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Advanced analysis of uncertain cracked structures

P. Bocchini, C. Gentilini, F. Ubertini and E. Viola 1

Abstract: This paper provides a simple and reliable
method for the probabilistic characterization of the linear
elastic response of frame structures with edge cracks of
uncertain depth and location. A statistical analysis of the
structural response allows consideration of the reliability
of the investigated structure. A numerical example pro-
vides an indication of the performance of the approach
proposed.

keyword: Cracked beam, Uncertain damage, Reliabil-
ity, Probability distribution fitting, Skew-Normal distri-
bution.

1 Introduction

For a realistic description of the structural behavior of
cracked structures, crack depth and crack location should
be defined in a probabilistic sense and modelled as un-
certain parameters. In the literature, the most common
procedures for the stochastic analysis of structures with
uncertain parameters are Monte Carlo simulation (see,
for example, the survey paper by Hurtado and Barbat,
1998) and perturbation techniques (see, for example, the
survey paper by Matthies, Brenner, Bucher, and Soares,
1997). The main drawbacks of these approaches are, for
the former, the high computational cost involved to ob-
tain statistical convergence and, for the latter, the low ac-
curacy as the level of uncertainty increases. Based on the
above remarks, a computationally efficient and accurate
method has been presented by Di Paola (2004) to analyse
truss structures with uncertain geometrical and mechan-
ical properties. This approach has been generalized for
the probabilistic analysis of linear elastic edge-cracked
truss and frame structures with uncertain crack features
in Gentilini, Ubertini, and Viola (2005a).

Here, the stochastic method is applied to multicracked
frame structures aiming at assessing the overall reliabil-
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ity. The crack is modelled by introducing a local com-
pliance that produces a discontinuity of displacements
in correspondence with the cracked section (Okamura,
Watanabe, and Takano, 1975). The local compliance due
to the presence of the crack depends on the crack depth
and location and it is obtained via energy balance be-
tween the external work and fracture work. This leads to
the known relationships between the additional compli-
ance contributions due to the crack and the stress inten-
sity factors (Muller, Herrmann, and Gao, 1993). Finally,
the compliance matrix of the cracked member is obtained
by simply adding the compliance matrix of the intact el-
ement to the overall compliance due to the crack. The
uncertainties affecting cracks are transformed into super-
imposed strains on a deterministic equivalent structure.
For redundant structures, an asymptotic series expansion
is obtained. Numerical results show that few terms of the
series are enough to accurately characterize the structural
response (Gentilini, Viola, and Ubertini, 2003; Gentilini,
Ubertini, and Viola, 2005b).

The results of the stochastic analysis are then used for
reliability-oriented evaluations. For example, designers
can be interested in the probability to reach a certain
“limit state” or in the value of a particular variable of the
structural response that is overcome only in the n-per-
cent of the cases. Both problems reduce to the computa-
tion of quantiles of the random variables that characterize
the structural response. This task can be carried out by
evaluating quantiles directly on the samples computed by
the proposed stochastic method. However, a more com-
prehensive statistical survey can lead to a better overall
description.

Kernel smoothing techniques (Bowman and Azzalini,
1997) provide a smoothed “empirical” probability den-
sity function (PDF) that, to a first approximation, can be
assumed as the PDF of the population. In this way the
values of quantiles are influenced by the complete shape
of the sample distribution. Moreover, these techniques
avoid the rough PDF curves that are obtained whenever
the number of bins of the frequency histogram is too large
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(see, for example, Benjamin and Cornell, 1970, chap. 1).

If a complete description of the distribution is re-
quired, neither the relative frequency histogram, nor the
smoothed PDF are sufficient. In this case the solution is
to fit an appropriate theoretical probability distribution.
If there is a priori information on the expected shape of
the PDF, the attention can be focused on a specific family
of probability distributions. In practical structural prob-
lems, this information is, in general, unavailable. Thus,
in the following, tools that overcome this deficiency are
suggested. In particular, three-parameter distributions
are considered, because they can change their location,
their scale, and also their shape. Bocchini, Ubertini, and
Viola (2005) have proposed an iterative method for the
fitting of a three-parameter Weibull distribution in the
structural framework. This procedure is able to work
even in conjunction with stochastic methods that com-
pute only descriptive statistics of the structural response.
Otherwise, if a complete sample of the response is avail-
able, as in the case presented in this paper, other tech-
niques can fit probability distributions even better. One
of the most versatile class of methods is the minimiza-
tion of a “distance” between empirical samples and the-
oretical distributions. The well-known maximum like-
lihood method (MLE) belongs to this class. A differ-
ent distance, that is more suitable for use by engineers,
has been proposed by Chou, Ingram, and Corotis (2005).
In particular, they have suggested to use the index DKS

of the Kolmogorov-Smirnov hypothesis test (Benjamin
and Cornell, 1970, chap. 4) that represents the maximum
distance between the empirical and theoretical Cumula-
tive Distribution Functions (CDFs). Therefore, from our
point of view, it is interesting because it minimizes the
difference from theoretical and empirical quantiles.

