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The Use of the Tangential Differential Operator in the Dual Boundary Element
Equation
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Abstract: The kernels of integrands are usually differ-
entiated to obtain the general boundary integral equation
(BIE) for stresses and its corresponding traction equa-
tion. An alternative BIE for stresses can be obtained
when the tangential differential operator is introduced in
problems using Kelvin type fundamental solutions. The
order of the singularity is reduced with this strategy and
the Cauchy principal value sense or the first order reg-
ularization can be used in the resultant BIE. The dual
boundary element formulation with the BIE for tractions
using the tangential differential operator is analyzed in
the present study. Shape functions with same expres-
sions for conformal or non-conformal interpolations are
adopted and conformal interpolations were applied on
the crack surface without losing the accuracy of the dual
formulation. The results obtained are compared with so-
lutions available from the literature to evaluate the for-
mulation.

keyword: Tangential Differential Operator, Dual
Boundary Element Method, Stress Intensity Factor.

1 Introduction

Accurate values for stresses at the boundary may be eval-
uated with the stress boundary integral equation (BIE)
[Guiggiani (1994)]. Nevertheless, the differentiation of
the kernels of integrals in the displacement BIE to obtain
an equation for stresses increases the order of the ker-
nel singularity and an additional care is necessary to treat
the improper integrals. The use of the tangential differ-
ential operator (TDO) in the stress BIE is an interesting
procedure when Kelvin type fundamental solutions are
employed and the reduction of the order of the kernel
singularity is the main benefit [Bonnet (1999), Kupradze
(1979), Sladek and Sladek (1983)]. A short explanation
on how to obtain the TDO in the stress BIE will be pre-
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sented next. The BIE for the gradient at an internal point
x can be written using the differentiation in terms of field
variables:

ui,m (x) =
Z

Γ

Ti j,m (x,y) u j (y) dΓ(y)

−
Z

Γ

Ui j,m (x,y) t j (y) dΓ(y) (1)

Ui j (x, y) and Ti j (x, y) are the displacement and the trac-
tion, respectively, in the direction j at the boundary point
y due to a singular load in the direction i at the collocation
point x, according to the Kelvin solution; u j(y) and t j(y)
are the displacement and the traction at the field point,
respectively.

The first and the second integrals of equation (1) are reg-
ular for internal points and exhibit singularities of order
1/r2 and 1/r in two dimensional problems, respectively,
when the field point approaches the collocation point.
The TDO can be introduced in the first integral of the
right member of equation (1) and the following relations
are obtained:
Z

Γ

Ti j,m (x,y) u j (y) dΓ(y)

=
Z

Γ

nb (y) σib j,m (x,y) u j (y) dΓ(y) (2)

Z

Γ

nb (y) σib j,m (x,y) u j (y) dΓ(y)

=
Z

Γ

{
Dbm

[
σib j (x,y)

]
+nm (y) σib j,b (x,y)

}
u j (y) dΓ(y)

(3)

Dbm( ) is the tangential differential operator, which has
the following definition:

Dbm [ f (y)] = nb (y) f,m (y)−nm (y) f,b (y) (4)
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The second term in the integral of the right member of
equation (3) is turned null at points y not coincident with
x (y �=x) when the Kelvin solution is used. The applica-
tion of the integration by parts on the resultant term of
the integral of the right member of equation (3) yields,
[Bonnet (1999)]:
Z

Γ

Dbm
[
σib j (x,y)

]
u j (y) dΓ(y)

=
Z

Γ

σib j (x,y) Dmb [u j (y)] dΓ(y) (5)

The BIE for the gradient using the TDO has the following
expression:

ui,m (x) =
Z

Γ

σib j (x,y) Dmb [u j (y)] dΓ(y)

−
Z

Γ

Ui j,m (x,y) t j (y) dΓ(y) (6)

The integrals of equation (6) are regular for internal
points and exhibit singularities of order 1/r when the
field point approaches the collocation point. The BIE for
stress can be obtained from equations (1) or (6) using the
Hooke tensor and the symmetry property of Ui j,m (x, y):

σak (x) = Cakim

Z

Γ

Ti j,m (x,y) u j (y) dΓ(y)

−
Z

Γ

σ jak (x,y) t j (y) dΓ(y) (7)

σak (x) = Cakim

Z

Γ

σib j (x,y) Dmb [u j (y)] dΓ(y)

−
Z

Γ

σ jak (x,y) t j (y) dΓ(y) (8)

Cakim = µ

(
2ν

1−2ν
δakδim +δaiδkm +δamδki

)
(9)

Cakim is the Hooke tensor for isotropic media, ν is the
Poisson ratio, µ is the shear modulus and δi j is the Kro-
necker delta.

