hRF(u, v) be the joint PDF of rainflow cycles
counted in X(t), depending on peak u and valley v. In
the engineering field, however, we mainly refer to the
amplitude-mean PDF:

pRF(s, m) = 2hRF(m+ s, m− s) (6)



152 Copyright c© 2006 Tech Science Press SDHM, vol.2, no.3, pp.149-163, 2006

and to the marginal amplitude PDF:

pRF(s) =
+∞Z

−∞

pRF(s, m)dm (7)

Known the fatigue behavior under constant amplitude
loads as the S-N relation skN = C, defined for m = 0, the
damage intensity under the Palmgren-Miner linear rule
(neglecting the mean value m of counted cycles) is:

D
a
RF,nc = νp

+∞Z

0

sk

C
pRF(s) ds (8)

where νp (i.e. the peak frequency) is taken as the fre-
quency of counted cycles, since the rainflow count gives
a one-to-one correspondence between counted cycles and
peaks in the process.

The damage in Eq. (8) only considers the statistical
variability of the amplitudes of rainflow cycles. In or-
der to formally introduce a dependence of damage on
pRF(s,m), we can use Eq. (7) to rewrite the previous
equation also as:

D
a
RF,nc = νp

+∞Z

0

+∞Z

−∞

sk

C
pRF(s, m) dsdm (9)

It is important to emphasize that, even if damage in Eq.
(9) is computed by using the amplitude-mean joint PDF
pRF(s,m), it does not actually depend on mean values,
but only on amplitudes, since no mean value correction,
as that in Eq. (1), is used. In addition, both equations
integrate the cycle distributions pRF(s) and pRF(s,m)
over an infinite domain, without correcting for the thresh-
old. Hence, they are defined as ”no correction” damage
estimates.

4 Influence of the threshold level SL on damage

The cycle distributions, pRF(s) or pRF(s,m), used to
quantify the statistical variability of the amplitudes and
the mean values of counted cycles are defined over infi-
nite domains. Consequently, they give a finite non-zero
probability to count cycles in process X(t) having an in-
finitely large peak or valley level. In addition, all these
cycles are assumed to contribute to the total fatigue dam-
age, since integration in Eqs. (8)-(9) is from zero to infi-
nite (i.e. all amplitudes and mean values are admitted).

However, once we introduce a threshold level SL, this as-
sumption is no longer valid.

For example, if SL = Su (the material static strength), then
all cycles with peak or valley exceeding SL or −SL levels
respectively (here defined as ”exceeding” cycles, see Fig.
2), would actually produce static fracture and not fatigue
damage.

"inside" cycles

"exceeding" 

cycles

"exceeding" 

cycles

LS

LS

s

mmc-SL SuuS

Su

Figure 2 : Schematic representation of the level curves
of the function pRF(s,m). The ”inside” and the ”exceed-
ing” regions are indicated.

Hence, the ”exceeding” cycles should be excluded in
principle from the computation of the fatigue damage,
and from a mathematical point of view the statistical vari-
ability of all fatigue cycles counted in X(t) should be de-
scribed by means of truncated distributions.

Obviously, simple truncation of a probability density
function defined over an infinite domain would not be
strictly correct, since the resulting truncated distribution
would have a total probability less then one (i.e. the prob-
ability of cycles, associated to a threshold crossing occur-
rence would be lost).

As an example, Fig. 3 plots the truncated cumulative
distribution function of amplitudes, PRF(s), as a function
of both the (normalized) threshold and the global mean
mc, for a narrow-band process.

According to its definition, function PRF (SL −|mc|)
gives the probability to count a cycle with amplitude
equal or lower than SL − |mc|. Since in a narrow-band
process pRF(s) is a Rayleigh PDF [Lutes and Sarkani
1997], we have:

PRF (SL −|mc|) = γ
(

1 ,
(SL−|mc|)

2λ0

)
(10)
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where we use the incomplete gamma function:

γ(a, x) =
xZ

0

ua−1 e−u du (11)
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Figure 3 : Cumulative distribution function of ampli-
tudes for a narrow-band process, as a function of mc and
SL.

As expected, Figure 3 shows that PRF (SL−|mc|) cor-
rectly converges to unity when SL goes to infinity (no
truncation). Figure 3 also shows how the probability lost
due to the truncation greatly depends on SL, so that the to-
tal probability tends to rapidly decrease for SL just below
three standard deviations, even for the lowest mc value.

