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Buckling Analysis of Eccentrically Loaded Cracked Columns

L. Nobile1 and C. Carloni1

Abstract: The analysis of buckling of elastic columns
is one of the first problem in structural engineering that
was historically solved. Critical loads of perfect columns
with various end restrains have been derived. Neverthe-
less, the perfect column is an idealized model. In reality,
unavoidable imperfections should be considered. Solu-
tions for transversal disturbing load, crookedness or load
eccentricity have been proposed. Another frequent im-
perfection to be taken into account is the weakness at an
interior location due to a partial edge crack. In this paper
the influence of this type of imperfection on the critical
load is analyzed. The case of the load eccentricity has
been also considered. The weakness can be modeled as
an internal hinge with a rotational spring. Exact criti-
cal loads for various end conditions, crack locations and
cross-sections are obtained.

keyword: Buckling, Crack, Hinge, Rotational spring,
Approximate stress intensity factor, Load eccentricity.

1 Introduction

A crack on a structural member introduces a local flex-
ibility that affects its static and dynamic response. The
local flexibility of the cracked region of the structural el-
ement was put into relation with the crack stress intensity
factors (SIFs) [Irwin, 1975; Bueckner, 1958; Westmann
and Yang, 1967]. The stress intensity factors were ob-
tained in many cases, and a well-known relationship was
discovered between the energy release rate, the stress in-
tensity factors and the compliance of the cracked mem-
ber. The above relationship was then used to study the
stability of the cracked columns (Liebowitz, Vanderveldt
and Harris, 1967; Liebowitz and Claus, 1968; Okamura,
Liu, Chu and Liebowitz, 1969).

A general method was considered by Okamura, Watan-
abe and Takano (1973) for extending fracture mechanics
through the compliance concept to the analysis of a struc-
ture containing cracked members. This paper also shows
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some examples of the application adopted for the defor-
mation analysis of the cracked specimens.

Stress intensity factors for many configurations are avail-
able. In most cases the results were obtained by means of
analytical and numerical methods. In many cases the re-
sults were obtained by finite element methods and bound-
ary element methods . Experimental methods have been
applied to simple cases in order to determine the frac-
ture toughness KIC of engineering materials. Solutions
for many structural configurations are not available in the
handbooks (Tada, Paris and Irwin, 1985). Simple engi-
neering methods which allow a fast but approximate de-
termination of the stress intensity factors are highly val-
ued by design engineers. Remarkably simple methods
for approximation of stress intensity factors in cracked
or notched beams were proposed by Kienzler and Her-
rmann (1986) and by Nobile (2000). The former has been
based on elementary beam theory estimation of strain en-
ergy release rate as the crack is widened into a fracture
band, the latter has been based on elementary beam the-
ory equilibrium condition for internal forces evaluated in
the cross-section passing through the crack tip, taking in
account the stress singularity at the tip of an elastic crack.

The influence of this kind of imperfection on the critical
load has been analyzed by Wang, Wang and Tun Myint
Aung (2004). The weakness is modeled as an internal
rotationally restrained hinge. The rotational spring con-
stant is determined on the basis of the energy released
due to the crack and Castigliano’s theorem.

In this paper critical loads for a cracked column with var-
ious end conditions and crack locations are derived. It
is worth noticing the buckling analysis is focused on the
plane orthogonal to the crack, neglecting the case of lat-
eral buckling coupled with torsion, that will be developed
by the authors in the next.

2 Approximate evaluation of the Stress Intensity
Factor for Mode-I

Consider a straight beam of constant cross section. The
z-axis coincides with the geometrical axis, and the x-
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and y-axes coincide with the principal axes of the cross-
section. The beam is under pure bending. Suppose that
the presence of an edge crack (of length a) at a certain
position does not alter the stress resultant on the cross-
section passing through the crack. The singular stress
distribution at the crack tip takes the form

σs
z =

KI√
2πr

(1)

Keeping in mind the Navier formula applied to the re-
duced cross-section passing through the crack tip, the
normal stress is (Fig. 1)

σz =
Mx

I∗x
y (2)

where Mx is bending moment and I∗x the moment of in-
ertia of the reduced cross-section. Note that the stress
distribution (2) does not take into account the presence
of the crack.
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Figure 1 : Cross-section with a crack

Two conditions can be imposed:

1. at a certain distance b from the crack tip the normal
stress due to the Navier formula has to be equal to
the normal stress due to the crack (Fig. 1).