The stress BIE at a boundary point is defined as the lim-
iting form of the corresponding BIE at an internal point
when it is led to a point on the boundary. For a point x’

on a smooth boundary, equations (7) and (8) can now be
written as:

1
2

σak
(
x′

)
= Cakim

Z

Γ

Ti j,m
(
x′,y

)
u j (y) dΓ(y)

−
Z

Γ

σ jak
(
x′,y

)
t j (y) dΓ(y) (10)

1
2

σak
(
x′

)
= Cakim

Z

Γ

σib j
(
x′,y

)
Dmb [u j (y)] dΓ(y)

−
Z

Γ

σ jak
(
x′,y

)
t j (y) dΓ(y) (11)

It is important to note on the continuity requirement for
the derivative of the displacement function at the collo-
cation point x’. The traction BIE is obtained from equa-
tion (10) or (11) when the stress tensor obtained at the
boundary point x’ is multiplied by direction cosines of
the outward normal at this point (n’), i.e.:

1
2

tk
(
x′

)
= n′a

(
x′

)
Cakim

Z

Γ

Ti j,m
(
x′,y

)
u j (y) dΓ(y)

−n′a
(
x′

)Z

Γ

σ jak
(
x′,y

)
t j (y) dΓ(y) (12)

1
2

tk
(
x′

)
= n′a

(
x′

)
Cakim

Z

Γ

σib j
(
x′,y

)
Dmb [u j (y)] dΓ(y)

−n′a
(
x′

)Z

Γ

σ jak
(
x′,y

)
t j (y) dΓ(y) (13)

2 The Dual Boundary Integral Equations

Several strategies have been employed to analyze crack
problems such as the displacement discontinuity method
[Crouch (1976); Wen (1996)], the crack Green’s function
method [Snyder (1975)], the numerical Green’s function
method [Guimarães and Telles (2000)], the subregion (or
subdomain) method [Blandford, Ingraffea and Liggett
(1976)] and the dual boundary element method (DBEM)
[Portela, Aliabadi and Rooke (1992); Mi and Aliabadi
(1992); Chen and Chen (1995)]. A detailed review on the
boundary formulations in fracture mechanics was pre-
sented in [Aliabadi (1997)]. The displacement and the
traction BIE are the equations employed in DBEM. The
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equation (12) is the well-known BIE for tractions and the
displacement BIE has the following expression for the
collocation point x’ on a smooth boundary:

1
2

ui
(
x′

)
+

Z

Γ

Ti j
(
x′,y

)
u j (y)dΓ(y)

=
Z

Γ

Ui j
(
x′,y

)
t j (y)dΓ(y) (14)

When the displacement BIE is applied to one of the crack
surfaces and the traction equation to the other, general
mixed-mode crack problems can be solved with a sin-
gle domain formulation. Although the integration path is
still the same for coincident points on the crack surfaces,
the respective boundary integral equations are now dis-
tinct. The collocation point needed to perform the trac-
tion boundary integral equation and the strategy used to
treat improper integrals are the essential features of the
formulation.

The collocation points must be positioned to satisfy the
continuity requirements for each BIE. The continuity of
the displacement function at x’ is the necessary condi-
tion for the displacement BIE whereas the continuity of
the displacement derivative is required for the traction
BIE. These conditions are generally satisfied for colloca-
tion points placed in the interior of the boundary element.
The collocation points may be placed at the ends of the
element when the shape functions, which approximate
displacements and derivatives in the element, satisfy the
necessary conditions at these points [Portela, Aliabadi
and Rooke (1992), Bonnet (1999)].

The integrals of equation (14) are regular for internal
points and exhibit singularities of order 1/r and ln(1/r), in
two dimensional problems, for points on the boundary.
The improper integrals can be handled by the classical
singularity subtraction method and the natural definition
of ordinary finite-part integrals is reached, as detailed ex-
plained in [Portela, Aliabadi and Rooke (1992)]. Ana-
lytical expressions can be used to evaluate the singular
integral and the Gauss-Legendre scheme is employed for
the regular integral. The local parametric co-ordinate ξ is
defined in the range (-1, 1) and the collocation point po-
sition is ξ’. The displacement components u j are approx-
imated in the local co-ordinate system in terms of nodal
values un

j . The first order finite-part integral expressed in

the local co-ordinate ξ is:

Z

Γe

Ti j
(
x′,y

)
u j (y)dΓ(y) =

un
j

⎡
⎣

+1Z

−1

f n
i j (ξ)− f n

i j (ξ′)
ξ−ξ′

dξ+ f n
i j

(
ξ′

) +1Z

−1

dξ
ξ−ξ′

⎤
⎦ (15)

The regular function fn
i j(ξ) is given by the product of the

fundamental solution, the shape function, the Jacobian
of the co-ordinate transformation and the term (ξ− ξ’).
The first integral of the right hand side of equation (15)
is regular and the second can be integrated analytically
[Portela, Aliabadi and Rooke (1992)].

The order of singularities in the traction BIE with TDO
(equation 13) is 1/r in both integrals. The improper in-
tegrals can be treated with the first order finite part as
shown in equation (15) for the singular kernel of the dis-
placement BIE. The regular function derived from the
kernel containing TDO is given by the product of the ker-
nel and the term (ξξ’). A detailed explanation on the
algebraic manipulation of the kernel containing TDO,
when it is written in terms of local coordinates, is pre-
sented in [Bonnet (1999)].

3 Boundary Elements and Internal Collocation
Points

Linear shape functions were employed to approximate
displacements and efforts in the boundary elements. The
same shape function was used for conformal and non-
conformal interpolations with nodal parameters posi-
tioned at the ends of the elements. The collocation points
were shifted to the interior of the element at a distance of
a six part of its length from the end. The collocation point
position (ξ’), in the range (-1, 1), was: i) ξ’=-0.67 for
continuous elements; ii) ξ’=-0.67 and ξ’=+0.67 for dis-
continuous elements. The number of collocation points
in the element was defined by the computer code accord-
ing to the condition of the last node, which means that an
element with the discontinuity at the first node had one
collocation point. The present numerical implementation
was studied in [Almeida and Palermo (2004)] with equa-
tions (12) and (14) in the dual formulation. The use of
conformal interpolations along the crack surfaces with-
out losing the accuracy of the dual formulation was the
main feature shown in that study.
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The dual formulation with TDO in the traction BIE is
analyzed in this paper. The derivatives of the adopted
shape function for displacements (linear functions) are
used in the traction equation, as required for the TDO,
and constant values with opposite signs were obtained
for the tangent derivatives. The background purpose was
the analysis of the TDO using derivatives of a low order
shape function.

The traction BIE with TDO was employed for collo-
cation points positioned on one of the crack surfaces
whereas other positions used the displacement BIE as it
was done with equations (12) and (14) in [Portela, Ali-
abadi and Rooke (1992); Almeida and Palermo (2004)].
The diagonal terms were obtained directly using the col-
location point position on the element and the shape
function.

The use of non-conformal interpolations required a re-
vision of the result obtained from equation (5) and the
effect of the ends from the integration by parts had to be
considered. The integration by parts presented in equa-
tion (5) is repeated next and the effect of the ends is in-
cluded:
Z

Γe

Dbm
[
σib j (x,y)

]
u j (y) dΓ(y) =

[
e3bmσib j (x,y)u j (y)

]Γe
0

+
Z

Γe

σib j (x,y) Dmb [u j (y)] dΓ(y) (16)

Γe is an open line, ei jk is the permutation symbol.

The equation (11) can be rewritten including the effect of
the ends in case of discontinuity in displacements at one
point:

1
2

σak
(
x′

)
= Cakim

Z

Γ

σib j
(
x′,y

)
Dmb [u j (y)] dΓ(y)

−
Z

Γ

σiak
(
x′,y

)
t j (y) dΓ(y)

+Cakime3bmσib j (x,y)
[
uB

j (y)−uF
j (y)

]
. (17)

The term between brackets of equation (16) appeared in
equation (17) as a multiplier of displacements uB

j and uF
j ,

which are at the backward and at the forward side of the
discontinuity respectively. It is important to note that uB

j

and uF
j have the same geometrical coordinates according

to the presented strategy for the non-conformal interpo-
lation.