For a joint amplitude-mean PDF, instead, we propose in
Appendix A two approximations to estimate the proba-
bility of threshold crossing occurrence.

On the other hand, the correct way to rescale a given dis-
tribution to a total probability equal to one would result
in a difficult task, also requiring a re-fitting procedure of
the rescaled distribution to existing data, to get accurate
damage estimations.

If instead SL represents a system threshold imposed for
example by a physical device, then the extremes of all
counted cycles are forced to not exceed |SL|. Hence, the
probability of the ”exceeding” cycles will not be lost.

A simpler solution adopted here is to truncate the cycle
distribution at the threshold level and to concentrate the
occurrence probability of the ”exceeding” cycles to the
”boundary” of the ”inside” region, see Fig. 2.

In this way, we can continue to use the distributions pro-
posed by the existing methods to completely character-
ize the random counted cycles. Further, in the case of
self-limited systems described above, where all fatigue
cycles are confined within prescribed bounds related to
the threshold, this approach would actually be physically
coherent.

The mathematical formalization of the above concepts
leads to the following form for the truncated amplitude
PDF:

pthr
RF(s) = pRF(s) I (SL −|mc|− s)

+δ(s+ |mc|−SL)
[

1−PRF (SL −|mc|)
]

(12)

where PRF(s) is the CDF of amplitudes, I(x) is an indi-
cator function (I(x) = 1 if x ≥ 0, I(x) = 0 elsewhere) and
δ(−) is the Dirac delta function.

For the truncated joint amplitude-mean PDF we have:

pthr
RF(s,m) = pRF(s,m) I (SL−|m|− s)

+δ(SL −|m|)
+∞Z

SL−|m|
pRF(s,m)ds (13)

For what concerns fatigue damage the use of Eqs. (8)-(9),
which integrating from zero to infinite include all possi-
ble amplitudes and mean values, is no longer acceptable.

By using, instead, the truncated cycle distributions as de-
fined just above, our assumption leads to a total damage
formed by two separate contributions:

DRF,thr = DRF,in +DRF,exc (14)

where DRF,in is the damage of the ”inside” cycles and

DRF,exc the damage of the ”exceeding” cycles, shifted
to the ”boundary” region.

For the damage computed as a function only of ampli-
tudes, Eq. (14) specializes as:

D
a
RF,thr = νp

SL−|mc|Z

0

sk

C
pRF(s)ds

+νp
( SL −|mc| )k

C

[
1−PRF (SL −|mc|)

]
(15)
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in which the amplitudes of the ”exceeding” cycles are
transformed in amplitudes equal to SL −|mc|.
If we refer instead to the joint amplitude-mean PDF
pRF(s,m), fatigue damage including the effect of the
threshold can be expressed as:

D
a,m
RF,thr = D

a,m
RF,in +D

a,m
RF,exc (16)

in which D
a,m
RF,in is the damage corresponding to rainflow

cycles for which |m|+ s < SL (”inside” region):

Da,m
RF,in =

νp

C

SLZ

−SL

SL−|m|Z

0

sk pRF(s,m)dsdm (17)

while D
a,m
RF,exc is the damage for rainflow cycles with

|m|+ s ≥ SL (”exceeding” region):

D
a,m
RF,exc =

νp

C

SLZ

−SL

+∞Z

SL−|m|
(SL + |m|)k pRF(s,m)dsdm (18)

which are transformed into cycles with the same mean
value m and amplitude s = SL −|m|.
It becomes now clear that if we discarded from total dam-
age the contribution of the ”exceeding” cycles, we would
have damage values less than the theoretical ones, given
in Eqs. (8)-(9).

5 Effect of the mean value on fatigue damage

The next step in the theoretical analysis consists to in-
crease the fatigue damage of those cycles with a positive
mean value, according to the Goodman criterion, see Eq.
(1). Two approaches are proposed: besides the correction
for mc, the influence of mr is either neglected or included.

5.1 Effect of mc on damage

When considering only the statistical variability of am-
plitudes, fatigue cycles are assumed to have a common
mean value, equal to the mean value mc of process X(t).

Hence, damage only depends on the amplitude PDF and
the influence of mc on damage is simply obtained by in-
serting in Eq. (15) the Goodman correction given in Eq.