2. The stress resultant arising from the crack tip to the
distance b, calculating with the fracture mechanics
approach and with the Navier formulation must be
equal (Fig. 1).

Making use of the above conditions the distance b and an
approximate stress intensity factor KI can be found.

Referring to a rectangular and a T-shape cross-sections
(Fig. 2), KI becomes respectively:

KI =
6Mx

Bh3/2
FR

I (α) (3)
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Figure 2 : T-shape and Rectangular cross-sections

KI =
Mx

h5/2
FT

I (α,β,τ) (4)

where the geometric functions FR
I and FT

I are reported
in Nobile (2000) and Nobile and Carloni (2005). Note
that in Eqs. (3) and (4) the following positions have been
stated α=a/h, β=B/h and τ=t/h (a is the crack length).

3 Buckling of a cracked column

Referring to a cracked pin-ended column (Fig. 3a), or
to a clamped-pinned column (Fig. 3b), the local flexibil-
ity due to the crack is modeled as a massless rotational
spring.
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Figure 3 : Model of a crack column

The numerical value of the spring constant γ represents
the severity of cracking. It can be simply evaluated from
the crack strain energy function (see Section 4).
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The governing differential equation for buckling problem
of a column under axial load P, can be written as

V (IV ) (ζ)+λ2V (II) = 0 (5)

where V = v/L is the dimensionless lateral displacement
and λ2 = PL/EI. EI is the flexural rigidity and L the
length of the column. ζ=z/L is the dimensionless coordi-
nate. The solution of the differential equation will be in
the form V (ζ) = A1 sin(λζ)+A2 cos (λζ)+A3ζ+A4.

The crack position is located at z = d. In what follows the
normalized position δ=d/L will be used. v1 and v2 rep-
resent the lateral displacement function for 0≤ z ≤ d and
d ≤ z ≤ L, respectively. The corresponding normalized
function are V1 and V2, with the corresponding normal-
ized range of variation 0≤ζ ≤δ and δ≤ζ ≤1, respectively
(δ=d/L). V1 and V2 will be used in the following.

For a column with pinned ends V1 (0) = 0, V ′′
1 (0) =

0 V2 (1) = 0 and V ′′
2 (1) = 0 (see Fig. 3a).

For a clamped-pinned column V1 (0) = 0, V ′
1 (0) =

0 V2 (1) = 0 and V ′′
2 (1) = 0 (see Fig. 3b).

At the cracked cross-section the following conditions
must be imposed:

V1 (δ) = V2 (δ) (6)

V ′′
1 (δ) = V ′′

2 (δ) (7)

V ′′′
1 (δ)+λV ′

1 (δ) = V ′′′
2 (δ)+λV ′

2 (δ) (8)

V ′′
1 (δ) = k

[
V ′

2 (δ)−V ′
1 (δ)

]
(9)

Eqs. (6) and (7) simply require both the displacement
and the bending moment to be continuous. Eq. (8) is re-
lated to the continuity of the shear force. Finally Eq. (9)
affirms that the bending moment at the junction section
is related to the relative rotation. By imposing the ends
and the junction conditions a homogenous linear system
can be found. The determinant of the coefficients matrix
must be set equal to zero to get the characteristic equa-
tion.

4 Evaluation of the local flexibility due to the crack

Keeping in mind the Castigliano’s theorem (part I), the
rotational flexibility of the beam at the crack location can
be calculated as:

c =
1
γ

=
∂2U
∂M2 (10)

where U is the elastic strain energy caused by the pres-
ence of the crack:

U =
1
E

Z

A

(
K2

I +K2
II

)
dA (11)

with A the area of the crack, KI the stress intensity factor
for Mode-I and E the Young modulus.