A critical comparison between the results obtained by the
above mentioned data treatments have been performed
aiming at evaluating the effectiveness and versatility of a
reliability analysis based on the presented stochastic ap-
proach.

2 Stochastic analysis

Attention is focused on the linear elastic Timoshenko
beam element represented in Fig. 1. In the hypothesis
of absence of distributed loads, the response of the beam
element is governed by the following equations:

ea = Daua (1)

Figure 1 : Cracked (a) beam element and (b) section

DT
a qa = Sa (2)

ea = Caqa (3)

where ua is the vector of nodal displacements, Sa is
the vector of nodal forces, Da and DT

a are the com-
patibility and equilibrium matrices and Ca is the com-
pliance matrix. The vector of natural deformations is
ea =

[
e ϕs ϕas

]T
and the corresponding natural in-

ternal force vector is qa =
[

N Cs Cas
]T

as pro-
posed by Argyris, Balmer, Doltsinis, Dunne, Haase,
Kleiber, Malejannakis, Mlejnek, Müller, and Scharpf
(1979). Thus, the compatibility matrix takes the form

Da =

⎡⎣ −1 0 0 1 0 0
0 0 −1 0 0 1
0 −2/l −1 0 2/l −1

⎤⎦ (4)

being l the length of the beam. Let assume that the beam
is affected by uncertainties, which influence the compli-
ance matrix:

Ca = Ca (βa) (5)

where βa is a vector of uncertain parameters modelled as
random variables. In this paper crack depth and location
are modelled as uncertain parameters. To evaluate the
structural response, natural internal forces are expressed
in terms of nodal displacements

qa = Ga (βa)ua (6)

and the classical relation between nodal forces and nodal
displacements is obtained

Sa = Ka (βa)ua (7)
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where Ga (βa) = C−1
a (βa)Da and Ka (βa) =

DT
a C−1

a (βa)Da. Then, according to the standard
matrix assembly procedure, the equilibrium equation for
the whole structure is obtained

K(β)u = F (8)

where K(β) is the (stochastic) structure stiffness matrix,
u is the vector of unknown nodal displacements, F is the
vector of prescribed nodal forces and β is a random vec-
tor collecting variables βa. Natural internal forces q can
be derived from nodal displacements by the relation

q = G(β)u (9)

where q collects vectors qa and G is obtained from the
assemblage of Ga. To characterize the structural re-
sponse, nodal displacements should be evaluated as func-
tions of the random variables β by solving Eq. (8). In
the literature, much effort has been directed towards de-
veloping approximate approaches. Here, the stochas-
tic approach presented by Gentilini, Ubertini, and Viola
(2005a) is followed.

2.1 The method: formulation and solution procedure

The basic idea is to split the element compliance matrix
into a deterministic part C0

a and an additional part Cβ
a af-

fected by uncertainty

Ca (βa) = C0
a +Cβ

a (βa) (10)

From here onward, superscript 0 is used for determinis-
tic quantities, while superscript β for random quantities.
With the above assumption, Eq. (3) can be put in the form

ea = C0
aqa +eβ

a (11)

where

eβ
a = Cβ

aqa (12)

are called virtual superimposed strains, because they
originate from the presence of uncertainties. In other
words, the effect of uncertainties is taken into account
through superimposed strains eβ

a. Based on this observa-
tion, the element equations (6) and (7) are rewritten in
the new form

qa = G0
aua +Rβ

a Sa = K0
aua −Fβ

a (13)

where G0
a =

(
C0

a

)−1 Da, K0
a = DT

a

(
C0

a

)−1 Da, Rβ
a =

−(
C0

a

)−1 eβ
a and Fβ

a = DT
a Rβ

a. In this framework, Rβ
a

can be interpreted as the stress vector induced by the vir-
tual superimposed strains eβ

a which depends on the actual
stress distribution. In fact, through Eq. (12), it is possible
to obtain

Rβ
a = Lβ

aqa Fβ
a = −DT

a Lβ
aqa (14)

with matrix Lβ
a = −(

C0
a

)−1 Cβ
a that embodies all the un-

certainties. Starting from the above equations, the stan-
dard procedure of assemblage and enforcement of dis-
placement boundary conditions leads to the new format
of the governing equations for the entire structure

K0u = F+Fβ q = G0u+Rβ (15)

where Rβ = Lβq and Fβ = −DTLβq.