(1):

D
a
RF,mc

=
νp

C

⎛
⎝ SL−|mc|Z

0

(
s

1− I(mc) mc
/

Su

)k

pRF(s)ds

+

(
SL − |mc|

1− I(mc) mc
/

Su

)k [
1−PRF(SL−|mc|)

]⎞⎠ (19)

The indicator function I(x) is used to specify that the
mean value correction is applied only when mc > 0.

The formula for the correction of mc, Eq. (19), even if
approximated, is easily applicable to all existing spectral
methods which provide an estimate of the amplitude dis-
tribution pRF(s) (e.g. narrow-band approximation, TB
method [Tovo 2002; Benasciutti and Tovo 2005], Dir-
lik method [Dirlik 1985], Zhao-Baker method [Zhao and
Baker 1982]).

We expect that the error given by Eq. (19) in neglecting
the influence of mr on damage depends on the relative
importance of this component with respect to the global
mean value mc and it should diminish as the frequency
bandwidth of process X(t) decreases, since in narrow-
band processes all fatigue cycles are virtually symmetric
with respect to mc, all with mr

∼= 0.

Thus, a simple way to judge the process bandwidth could
be to refer to the process bandwidth parameters (e.g. α1

and α2) or to their proper combinations; for example, a
possibility is to use the b factor defined later on by the
TB method: b values near unity indicate a narrow-band
process, while values close to zero are for a wide-band
process.

5.2 Effect of mc and mr on damage

The possibility to include also the influence of the ran-
dom mean value mr in damage computation only applies
to formulae where damage depends on pRF(s, m), see
Eqs. (16)-(18).

The correction for positive mean values is inserted by
considering the Goodman correction, Eq. (1), for all cy-
cles with m > 0. The formula for rainflow damage still
writes as the sum of two contributions:

D
a,m
RF,m = D

a,m
in,m +D

a,m
exc,m (20)

in which D
a,m
in,m

is the damage calculated for cycles with
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|m|+ s < SL (”inside” cycles):

D
a,m
in,m

=
νp

C

⎛
⎝ 0Z

−SL

SL+mZ

0

sk pRF(s,m)dsdm

+
SLZ

0

SL−mZ

0

(
s

1−m
/

Su

)k

pRF(s,m)dsdm

⎞
⎠ (21)

while Da,m
exc,m is the damage calculated for cycles with

|m|+ s ≥ SL (”exceeding” cycles):

D
a,m
exc,m =

νp

C

⎛
⎝ 0Z

−SL

+∞Z

SL+m

(SL +m)k pRF(s,m)dsdm

+
SLZ

0

+∞Z

SL−m

(
SL −m

1−m
/

Su

)k

pRF(s,m)dsdm

⎞
⎠ (22)

At the opposite of the previous case, Eqs. (20)-(22) are
applicable only to those methods which provide an es-
timate of the joint PDF pRF(s,m), e.g. [Nagode, Kle-
menc and Fajdiga 2001; Tovo 2002; Benasciutti and Tovo
2005; Lindgren and Broberg 2005].

6 Examples

In the following two paragraphs we apply the previ-
ous formulae to two frequency-domain methods, namely
the well-known narrow-band approximation and the TB
method.

6.1 Narrow-band approximation

If process X(t) is both Gaussian and narrow-band, am-
plitudes follow a Rayleigh distribution and the frequency
of cycles is approximated with ν0; hence damage is ex-
pressed as:

DNB =
ν0

C

(√
2λ0

)k
Γ
(

1+
k
2

)
(23)

where Γ( · ) is the Gamma function.

The modification for SL according to Eq. (15) becomes:

DNB,thr =
ν0

C

[(√
2λ0

)k
γ

(
1+

k
2
,
(SL −|mc|)2

2λ0

)

+ (SL −|mc|)k e−
(SL−|mc|)2

2λ0

]
(24)

where γ( · , · )is the incomplete gamma function.

Note how Eq. (24) reduces to Eq. (23) (i.e. the theoreti-
cal damage) as long as SL−|mc| tends to infinity.