Since KII is related only to the shear force, U reduces to:

U =
1
E

Z

A

(
K2

I

)
dA =

36M2

Bh3E

Z a

0

(
FR

I

)2 (α)da (12)

U =
1
E

Z

A

(
K2

I

)
dA =

M2d
h5E

Z a

0

(
FT

I

)2
(α,β,δ)da (13)

whether a rectangular or a T-shape cross-section has been
considered, respectively.
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Figure 4 : Local Flexibility due to the crack for a rectan-
gular cross-section (h=100)

A plot of the normalized junction stiffness parameter
k=γL/EI as a function of normalized crack length a/h is
shown in Figs. 4 and 5, for the rectangular and T-shape
cross- sections, having the same height and moment of
inertia. The moment of inertia used to normalized the
values of γ is referred to B/h=1 for the rectangular cross-
section and to B/h=1 and t/h=0.1 for the T-shape. Note
that the local flexibility of the T-shape is not so strongly
affected by the width B and the thickness tas the rectan-
gular cross-section does with B.
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Figure 5 : Local Flexibility due to the crack for a T-shape
cross-section (h=100)

5 Buckling Loads

Exact critical loads (Pcr) for various end conditions,
crack locations and cross sections are investigated in this
Section. Cast Iron has been considered (E=175 GPa;
KIC=579 MPa ·√mm).

5.1 Pin-ended column

Consider the pin-ended column (Fig. 3a). The character-
istic equation becomes:

cos (λ)−cos [λ(1−2δ)]+
2
λ

k sin(λ) = 0 (14)

Figures 6 and 7 show the values of the critical loads nor-
malized respect to the Euler critical load versus the nor-
malized length of the crack, for different position of the
crack. The above mentioned figures are referred to the
rectangular cross-section and the T-shape cross section,
respectively. The cross-sections have the same height
(h=100 mm) and the same moment of inertia (I=1790000
mm4). Once the crack position is fixed the critical load
decreases as the crack length increases. Note that the
more the crack tends to the mid-span the more the criti-
cal load decreases. Moreover the influence of the section
shape is evident as the crack length increases.
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Figure 6 : Normalized critical load vs. dimensionless
crack length for different crack position (pin-ended col-
umn with rectangular cross section)
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Figure 7 : Normalized critical load vs. dimensionless
crack length for different crack position (pin-ended col-
umn with T-shape cross section)

5.2 Clamped-pinned column

For a column with a clamped end (z=0) and the other
pinned, the characteristic equation becomes:

(1−2k)λcos (λ)−λcos [λ(1−2δ)]
+

(
2k +λ2)sin(λ)+λ2 sin [λ(1−2δ)] = 0 (15)

Figures 8 and 9 show the values of the critical loads nor-
malized respect to the Euler critical load versus the nor-
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Figure 8 : Normalized critical load vs. dimensionless
crack length for different crack position (clamped-pinned
column with rectangular cross section)

malized length of the crack, for different position of the
crack. The above mentioned figure are referred to the
rectangular cross section and the T-shape cross section,
respectively.

Once again, the cross sections have the same height
(h=100 mm) and the same moment of inertia (I=1790000
mm4). It can be observed that for d/L=0.25 the critical
load seems not be affected by the crack length. This is
in accordance with the fact that at d/L ∼=0.3 there is the
inflection point for the corresponding perfect Euler col-
umn. The critical load decreases as the crack length in-
creases but the influence of the cross section shape is not
so evident as in the previous case.

6 Load eccentricity

Suppose that the load is applied eccentrically. The ec-
centricity e defines the distance of the load from the cen-
troid. If the linearized theory has been taken into account
the critical load does not differ from the centered case.
By using the appropriate end conditions and Eqs. (6)-
(9), the lateral displacement V1 and V2 can be obtained as
a function of the applied load.

Figure 10 depicts the variation of the lateral displace-
ment at midspan as a function of the applied load for a
pin-ended column with a T-shape cross section. As the
displacement increases the load becomes asymptotically
equal to the corresponding value of the critical load for
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Figure 9 : Normalized critical load vs. dimensionless
crack length for different crack position (clamped-pinned
column with T-shape cross section)
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Figure 10 : Dimensionless mid-span displacement for
pinned column with T-shape cross section as a function
of the applied load for different values of the eccentricity
e

the centered case.

This is true regardless of the value of the eccentricity.
If the load is applied eccentrically the evaluation of the
critical load can be vanished by the crack propagation
corresponding to a value of the load below the critical
one.