In the linear elastic framework, Eq. (15) leads naturally
to a subdivision of the structure into two systems, see
Fig. 2. The first system is a (reference) deterministic
structure subjected to the prescribed loads F and ruled
by the equations

K0u0 = F q0 = G0u0 (16)

that can be easily solved in u0 and q0 by means of stan-
dard procedures. The second (auxiliary) system is the
same deterministic structure but subjected to Fβ instead
of F

K0uβ = Fβ qβ = G0uβ +Rβ (17)

Thus, by means of the superposition principle, the ex-
pressions of u and q for the original structure take the
form

u = u0 +uβ q = q0 +qβ (18)

It is worthy to remark that the two systems differ only for
the load condition. In particular, only the second system
is affected by uncertainties, which enter as nodal loads
equivalent to the virtual superimposed strains. Solving
the original problem reduces to solve Eq. (17). However,
this is not trivial because Fβ depends on the yet unknown
stress distribution. In particular, using Eq. (17) the fol-
lowing relations can be obtained:

uβ = ULβq qβ = WLβq (19)
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Figure 2 : Cracked frame structure with uncertain damage: superposition principle.

where U = −(
K0

)−1 DT and W = I+G0U. Hence it is
appropriate to establish a recurrence relation that finally
leads to the following expansion for the stress vector q
and displacement vector u of the original structure:

q =

[
∞

∑
j=0

(
WLβ

) j
]

q0 (20)

u = u0 +ULβ

[
∞

∑
j=0

(
WLβ

) j
]

q0 (21)

Notice that in the case of statically determinate structures
the solution is simply given by

q = q0 u = u0 +ULβq0 (22)

The probabilistic characterization of the response can be
made by following two different strategies: (i) analyti-
cal evaluation of the statistical moments of the response
starting from Eq. (21) (some useful expressions are given
by Di Paola, 2004) or (ii) application of Monte Carlo sim-
ulation to Eq. (21). It can be easily realized that such a
simulation is, anyway, enormously more efficient than a
simulation applied directly to the governing equations.

Notice that the series expansion in Eq. (21) converges to
the solution of the original problem if some attention is
paid to select the deterministic compliances C0

a, which
actually characterize the reference deterministic struc-
ture. It can be demonstrated that the resultant element-
wise sufficient condition for convergence can be written
as

ρU < 1 ρU = max
βa∈Ba

ρ
(

Lβ
a

)
(23)

that results in the following optimal choice for C0
a:

C0
a ∈ Sym+ such that ρU = minimum (24)

where ρU is the spectral radius of Lβ
a and Ba is the range

of βa. Based on this choice, a globally optimal conver-
gence rate is expected. More details about the conver-
gence analysis of the series can be found in Gentilini,
Ubertini, and Viola (2005a).

2.2 Cracked beam with uncertain damage

Consider the edge-cracked beam shown in Fig. 1. In
correspondence of the cracked zone, the axial force Nc

causes an additional angular deformation, together with
an additional elongation, as well as the bending moment
Mc causes an additional elongation together with an ad-
ditional angular deformation. Moreover, the shear force
Vc causes an additional deflection. This can be modelled
by suitably defining local compliance contributions due
to the crack[

Δwc Δθc Δvc
]T = Ĉcrack

a

[
Nc Mc Vc

]T

with Δwc total additional elongation, Δθc total angular
deformation, Δvc total additional deflection and

Ĉcrack
a =

⎡⎣ λN λNM 0
λNM λM 0

0 0 λV

⎤⎦ (25)

To compute the overall compliance of the cracked ele-
ment, the additional deformations and the stress resul-
tants at the cracked section should be expressed in terms
of the natural deformations and internal forces[

Nc Mc Vc
]T = T

[
N Cs Cas

]T[
e ϕs ϕas

]T
crack = TT [

Δwc Δθc Δvc
]T
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where the transformation matrix T depends on the di-
mensionless crack location α (see Fig. 1) and reads as

T =

⎡⎣1 0 0
0 1 1−2α
0 0 2/l

⎤⎦ (26)