4 Stress Intensity Factor Evaluation

The near-tip displacement extrapolation is used to obtain
stress intensity factors as explained in [Portela, Aliabadi
and Rooke (1992), Almeida and Palermo (2004)]. Con-
sider a polar coordinate system (r, θ) centered at the crack
tip, such that the crack surfaces could be defined with
θ = ±π. The displacement field on the crack surface is
written next and considering the first term of William’s
expansion:

u2 (θ = π)−u2 (θ = −π) =
κ+1

µ
KI

√
r

2π
(18)

u1 (θ = π)−u1 (θ = −π) =
κ+1

µ
KII

√
r

2π
(19)

The stress intensity factors for deformation modes II and
I are KII and KI , respectively, the parameter κ is equal to
3-4η; η is equal to ν for plane strain problems and equal
to ν/(1+ν) for plane stress problems. The near-tip dis-
placement extrapolation works with equations (18) and
(19) to obtain the stress intensity factors when the dis-
placements are known. The situation is shown in Figure
1, where opposite linear elements share the crack tip at
nodes B and C.

D B

E C 
Linear element 

Figure 1 : Crack tip at points B and C.

The length of the linear element is equal to l. The expres-
sions for the stress intensity factors are given by:

KDE
I =

(
uD

2 −uE
2

)
.

µ
κ+1

.
√

2.

√
π
l

(20)

KDE
II =

(
uD

1 −uE
1

)
.

µ
κ+1

.
√

2.

√
π
l

(21)

5 Numerical Example

Three cases were studied using linear boundary ele-
ments and a conformal interpolation on the crack sur-
faces. Double nodes were introduced at corners and
at crack tips. The results obtained with equations (13)
and (14) were compared to the literature and bound-
ary element formulations using equations (12) and (14).
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Figure 2 : Single edge crack

A non-conformal interpolation with quadratic functions
was employed in [Portela, Aliabadi and Rooke (1992)]
and the results were picked from those using near-tip
displacement extrapolation. The results derived from
[Almeida and Palermo (2004)] were obtained with the
same mesh adopted in this study.

A rectangular plate containing a single horizontal edge
crack shown in Figure 2 used a mesh with 48 linear el-
ements plus 8 elements on each crack surface (64 B.E.).
The crack length is a, the plate width is w and the height
is 2h. A uniform traction in the height direction was sym-
metrically applied at the ends. Results obtained for the
ratio h/w equals to 0.5 are shown in Table 1. Three ra-
tios a/w were considered: 0.2, 0.4, and 0.6. The stress
intensity factor was obtained with equation (20).

2a 

2w 

t

2h 

t

Figure 3 : Central Slant Crack (θ=45 ˚ )

A rectangular plate containing a central slant crack
shown in Figure 3 had a mesh with 48 linear elements

t

t

h

h

a

b

2c 

W W

Q

P

Figure 4 : Central Kinked Crack

plus 12 elements on each crack surface (72 B.E.). The
crack length is 2a, the plate width is 2w and the height is
2h. A uniform traction in the height direction was sym-
metrically applied at the ends. Results obtained for the
h/w ratio equal to 2 are shown in Tables 2 and 3. Three
ratios a/w were considered: 0.2, 0.4, and 0.6. The stress
intensity factors were obtained with equations (20) and
(21).

A rectangular plate containing an internal kinked crack
shown in Figure 4 had a mesh with 60 linear elements
plus 10 elements on each horizontal crack surface and 8
elements on each inclined crack surface (96 B.E.). One
of the segments of the crack is horizontal with length b
while the other segment makes an angle of 45 degrees
with the horizontal and has length a; the horizontal pro-
jection of the total crack is given by 2c = b + a

√
2

2 . The
kink of the crack is at the center of the plate, the plate
width is 2w and the height is 2h. Three ratios (a/b) were
considered: 0.2, 0.4 and 0.6. The results obtained for b/w
equal to 0.1 and h/w equal to 2 are shown in Tables 4 to
7. Stress intensity factors were obtained with equations
(20) and (21).

The values obtained with TDO for stress intensity factors
were not significantly changed with reference to those
presented in Almeida and Palermo (2004) where the trac-
tion BIE used the equation (12). The stress intensity fac-
tors were calculated using differences in displacements
of opposite nodes on the crack surfaces. The results



128 Copyright c© 2006 Tech Science Press SDHM, vol.2, no.2, pp.123-130, 2006

Table 1 : Results for the single edge crack with 64 linear elements: KI/
(
t
√

πa
)

(1) (2) (3) (4) (5) (%)

a/w Civilek and Erdogan
(1982)

Portela, Aliabadi and
Rooke (1992)

Almeida and Palermo
(2004)

TDO
∣∣∣ (2)−(5)

(2)