The correction for mc is very simple, according to Eq.
(19):

DNB,mc
=

ν0

C

⎡
⎣( √

2λ0

1− I(mc)mc
/

Su

)k

γ

(
1+

k
2
,
(SL−|mc|)2

2λ0

)

+

(
SL −|mc|

1− I(mc)mc
/

Su

)k

e−
(SL−|mc |)2

2λ0

⎤
⎦ (25)

Note that in a narrow-band process all cycles are sym-
metric about mc, with mr

∼= 0; hence there is no correc-
tion for mr and the equations reported above are exact.

6.2 TB method

In wide-band processes, the amplitudes of counted cy-
cles do not follow a Rayleigh distribution; in addition,
the fraction of cycles having mr different from zero could
be relevant.

Therefore, a correct estimate of the fatigue damage
should include the statistical variability of both ampli-
tudes and mean values, described by the joint amplitude-
mean PDF. However, this distribution is very difficult
to be estimated and for this reason the great part of
frequency-domain methods simply restricts to an am-
plitude density estimate [Dirlik 1985; Zhao and Baker
1992].

On the other hand, several methods exist, which try to
also give an (analytical or numerical) estimate of the joint
amplitude-mean distribution, see [Lindgren and Broberg
2005; Nagode, Klemenc and Fajdiga 2001].

Among them, we consider here the TB method [Tovo
2002; Benasciutti 2005; Benasciutti and Tovo 2005], in
which a linear combination is used to estimate the joint
PDF of rainflow cycles:

hRF(u, v) = b hLC(u, v)+(1−b) hRM(u, v) (26)

where b is a proper ”weight” (between 0 and 1), depend-
ing on α1 and α2 parameters of the process PSD:

b ∼=
(α1 −α2)

[
1.112 (1+α1α2− (α1 +α2)) e2.11 α2

+(α1 −α2)

]
(α2 −1)2

(27)
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The probability density functions hLC(u, v) and
hRM(u, v) are the cycle distributions for the level-
crossing counting:

hLC(u, v)

=

⎧⎪⎪⎨
⎪⎪⎩

[ pp(u)− pv(u)] δ(u+v−2mc)+
pv(u)δ(u−v) if u > mc

pp(u)δ(u−v) if u ≤ mc

(28)

and the range-mean counting (which is only approxi-
mated):

hRM(u, v)

=
1

2
√

2πλ0α2
2

e
− u2+v2

4λ0α2
2(1−α2

2) · e−
(u−v)2

4λ0α2
2(1−α2

2)

1−2α2
2

2α2
2

· e−
mc(mc−u−v)
2λ0(1−α2

2)

⎡
⎣ u−v√

4λ0(1−α2
2)

⎤
⎦ (29)

By means of Eq. (6), the corresponding amplitude-mean
distribution for the level-crossing is:

pLC(s, m)

=

⎧⎪⎪⎨
⎪⎪⎩

[ pp(s)− pv(s)] δ(m−mc)+
pv(m)δ(s) if s+m > mc

pp(m)δ(s) if s+m ≤ mc

(30)

and for the range-mean count is:

pRM(s, m)

=
1√

2πλ0(1−α2
2)

e
− (m−mc )2

2λ0 (1−α2
2) s

λ0 α2
2

e
− s2

2α2
2 λ0 (31)

Note that all the above distributions, which are valid for
Gaussian processes, are symmetric with respect to mc.

The marginal amplitude PDF are found according to Eq.
(7).

The resulting rainflow damage is then expressed as a lin-
ear combination:

DTB = b DLC +(1−b)DRM (32)

where DLC is the damage from the level-crossing count-
ing (which is shown to be equal to DNB given in Eq.

(23) [Tovo 2002]) and DRM is the (approximated) dam-
age from the range-mean counting, see [Madsen, Krenk
and Lind 1986].

When considering the correction for mc, formula for
damage as a function only of amplitudes becomes:

Da
TB,mc

= b Da
LC,mc

+(1−b) Da
RM,mc

(33)

in which D
a
LC,mc

and D
a
RM,mc

are the damage of the
level-crossing and range-mean counting, computed as a
function of amplitudes.

In particular, D
a
LC,mc

coincides with DNB,mc
given in Eq.