Then, the overall additional compliance due to the crack
is given by

Ccrack
a (ξ,α) = TT (α)Ĉcrack

a (ξ)T(α) (27)

where ξ is the dimensionless crack depth. Finally, the
compliance matrix of the cracked beam is simply ob-
tained by

Ca = Cin
a +Ccrack

a (28)

where Cin
a is the compliance matrix for an intact, homo-

geneous beam with constant cross-section

Cin
a =

⎡⎣ l/EA 0 0
0 l/EJ 0
0 0 l (1+κs)/3EJ

⎤⎦ (29)

with κs = 12EJ/
(
GAsl2

)
, E the Young’s modulus, G

the shear modulus, A the cross-section area, J the in-
ertia moment and As the shear area. The local compli-
ance contributions attributable to the crack can be deter-
mined by the well-known relationship among energy re-
lease rate, stress intensity factors and compliance (Oka-
mura, Watanabe, and Takano, 1975)

λN =
2
(
1−ν2

)
E

Z Acrack

0

(
KIN

N

)2

dAcrack (30)

λM =
2
(
1−ν2

)
E

Z Acrack

0

(
KIM

M

)2

dAcrack (31)

λNM =
2
(
1−ν2

)
E

Z Acrack

0

KIN

N
KIM

M
dAcrack (32)

λV =
2
(
1−ν2

)
E

Z Acrack

0

(
KII

V

)2

dAcrack (33)

where KIN and KIM are the Mode I stress intensity fac-
tors caused by the axial force and bending moment,

respectively, and KII is the Mode II stress intensity fac-
tor caused by the shear force, Acrack is the cracked area
and ν is the Poisson’s ratio for plane strain and zero for
plane stress. In order to apply the above equations, the
stress intensity factors for the current structural configu-
ration can be often found in handbooks (see, for example,
Murakami, 1987) or, otherwise, determined by various
analytical and numerical approaches (see, for example,
Nobile, 2000; Muller, Herrmann, and Gao, 1993). For a
b× h rectangular cross-section with an edge crack (see
Fig. 1) the stress intensity factors can be put in the form

KIN =
N
bh

√
πξhFN (ξ) (34)

KIM =
6M
bh

2√
πξhFM (ξ) (35)

KII =
V
b

√
h(1−ξ)

√
πξhFV (ξ) (36)

where the correction functions can be taken as pro-
posed in Tharp (1987): FN (ξ) = 1.12 − 0.23ξ +
10.6ξ2 − 21.7ξ3 + 30.4ξ4, FM (ξ) = 1.12 − 1.39ξ +
7.32ξ2−13.1ξ3 +14ξ4 and FV (ξ) = 1.993ξ+4.513ξ2−
9.516ξ3 +4.482ξ4, with ξ ≤ 0.6.

The dimensionless crack depth ξ and location α are mod-
elled by random variables with given probabilistic char-
acteristics. Based on the present method of analysis, the
cracked beam compliance is rewritten as

Ca (ξ,α) = C0
a +Cβ

a (ξ,α) (37)

To optimize the convergence rate it is convenient to de-
rive a value for C0

a from the beam compliance for a cer-
tain crack depth ξ0 and location α0

C0
a = Ca

(
ξ0,α0) (38)

In particular, ξ0 and α0 are selected based on criterion
(24). It should be remarked that the optimal values ξ0

and α0 are generally different from the mean values of ξ
and α.

3 Reliability analysis

The complete probabilistic characterization of the struc-
tural response, obtained by the proposed stochastic
method, is used here aiming at computing the probability
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to reach a certain limit value or, more generally, evalu-
ating the structural reliability. To this purpose, various
statistical approaches, that need different input require-
ments, can be adopted. The choice among these methods
depends on the available data and the objectives of the
assessment. Usually, statistical inferences are “paramet-
ric inferences”. This means that the response is modelled
by assuming a certain parametric family of probability
distributions. Actually, in the structural applications, it
is very difficult to guess the shape of the distribution of
random variables that characterize the response.

In the following, four different approaches are consid-
ered. The first approach (Section 3.1) is to compute di-
rectly descriptive statistics of the results of the analy-
sis. The second approach (Section 3.2) is to use non-
parametric statistics and tools that do not require to in-
troduce a theoretical PDF. The third approach (Section
3.3) is to use versatile parametric PDFs able to adapt also
their shape, as the three-parameter distributions. The last
approach (Section 3.4) is to fit various families of curves
and compare the “goodness of fit” for the data by means
of an appropriate metric.

In the numerical application (Section 4) all the above
mentioned statistical techniques are applied to the results
predicted by the stochastic analysis of a multicracked
frame structure in order to assess the structural reliability.