Refer to a pin-ended column, with the load applied ec-



88 Copyright c© 2006 Tech Science Press SDHM, vol.2, no.2, pp.83-90, 2006

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

a/h

P
p
r /

 P
crE

u
l

e/h=0.05

e/h=0.1

e/h=0.2

e/h=0.3

e/h=0.5

Figure 11 : Dimensionless propagation load vs. crack
length for pinned column, corresponding to different
values of eccentricity (rectangular cross section)
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Figure 12 : Dimensionless propagation load vs. crack
length for pinned column, corresponding to different
values of eccentricity (T-shape cross section)
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Figure 13 : Dimensionless limit load vs normalized ec-
centricity for pinned column, corresponding to different
values of crack length (rectangular cross section)
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Figure 14 : Dimensionless limit load vs normalized ec-
centricity for pinned column, corresponding to different
values of crack length (T-shape cross section)

centrically. Let Pcr be the critical load that depends on
the cross section, the crack length and position. It can
be found by solving the characteristic equation, corre-
sponding to the load applied axially (linearized theory).
Define Ppr as the value of the load corresponding to the
crack propagation, since the critical value of the stress
intensity factor KIC has been reached. Once the geomet-
ric parameters (crack length, crack position, cross section
and eccentricity) have been fixed, Ppr can be obtained by

solving the following equations:

KIC =
6Ppre

Bh3/2
FR

I (16)

KIC =
Ppre

h5/2
FT

I (17)

Equations (16) and (17) refer to the rectangular and T-
shape cross-sections, respectively.

Figures 11 and 12 depict the values of the propagation
load Ppr, normalized respect to the Euler critical load, as
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Figure 15 : Normalized eccentricity corresponding to the
condition (19) for different crack lengths and positions.
(rectangular cross section)

a function of the dimensionless crack length, for different
values of the eccentricity.

As the load is applied eccentrically the critical load has
to be compared to the propagation load. The limit load
Plim is defined as:

Plim = min{Ppr ,Pcr} (18)

Referring to a pinned column, figures 13 and 14 show
the normalized limit load as a function of the normalized
eccentricity, for different crack length and a fixed crack
position. The limit load corresponds to the critical load
only if the eccentricity is below a certain value depending
on the crack length and position. Note that the limit load
decreases dramatically as the crack length increases.

Figures 15, 16 and 17 show the critical values of eccen-
tricity ecr as a function of the normalized crack length
(a/h) and crack position (d/L), corresponding to the fol-
lowing condition:

Pcr = Ppr (19)

Note that the surfaces in figures 15 and 16 should be
considered as the border surfaces defining the domain
of eccentricity where buckling prevails over crack prop-
agation. For the rectangular cross-section (Fig. 17), the
eccentricity that fulfills condition (19) decreases as the

Figure 16 : Normalized eccentricity corresponding to
condition (19) for different crack lengths and positions.
(T-shape)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.01

0.02

0.03

0.04

0.05

a/h

e cr
/h

d/L=0.1

d/L=0.2

d/L=0.3

d/L=0.4

d/L=0.5

rectangular cross-section

T-shape cross-section

Figure 17 : Normalized eccentricity corresponding to
condition (19) for different crack lengths and positions.

crack length increases, for a fixed position of the crack.
For both cross-sections, as the crack length is fixed, ecr

increases when the crack position moves to the mid-span.
Finally (Fig. 17), for a fixed crack position and length,
ecr is greater when a rectangular cross-section is adopted.
This fact is emphasized as the crack length decreases.
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7 Conclusion

In this paper the influence of the presence of an edge
crack on the critical load has been analyzed. The weak-
ness due to the crack can be modeled as an internal hinge
with a rotational spring. Exact critical loads for various
end conditions, crack locations and cross-sections are ob-
tained. Once the crack position is fixed the critical load
decreases as the crack length increases. Besides the more
the crack tends to the mid spam the more the critical load
decreases.

The case of the load applied eccentrically has been also
considered. If the load is applied eccentrically the eval-
uation of the critical load can be vanished by the crack
propagation corresponding to a value of the load below
the critical one. The values of the load eccentricity cor-
responding to the condition of equivalence between the
critical load and the propagation load have been evalu-
ated as a function of the crack length and position.
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