(25), while D
a
RM,mc

, computed according to the distribu-
tion pRM(s) derived from [Tovo 2002], is:

D
a
RC,mc

=
νp

C

⎡
⎢⎣
⎛
⎝

√
2α2

2λ0

1− I(mc)mc
/

Su

⎞
⎠

k

×

γ

(
1+

k
2
,
(SL−|mc|)2

2α2
2λ0

)

+

(
SL −|mc|

1− I(mc)mc
/

Su

)k

e
− (SL−|mc |)2

2α2
2λ0

⎤
⎦ (34)

If we refer, instead, to the damage as a function of ampli-
tudes and mean values, the damage including the mean
value correction is formally expressed as:

D
a,m
TB,m = b D

a,m
LC,m +(1−b) D

a,m
RM,m (35)

in which D
a,m
LC,m is the contribution from the level-

crossing counting, which is coincident with the damage
DNB,mc

given in Eq. (25), whereas D
a,m
RM,m is formed by

the sum of two contributions as:

D
a,m
RC,m

= D
m
RC,in +D

m
RM,exc (36)

in which D
m
RM,in is the damage of the range-counting

cycles associated to the condition |m|+ s < SL (”inside”
cycles):

D
m
RM,in =

νp

(√
2 α2

2λ0

)k

C
√

2πλ0(1−α2
2)

·

SLZ

−SL

e
− (m−mc )2

2λ0 (1−α2
2)(

1− I(m)m
/

Su
)k γ

(
1+

k
2
,
(SL −|m|)2

2λ0 α2
2

)
dm (37)
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Figure 4 : Wide-band (left) and bimodal PSD (right).

Table 1 : Spectral parameters of the PSDs used in numerical simulations

PSD 0 0 p 1 2

narrow-band 1.0 1.592 1.593 0.9998 0.9994 

wide-band 1.0 0.202 0.240 0.963 0.844 

bimodal 1.0 0.390 1.004 0.713 0.389 

while D
m
RM,exc is the damage of the range-counting cy-

cles associated to the condition |m|+s≥ SL (”exceeding”
cycles):

D
m
RM,exc =

νp

C
√

2πλ0(1−α2
2)

·
SLZ

−SL

(
SL −|m|

1− I(m)m
/

Su

)k

e
− (m−mc)2

2λ0 (1−α2
2) e

− (SL−|m|)2

2λ0 α2
2 dm (38)

The above integrals can be solved by numerical integra-
tion.

7 Numerical simulations

In order to judge the accuracy of all previous formu-
lae, we simulated several time histories corresponding to
Gaussian random processes with different PSD and mc

values, choosing also different values of both SL and Su

(being always SL ≤ Su).

In the following, we refer to the normalized values:

mc

σX
;

SL

σX
;

Su

σX
(39)

where σ2
X = λ0 is the variance of process X(t).

In order to evaluate the effect of mc, SL and Su on both
the cycle distribution and the fatigue damage, we select a
wide set possible combinations of all the above parame-
ters.

We mainly considered two sets of simulations: in the first
set, Su was kept fixed (values of Su

/
σX = 10, 20 are cho-

sen) and SL
/

σX varied in the range from 2.6 up to the
Su
/

σX value; in the second set, SL was kept fixed at val-
ues SL

/
σX = 3, 4, 5 while Su

/
σX varied in the range

from the SL
/

σX value up to 20. Finally, for each given
combination of SL and Su values, fives values of mc

/
σX

are selected in the interval 0÷1.5.

The PSDs investigated in numerical simulations were
a narrow-band spectrum (a rectangular one-block PSD
centered at 10 rad/sec), and the wide-band and bimodal
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spectra shown in Fig. 4 (for their equations see [Kihl,
Sarkani and Beach 1995]).

Their spectral parameters are summarized in Tab. 1; as
can be seen, the largest spectral bandwidth is associated
to the bimodal PSD.

For each PSD, we simulated 5 time histories and for each
of them we apply first the rainflow count and then the
Palmgren-Miner linear rule, so to get the total damage.

The first damage value, say D̂nc (called the ”no correc-
tion” damage), is computed by completely neglecting the
effect of both SL and Su (amplitudes are not truncated and
there is no mean value correction):

D̂nc = C−1 ∑
i

sk
i (40)

In the second damage value, say D̂m, the amplitudes of
the ”exceeding” cycles are truncated analogously to that
described in Section 4, and the Goodman correction as in
Eq. (1) is also applied to cycles with positive mean value:

D̂m = C−1

⎛
⎜⎜⎜⎜⎜⎝ ∑

i
|mi|+ si < SL

(
si

1− I(mi) mi
/

Su

)k

+ ∑
i

|mi|+ si ≥ SL

(SL− I(−mi)mi)
k

⎞
⎟⎟⎟⎟⎟⎠ (41)

In the above equations, symbols si and mi denote the am-
plitude and mean value of the i-th counted cycle.