3.1 Rough data analysis

The first approach is to analyse the rough data by com-
puting the relative frequency histograms, such as those
represented in Fig. 3(a) and Fig. 3(b), and using them
to assess the desired percentiles. Clearly, this is a crude
analysis which does not effectively exploit all the avail-
able information coming from the structural response.
For example, the two (normalized) relative frequency
histograms in Fig. 3 have the same 4th, 10th and 20th per-
centiles (respectively 1.5, 2.5 and 3.5) even if it is evident
that the two samples are taken from very different popu-
lations. If the computation of the quantiles reduces only
to determine the value of the cumulative distribution his-
togram in one point, its shape is ignored, and most of the
available information is wasted. In particular, this often
leads to a poor description of the tails of the distribution.
This drawback causes an inaccurate computation of the
extreme quantiles that are of utmost importance in struc-
tural design.

Figure 3 : Normalized relative frequency histograms and
smoothed PDFs of two different samples that lead to sim-
ilar left-tail quantiles (100 elements for each sample).

3.2 Kernel smoothing

A more accurate approach is to apply a smoothing proce-
dure to the rough data obtained by the structural analysis.
This non-parametric technique substitutes a smoothed
curve for the (normalized) relative frequency histogram,
as the continuous lines in Fig. 3(a) and Fig. 3(b). Here,
the smoothing takes account of the shape of the proba-
bility distribution. The effect is evident especially for the
right-tail.
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The frequency histogram can be described by

f (x) =
n

∑
i=1

I(x− x̃i;k) (39)

where n is the number of data, xi are the observed data, x̃i

are the centers of the intervals in which xi fall, 2k is the
bin size and I(z;k) is the indicator function

I(z;k) =
{

1 if z ∈ [−k,k]
0 otherwise

(40)

Therefore, the normalized histogram is described by

f̃ (x) =
1

2kn

n

∑
i=1

I(x− x̃i;k) (41)

The smoothing techniques replace the indicator function
with a continuous function w(z;k), called “kernel func-
tion”, centered directly over each observation. If the ker-
nel function has unitary integral, the normalized PDF is

f̂ (x) =
1
n

n

∑
i=1

w(x−xi;k) (42)

To evaluate the most suitable kernel function and the op-
timum bandwidth k, different approaches can be adopted
(Epanechnikov, 1969; Bowman and Azzalini, 1997). In
the numerical example of Section 4 good results have
been obtained using a standard gaussian kernel (eventu-
ally bounded) and the optimum bandwidth for the resul-
tant PDFs.

3.3 Fitting of three-parameter distributions

An alternative approach is to fit a versatile parametric
distribution, such as a three-parameter distribution, to the
rough data.

3.3.1 The Type III Extreme Values distribution

A widely used three-parameter distribution is the Type
III Extreme Values distribution. In the literature, it is pre-
sented in two forms linked by the “symmetry principle”
(Ang and Tang, 1984): the “Type III asymptotic distri-
bution of the largest value” and the “Type III asymptotic
distribution of the smallest value”, also called “Weibull
distribution” and sometimes presented in a special form
with only two parameters.

The Weibull distribution with parameters A, B and C that
is considered in this work is defined by

PDF : f (x) =
C
B

(
x−A

B

)C−1

e−( x−A
B )C

CDF : F(x) = 1−e−( x−A
B )C

(43)

with B and C assumed to be positive, and x > A. This
distribution describes both symmetric and skew curves
with skewness γ ∈ (−1.14,+∞) for reasonable values of
parameter C.

The Type III asymptotic distribution of the largest value
with parameters A, B and C is represented by

PDF : f (x) =
C
B

(
A−x

B

)C−1

e−( A−x
B )C

CDF : F(x) = e−(A−x
B )C

(44)

where B and C are assumed to be positive and A is the up-
per bound for the domain of x. This distribution describes
both symmetric and skew curves with γ ∈ (−∞,1.14) for
reasonable values of parameter C.

The Weibull distribution presents well-known difficulties
in the estimation process. Here, the adopted estimators
are the following:

µ̂ =
1
n

n

∑
i=1

xi (45)

σ̂2 =
1

n−1

n

∑
i=1

(xi − µ̂)2 (46)

γ̂ =
n

n
∑

i=1
(xi − µ̂)3

(n−1)(n−2) σ̂3 (47)

Mean, variance and skewness of a theoretical Weibull
distribution are

µ = A+BΓ(C1) (48)

σ2 = B2 [
Γ(C2)−Γ2 (C1)

]
(49)

γ =
2Γ3 (C1)−3Γ(C1)Γ(C2)+Γ(C3)√

[Γ(C2)−Γ2 (C1)]
3

(50)
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where:

Γ(x) =
∞Z

0

tx−1e−tdt (51)

C1 =
C +1

C
(52)

C2 =
C +2

C
(53)

C3 =
C +3

C
(54)

The system of equations (48)–(50) can not be analytically
solved with respect to the parameters, due to the presence
of the Gamma function (51). Therefore a solution based
on an iterative scheme is proposed.