∣∣∣
0.2 1.488 1.566 1.496 1.501 0.87
0.4 2.324 2.230 2.383 2.368 1.89
0.6 4.152 4.580 4.355 4.254 2.46

Table 2 : Results for the central slant crack with 72 linear elements: KI/
(
t
√

πa
)

(1) (2) (3) (4) (5) (%)

a/w Murakami (1987) Portela, Aliabadi and
Rooke (1992)

Almeida and Palermo
(2004)

TDO
∣∣∣ (2)−(5)

(2)

∣∣∣
0.2 0.518 0.531 0.513 0.513 0.97
0.4 0.572 0.588 0.567 0.567 0.87
0.6 0.661 0.686 0.660 0.660 0.15

Table 3 : Results for the central slant crack with 72 linear elements: KII/
(
t
√

πa
)

(1) (2) (3) (4) (5) (%)

a/w Murakami (1987) Portela, Aliabadi and
Rooke (1992)

Almeida and Palermo
(2004)

TDO
∣∣∣ (2)−(5)

(2)

∣∣∣
0.2 0.507 0.519 0.502 0.502 1.0
0.4 0.529 0.541 0.524 0.523 1.15
0.6 0.567 0.579 0.561 0.561 1.06

Table 4 : Results for the kinked crack at P with 96 linear elements: KI/
(
t
√

πc
)

(1) (2) (3) (4) (5) (%)

a/b Murakami (1987) Portela, Aliabadi and
Rooke (1992)

Almeida and Palermo
(2004)

TDO
∣∣∣ (2)−(5)

(2)

∣∣∣
0.2 0.995 1.021 0.988 0.988 0.71
0.4 0.990 1.018 0.985 0.985 0.51
0.6 0.986 1.017 0.983 0.983 0.31

Table 5 : Results for the kinked crack at P with 96 linear elements: KII/
(
t
√

πc
)

(1) (2) (3) (4) (5) (%)

a/b Murakami (1987) Portela, Aliabadi and
Rooke (1992)

Almeida and Palermo
(2004)

TDO
∣∣∣ (2)−(5)

(2)

∣∣∣
0.2 0.028 0.030 0.029 0.029 3.57
0.4 0.033 0.036 0.035 0.035 6,1
0.6 0.030 0.032 0.032 0.032 6.67

Table 6 : Results for the kinked crack at Q with 96 linear elements: KI/
(
t
√

πc
)

(1) (2) (3) (4) (5) (%)

a/b Murakami (1987) Portela, Aliabadi and
Rooke (1992)

Almeida and Palermo
(2004)

TDO
∣∣∣ (2)−(5)

(2)

∣∣∣
0.2 0.598 0.634 0.636 0.636 6.35
0.4 0.574 0.603 0.606 0.606 5.57
0.6 0.568 0.595 0.600 0.600 5.63
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Table 7 : Results for the kinked crack at Q with 96 linear elements: KII/
(
t
√

πc
)

(1) (2) (3) (4) (5) (%)

a/b Murakami (1987) Portela, Aliabadi and
Rooke (1992)

Almeida and Palermo
(2004)

TDO
∣∣∣ (2)−(5)

(2)

∣∣∣
0.2 0.557 0.589 0.590 0.590 5.92
0.4 0.607 0.637 0.639 0.639 5.27
0.6 0.627 0.659 0.661 0.661 5.42

showed that the precision obtained for displacements was
not affected by the partial regularization introduced by
the integration by parts (equation 5 or 16) and the deriva-
tives of the shape function for displacements in the TDO.
On the other hand, the results using TDO were close to
those presented by Civilek and Erdogan (1982) or Mu-
rakami (1987) and the deviations were greater for values
of the internal kinked crack. It is important to note that
better values for stress intensity factors can be obtained
with J-integral technique. The J-integral technique was
used in Portela, Aliabadi and Rooke (1992) where its
benefit was shown.

6 Conclusions

The numerical results obtained were close to values from
the literature. A minimum difference was noted in the
results presented in [Portela, Aliabadi and Rooke (1992);
Almeida and Palermo (2004)] and those obtained using
the TDO, which have the benefit of the reduction of the
order of the singularity. The use of derivatives of the
adopted shape function for displacement without using
other interpolation for TDO was an interesting alterna-
tive. It is important to note that constant values were
obtained as derivatives of the linear shape function and
the results were not degraded. Regarding the present nu-
merical implementation, a conformal interpolation on the
crack surface was used without losing the accuracy of the
dual formulation even considering that the BIE for trac-
tion employed the TDO on low order elements.
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