By dividing the total damage by the total time length we
have the damage intensity (damage/sec) for each simu-
lated history. The mean damage intensity for the given
random process was finally computed as the average of
the five damage values calculated for each simulated his-
tory.

As an example, we plot in Figure 5 the ratio D̂m/Dnc of
the damage from simulations (calculated with and with-
out corrections for both threshold and mean value) as a
function of threshold SL, for different mc values and two
fixed Su levels. Similar results are obtained for the two
other PSDs.
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Figure 5 : Effect of threshold SL on damage from simula-
tions, for different mean values mc and for Su

/
σX equal

to 10 (top) or 20 (bottom). Bimodal PSD.

The plot captures two distinct trends: the first is related
to the amplitude truncation caused by SL and prevails at
low threshold levels, while the second is due to the mean
value (Goodman) correction related to Su and is clearly
visible at high thresholds.
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/
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and 5 (bottom). Wide-band PSD.

The first trend due to the amplitude truncation appears as
a damage reduction related to SL. For a fixed mc value,
with decreasing SL levels the amount of damage con-
tributed by the ”exceeding” cycles, which in our model
are forced to have lower amplitudes, prevails over the
damage of the ”inside” cycles. As a consequence, the
damage D̂m becomes smaller than D̂nc, damage where
the amplitude truncation is not applied.

The effect becomes markedly evident at very low thresh-
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Figure 7 : Comparison of damage estimations DNB,mc

and D
a
TB,mc

(only mc correction) with damage D̂m from
simulations. Bimodal PSD.

olds SL, where the damage contribution lost by trunca-
tion becomes important and the ratio D̂m/Dnc could even
decrease below unity. Further, at high mc values the trun-
cation effect is shown to start at higher SL values and
appears as more pronounced.

For what concerns the effect of the mean value correc-
tion, it is clearly visible only at high thresholds SL, where
amplitude truncation does not occur and therefore the
mean value correction always increments damage D̂m

with respect to D̂nc, computed without corrections.

The results for mc = 0 summarize the increment on dam-
age caused by the random mean component mr alone,
while the results for other mc values adds together the
effects of both mc and mr.

The two plots in Figure 5 clearly evidence how the dam-
age increment given by the Goodman correction depends
primarily on mc and very little on mr. Further, according
to Eq. (1), it correctly decreases at high Su values, being
inversely proportional to Su, as also shown in Figure 6.

It should be noted that the effect of mr on fatigue damage
strictly depends on the bandwidth of process X(t). More
precisely, we expect that the increment on damage when
mc = 0 increases as the process bandwidth increases; this
because in narrow-band processes, where all cycles are
symmetric about mc and all have mr

∼= 0, the contribution
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with damage D̂m from simulations. Bimodal PSD.

of mr is practically negligible, at the opposite of what
happens in wide-band processes (e.g. bimodal), where
the fraction of cycles with mr different from zero could
be relevant.

For what concerns the accuracy of the theoretical esti-
mations and the damage from numerical simulations, a
comparison is shown in Figure 7 and Figure 8.

Figure 7 confirms that the narrow-band approximation
modified with the mc mean value correction gives too
conservative damage estimations with random processes
which are actually not narrow-band.

At the opposite, the TB method updated with the mc cor-
rection provides better damage estimates, since it is ca-
pable to account with sufficient precision for the effect
on damage of the spectral bandwidth of process X(t).

In Figure 8 we finally show the comparison between
damage Da,m

TB,m with correction of both mc and mr mean
values with damage from simulations. As can be seen,
the estimation given by Da,m

TB,m slightly improves with

respected to Da
TB,mc

.

8 Conclusions

This paper proposes theoretical formulae for fatigue
damage estimation in a random process by frequency-

domain methods, in which the influence of both a thresh-
old level SLand the ultimate static strength Su, as well as
positive mean values of fatigue cycles, are considered.