It can be noticed that Eq. (50) depends only on parame-
ter C, so the procedure starts by analysing it. The starting
value, obtained with a linear regression made on the in-
terval of values where the skewness of samples can be
most frequently found, is

C(1) = 0.677γ̂+2.7 (55)

The relationship between C and the skewness γ is strictly
decreasing, as it can be seen by differentiating Eq. (50)
or looking at Fig. 4. Therefore, if γ(i) is larger than γ̂,
C(i+1) must be larger than C(i) and viceversa. This can
be continued with reducing step size until convergence is
met.

Once C is computed, B and A can be obtained using
Eqs. (49) and (48)

B =

√
σ̂2

[Γ(C2)−Γ2 (C1)]
(56)

A = µ̂−BΓ(C1) (57)

In this way the best fitted Weibull distribution is com-
puted.

Any Stochastic Finite Element Method (SFEM) to be
used in conjunction with this fitting procedure must pro-
vide for the skewness of the results and compute an accu-
rate value of the third order statistical moment. Small dif-
ferences in skewness may produce very different curves.
The numerical results of Section 4 show that the stochas-
tic approach presented in Section 2 possesses this prop-
erty and is well suited to be used together with this fitting
procedure.
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Figure 4 : Strictly decreasing relationship between pa-
rameter C and skewness γ.

3.3.2 The Skew-Normal distribution

A new and attractive alternative family of three-
parameter distributions is the Skew-Normal (Azzalini,
1985, 1986), which generalizes the standard normal dis-
tribution and includes a multivariate version (Azzalini
and Dalla Valle, 1996; Azzalini and Capitanio, 1999).
This distribution appears well-suited to the present con-
text because it is easy to handle and versatile, as it can
assume various symmetric and skew shapes, with a large
range of skewness. The standard Skew-Normal is de-
scribed by the following function:

PDF : f (x) = 2φ(x)Φ(ϑx) (58)

where ϑ is the “shape parameter”, φ and Φ are, respec-
tively, the standard normal density and cumulative distri-
bution functions (the latter evaluated at point ϑx)

φ(x) =
1

2π
e−

x2
2 (59)

Φ(ϑx) =
ϑxZ

−∞

φ(t)dt (60)

A generalized Skew-Normal distribution can be obtained
using a scale (ω) and a location (ζ) factors. If the random
variable X is distributed according to Eq. (58), then the
random variable Y = ζ+ ωX is distributed as a general-
ized Skew-Normal (SN)

Y = ζ+ωX ∼ SN(ζ,ω2,ϑ) (61)
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Figure 5 : Multicracked frame structure.

Various procedures can be successfully employed for
the estimation of the Skew-Normal distribution. Here,
the widely used maximum likelihood method (MLE) is
adopted (Beck and Arnold, 1977).

3.4 Minimization of the DKS index

The last approach is based on the index of the
Kolmogorov-Smirnov hypothesis test (Benjamin and
Cornell, 1970, chap. 4) defined as

DKS = max
x

∣∣F(x)− F̂(x)
∣∣ (62)

where F(x) is a theoretical cumulative distribution func-
tion and F̂(x) is the empirical cumulative histogram. If a
sample of n data xi is sorted in ascending order, F̂(x) can
be computed using the Weibull’s formula as

F̂(xi) =
i

n+1
(63)

Here, only the CDF is required to define the theoretical
distribution. Therefore, the procedure can be applied in
the same way independently of the number of parameters
of the assumed distribution.

In other words, for a given sample, DKS is a function of
the class of distributions (for example normal, uniform,
Skew-Normal, Weibull etc.) and of the parameters of the

distribution. For each class of distributions the set of pa-
rameters that minimizes DKS is numerically determined,
so specifying a particular curve. Finally, the curve with
the overall lowest index is chosen as the result of the fit-
ting procedure.

The minimization of DKS implies a uniform convergence
of theoretical and empirical percentiles. If it is applied to
SFEMs where random variables characterize single ele-
ments, so creating random fields, this method may be in-
terpreted as the imposition of a uniform convergence of
iso-probability displacements, stress or strain surfaces.

4 A numerical application

In Fig. 5 a multicracked frame structure with independent
and uniformly distributed uncertain parameters (ξ1,α1),
(ξ2,α2) and (ξ3,α3) is represented. The data are shown
in the figure. The results are normalized with respect
to the solution of the reference configuration. The op-
timal choice for the reference configuration results in(
ξ0

i ,α0
i

)
= (0.51,0.96) for i = 1,2,3. The predicted dis-

tributions for the normalized horizontal displacement at
node A and bending moment at node B are reported in
Fig. 6. The comparison with classical Monte Carlo sim-
ulation evidences the remarkable accuracy of the present
approach. In fact, although the high uncertainty level of
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Figure 6 : Relative frequencies of the normalized (a) hor-
izontal displacement at A and (b) bending moment at B.

damage2, the structural response is well characterized us-
ing few terms for displacements and stresses.

The normalized relative frequency histograms are de-
picted using only the rough data produced by the stochas-
tic analysis, without any statistical treatment (Section
3.1). As expected, it appears that the representation of
the left tail is too poor. However, this approach allows
qualitative considerations on the probabilistic character-
ization of the response. In particular, it shows that both
the horizontal displacement at node A and the bending
moment at node B are left-skewed. From a structural
point of view, designers are interested in the probability
of overcoming the upper threshold (area underneath the
right tail). Left-skewness implies that, at the right tail,

2 Note that the interval of variation of the random variable ξ is
[0,0.6].
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Figure 7 : Smoothed PDFs of the normalized (a) hori-
zontal displacement at A and (b) bending moment at B.

large ranges of variation of the response determine low
probabilities of failure.

A more refined description is obtained by the second ap-
proach. The kernel smoothing procedure described in
Section 3.2 and applied to the results of Fig. 6 produces
the complete curves reported in Fig. 7. Now, an accurate
computation of any percentile of the variables becomes
trivial.

Figure 8 shows the PDFs obtained by fitting the the-
oretical distributions. The dashed lines represent the
PDFs of the Weibull distributions with parameters es-
timated by the iterative procedure proposed in Section
3.3.1. The gray lines represent the PDFs of the Skew-
Normal distributions with parameters estimated by the
maximum likelihood method (MLE). Finally, the the-
oretical distributions obtained by minimization of DKS
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Figure 8 : Theoretical PDFs of the normalized (a) hori-
zontal displacement at A and (b) bending moment at B,
fitted by means of the third (Section 3.3) and fourth (Sec-
tion 3.4) approach.

are represented by the dotted lines, in both cases they
are Weibull distributions. Once the theoretical curve
is fitted, the desired quantiles can be easily computed.
The fitting performance of the plotted distributions ap-
pears evident by considering the Cumulative Distribu-
tion Functions (CDFs). The differences among the
“smoothed” CDFs and the results of the fitting pro-
cedures of the three-parameter distributions (Weibull-
Sec.3.3.1 and Skew Normal-MLE) and of the minimiza-
tion of DKS are compared in Fig. 9. As expected, the lat-
ter procedure exhibits rather uniform convergence. Note,
however, that also the former procedures yield satisfac-
tory estimates of quantiles near the tails, owing to the
versatility of the three-parameter distributions.
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Figure 9 : Differences on the CDFs of the normalized (a)
horizontal displacement at A and (b) bending moment at
B between parametric and non-parametric procedures.

In Tables 1 and 2 the Kolmogorov-Smirnov indexes for
displacement and bending moment, respectively, have
been computed by comparing different approaches. Four
two-parameter distributions (uniform, normal, lognor-
mal, Gumbel) have been fitted using the method of mo-
ments (Beck and Arnold, 1977). The parameters of the
Skew-Normal have been estimated using the maximum
likelihood (MLE), while those of the Weibull by the iter-
ative scheme presented in Section 3.3.1. Finally, all the
above mentioned distributions have also been fitted by
minimizing DKS.

Then, the index of Kolmogorov-Smirnov is used to com-
pare the “goodness of fit” of all the considered proba-
bility distributions. The results are collected from the
best fitted to the worst one, in the sense of the DKS in-



120 Copyright c© 2006 Tech Science Press SDHM, vol.2, no.2, pp.109-122, 2006

Table 1 : Kolmogorov-Smirnov indexes for the horizon-
tal displacement at A in ascending order.