The fatigue load is modeled as a stationary random pro-
cess X(t) with mean value mc; hence, each rainflow cycle
counted in X(t) is characterized, besides its amplitude,
also by its mean value m = mc + mr, sum of the global
mean value mc and of the random mean value mr, com-
puted with respect to mc.

First, only the influence of SL on the cycle distributions
is considered. Then, the mean value correction, through
the Goodman criterion, is included with two different ap-
proaches. The first evaluates only the influence of mc and
it is applicable to those frequency-domain methods that
provide an estimate of the distribution of the amplitudes
of counted cycles (e.g. narrow-band approximation, TB
method, Dirlik method, Zhao-Baker method).

The second one considered the effect of both mc and mr,
using the joint amplitude-mean distribution pRF(s,m),
and thus it is applicable only to those methods which es-
timate pRF(s,m).

As an example, the proposed theoretical formulae are
applied to two frequency-domain methods, namely the
narrow-band approximation and the TB method.

Results from preliminary numerical simulations are fi-
nally shown.

9 Appendix A - Probability of threshold crossing oc-
currence

Once we introduce the threshold level SL, the cycle dis-
tribution leads to a non-zero probability to count the so-
called ”exceeding” cycles, that is cycles associated to a
threshold crossing occurrence.

In practical applications, it is important to have a rough
estimation of this probability, without the need to apply a
direct integration of the joint amplitude-mean cycle dis-
tribution, which could be unknown.

In this section we provide closed-form approximated for-
mulae which give an answer to the above question.

Let P1
f denote the probability of threshold crossing oc-

currence, which is the probability to count a cycle with
peak and/or valley exceeding the |SL| level. If threshold
were equal to the material ultimate static strength (i.e.
SL = Su), P1

f would actually represent a fracture proba-
bility.
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If threshold levels SL and −SL are assumed symmetric,
the probability P1

f can be computed as:

P1
f =

u=+∞Z

u=SL

v=uZ

v=−∞

hRF(u,v)dudv +
v=−SLZ

v=−∞

u=+∞Z

u=v

hRF(u,v)dudv

−
u=+∞Z

u=SL

v=−SLZ

v=−∞

hRF(u,v)dudv (42)

Now, we use a property of the hRF(u, v) distribution
(called the ”completeness condition”), which relates the
marginal distribution of hRF(u, v) to the PDF of peaks
and valleys [Tovo 2002]:⎧⎪⎪⎨
⎪⎪⎩

pp(u) =
uR

−∞
hRF(u, v) dv

pv(v) =
+∞R
v

hRF(u, v) du
(43)

Further, we express the last integral term in Eq. (42) by
means of the so-called rainflow count intensity, defined
as [Rychlik 1993]:

µRF(u, v) = νp

+∞Z

x=u

y=vZ

−∞

hRF(x, y)dxdy (44)

which represents the intensity of rainflow cycles with
peak equal or higher than u and valley equal or lower than
v. From its definition, µRF(u, v) tends to zero as u and v
increase towards plus and minus infinity, respectively.

Hence, we can rewrite Eq. (42) as:

P1
f = 1−Pp(SL)−Pv(−SL)− µRF (SL, −SL)

νp
(45)

where Pp(u) and Pv(v) are the CDF of peaks and valleys,
respectively. Note that Eq. (45) is very general and holds
for any distribution hRF(u, v) satisfying Eq. (43), when
the proper peak and valley distributions are used. Note
also how P1

f defined by Eq. (45) converges to zero when
SL tends to infinity.

Now, if we assume that process X(t), with mean mc, is
Gaussian, its peak and valley PDFs are symmetric to mc,
i.e. pv(v) = pp(2mc − v), hence for their CDFs we have
Pv(v) = 1−Pp(2mc − v). Consequently, we can further
simplify Eq. (45) as:

P1
f = 2−Pp(SL)−Pp(2mc +SL)− µRF (SL, −SL)

νp
(46)

In addition, the CDF of peaks for a Gaussian process is
known explicitly [Lutes and Sarkani 1997]:

Pp(u) = Φ

⎛
⎝ u−mc

σX

√
1−α2

2

⎞
⎠

−α2e
− (u−mc)2

2σ2
X Φ

⎛
⎝ α2(u−mc)

σX

√
1−α2

2

⎞
⎠ (47)

Note, however, that we can not solve explicitly Eq.
(46), since we do not know the analytical expression of
µRF(u, v). For very high SL levels, a rough approxima-
tion could be to neglect the last term in Eq. (46); in the
other cases, the following two approximations are pro-
posed.