Distribution Parameters Method DKS

Weibull 3 minDKS 0.009
Weibull 3 Sec. 3.3.1 0.014

Skew-Normal 3 minDKS 0.018
Gumbel 2 minDKS 0.021
Gumbel 2 moments 0.041

Skew-Normal 3 MLE 0.043
Lognormal 2 minDKS 0.043

Normal 2 minDKS 0.045
Lognormal 2 moments 0.053

Normal 2 moments 0.055
Uniform 2 minDKS 0.500
Uniform 2 moments 1.070

dex. As expected, the most accurate results have been
obtained using the three-parameter distributions. It ap-
pears evident that, in general, the method of moments is
less accurate, since it uses only the statistics of the struc-
tural response, rather than the whole sample vector. No-
tice, however, that this feature makes the method applica-
ble also in conjunction with SFEMs that do not provide
samples of the response, as, for example, the perturba-
tion method. Moreover, the method proposed in Section
3.3.1 exhibits a good performance, even using only the
descriptive statistics of the structural response.

5 Conclusions

A simple, reliable and efficient method for the probabilis-
tic analysis of linear elastic cracked structures with un-
certain crack features has been presented. In this paper,
the method has been applied to a frame structure with
edge cracks of uncertain depth and location. The method
has been optimized by a suitable choice of the reference
deterministic configuration. The numerical test has re-
vealed a good performance of the present procedure in
the case of a multicracked structure with large fluctua-
tions of damage. In particular, few terms of the series are
generally sufficient to accurately characterize the struc-
tural response.

The presented stochastic procedure provides not only the
descriptive statistics, but also a complete sample of the
investigated variables of the structural response. For this
reason, it can be used together with all the inference and

Table 2 : Kolmogorov-Smirnov indexes for the bending
moment at B in ascending order.

Distribution Parameters Method DKS

Weibull 3 minDKS 0.013
Skew-Normal 3 minDKS 0.014

Weibull 3 Sec. 3.3.1 0.019
Gumbel 2 minDKS 0.024

Skew-Normal 3 MLE 0.030
Gumbel 2 moments 0.042

Lognormal 2 minDKS 0.044
Normal 2 minDKS 0.048

Lognormal 2 moments 0.055
Normal 2 moments 0.061
Uniform 2 minDKS 0.500
Uniform 2 moments 1.073

fitting methods. In particular, the kernel smoothing tech-
niques, the minimization of the DKS index and the maxi-
mum likelihood estimation require a complete sample of
the investigated random variables.
The procedure outlined in Section 3.3.1 has been shown
to yield a good fit, especially to the tails of the distribu-
tion. It should be remarked that this indirectly confirms
that the stochastic method accurately captures the skew-
ness of the structural response. On the contrary, the re-
liability of available Stochastic Finite Element Methods
on the evaluation of moments of order higher than two is
generally low.
The minimization of the index of Kolmogorov-Smirnov
(i) uses the complete information produced by the
stochastic procedure, (ii) does not need any a priori
choice of the class of distributions, (iii) gives very good
results in the numerical application and (iv) ensures a
uniform convergence. Therefore, in this case it seems
to be preferable. The computational effort is higher than
that required by other methods, but it is still negligible
with respect to the stochastic analysis.
The three-parameter distributions, owing to their versatil-
ity, ensure good results regardless of the fitting method.
In particular, in the numerical application, the Weibull
distribution has provided the best results, but the Skew-
Normal seems to be an interesting alternative, with many
attractive properties, and worthy of further investigations
in the structural reliability framework.
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List of symbols

A : area of the cross-section
Acrack : cracked area
A, B, C : Weibull parameters
b : width of the rectangular cross-section
Ca : compliance matrix
Da : compatibility matrix
DT

a : equilibrium matrix
ea : natural deformations
E : modulus of elasticity
F : correction function
G : shear modulus
h : height of the rectangular cross-section
I : indicator function
J : inertia moment
k : kernel bandwidth
K : stress intensity factor
l : beam length
M : bending moment
n : number of data
N : axial force
qa : natural internal forces
Sa : nodal forces
ua : nodal displacements
V : shear force
w : kernel function
α : dimensionless crack position
βa : uncertain parameters
γ : skewness
Γ : Gamma function
θ : shape parameter
λ : compliance
µ, σ2, γ : Weibull statistics
µ̂, σ̂2, γ̂ : Weibull estimators
ν : Poisson’s ratio
ξ : dimensionless crack depth
φ : standard normal PDF
Φ : standard normal CDF
ρ : spectral radius
subscript a : ath beam element
superscript 0 : deterministic quantity
superscript β : random quantity
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