9.1 Poisson approximation

The approximation of the rainflow count intensity based
on the Poisson convergence of the level upcrossing spec-
trum is [Johannesson and Thomas 2001]:

µPois
RF (u,v)

νp
≈ µ(u)µ(v)

νp (µ(u)+µ(v))
(48)

where µ(x) is the upcrossing spectrum, which gives the
number of upcrossings of the level x per time unit. In
Gaussian processes, µ(x) is given by the well-known
Rice’s formula [Lutes and Sarkani 1997]:

µ(x) = ν0e
− (x−mc )2

2σ2
X (49)

Note that Eq. (48) is asymptotically exact only when
u >> mc and v << mc.

Hence, in a Gaussian process the rainflow count intensity
can be approximated as:

µPois
RF (u,v)

νp
≈ α2

e
(u−mc)2

2σ2
X +e

(v−mc )2

2σ2
X

(50)

since α2 = ν0
/

νp, see Eqs. (3) and (4).

Finally, calculating the cumulative distribution for u = SL

and v = −SL gives:

µPois
RF (SL,−SL)

νp
≈ α2

e
(SL−mc )2

2σ2
X +e

(SL+mc )2

2σ2
X

(51)



162 Copyright c© 2006 Tech Science Press SDHM, vol.2, no.3, pp.149-163, 2006

9.2 Linear approximation

From Eqs. (26) and (44), we have that:

µTB
RF(u,v) = bµLC(u,v)+(1−b)µRM(u,v) (52)

where µLC(u, v) and µRM(u, v) are the count intensity
of the level-crossing and range-mean counting, respec-
tively. By using the distribution given in Eq. (28), we
have that:

µLC(u, v)
νp

= α2

[
e
− (u−mc)2

2σ2
X I (u+v−2mc)

+ e
− (v−mc )2

2σ2
X I (−(u+v−2mc))

]
(53)
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Figure 9 : Cumulative probability 1−P1
f according to

Poisson and linear approximation. Bandwidth parame-
ters are σ2

X = 1, α1 = 0.713 and α2 = 0.389 (see bimodal
PSD in Tab. 1).

and from Eq. (29):

µRM(u, v)
νp

= α2

⎧⎨
⎩e

− (v−mc )2

2σ2
X

⎡
⎣1−Φ

⎛
⎝u−v+2α2

2(v−mc)

2α2 σX

√
1−α2

2

⎞
⎠
⎤
⎦

+ e
− (u−mc )2

2σ2
X Φ

⎛
⎝v−mc − (u−mc)(1−2α2

2)

2α2 σX

√
1−α2

2

⎞
⎠
⎫⎬
⎭ (54)

Calculating the above formulae for u = SL and v = −SL:

µLC(SL, −SL)
νp

= α2 e
− (SL+mc )2

2σ2
X (55)

and:

µRM(SL, −SL)
νp

= α2

⎧⎨
⎩e

− (SL+mc )2

2σ2
X

⎡
⎣1−Φ

⎛
⎝SL(1−α2

2)−mcα2
2

α2 σX

√
1−α2

2

⎞
⎠
⎤
⎦

+ e
− (SL−mc)2

2σ2
X

⎡
⎣1−Φ

⎛
⎝SL(1−α2

2) +mcα2
2

α2 σX

√
1−α2

2

⎞
⎠
⎤
⎦
⎫⎬
⎭ (56)

The two approximations just proposed provide in general
quite similar results for a wide range of combinations of
α1 and α2 bandwidth parameters (although the Poisson
approximation does not actually depends on α1), where
the largest differences are observed for the highest α1 −
α2 values.

As an example, Fig. 9 plots the probability 1−P1
f (which

could be interpreted as a cumulative distribution for the
joint amplitude-mean PDF), using the bandwidth param-
eters of the bimodal PSD. In Fig. 9 we also plot the ap-
proximation that we would obtain by neglecting the con-
tribution of the last term (i.e. the count intensity) in Eq.
46.

As can be seen, all the proposed approximations show a
trend which is very similar to that already plotted in Fig.
3 for the CDF of amplitudes.

Finally, Fig. 10 shows the influence of mc on 1−P1
f prob-

ability, according to the linear approximation.
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