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The Theory of Critical Distances: a History and a New Definition

D. Taylor1

Abstract: Current theories of fracture recognize the
importance of material length scales, i.e. parameters hav-
ing the dimensions of length which are included, either
explicitly or implicitly, in many methods of fracture pre-
diction. This paper is a review of the development of
one particular approach, which we have called the The-
ory of Critical Distances (TCD). The history of this ap-
proach – which is presented here for the first time - is a
story of parallel developments in the areas of fatigue and
brittle fracture and in different material fields: metals,
polymers, ceramics and composites. A particular mile-
stone in the development of the TCD was the incorpo-
ration of fracture mechanics concepts which allowed the
critical distance parameter, L, to be calculated as a func-
tion of other mechanical properties. Over the last decade
the theory has been rediscovered and extended by sev-
eral workers, precipitating another phase of rapid devel-
opment. This review concludes by proposing a precise
definition for the TCD, which includes four related meth-
ods of analysis, and by suggesting some directions for
future research.

keyword: Critical distance, Fracture, Fatigue, Stress
concentration

Nomenclature

a crack length
ao ElHaddad’s constant
D notch depth
F geometry factor in the equation for K
FFM Finite Fracture Mechanics
ICM Imaginary Crack Method
K stress intensity
Kc fracture toughness
K f notch fatigue strength reduction factor
Kt notch stress concentration factor
L critical distance
LEFM Linear Elastic Fracture Mechanics
LM Line Method
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PM Point Method
r distance measured from maximum stress point
rc Peterson’s critical distance
ε Neuber’s critical distance
ΔK range of stress intensity
ΔKth fatigue crack propagation threshold
Δσ range of applied stress
Δσo fatigue limit
Δσ(r) local stress range as a function of r
ρ root radius of notch
ρ′ a constant related to ε
σ stress
σ(r) local stress as a function of r
σo material characteristic strength
σu tensile strength

1 Introduction

This paper is concerned with the prediction of failure un-
der nominally linear-elastic loading, i.e. when any plas-
ticity, damage or other non-linear straining is confined to
highly localised regions. Examples are the failure of brit-
tle and quasi-brittle materials and those fracture modes
which involve the initiation and growth of cracks from
pre-existing notches. This includes high-cycle fatigue
and brittle fracture in metallic materials.

Traditionally, failure in these circumstances was pre-
dicted in one of two ways, using either: (i) a critical stress
or (ii) a critical stress intensity. In the first approach fail-
ure is assumed to occur when the maximum stress (or
strain) in the body reaches some particular value, usually
the material’s tensile strength σu or, in the case of fa-
tigue, the fatigue limit stress range Δσo. In the second
approach, which is Linear Elastic Fracture Mechanics
(LEFM), the failure of a pre-cracked body occurs when
the stress intensity reaches a critical value Kc in fast frac-
ture or ΔKth in fatigue.

It has long been known that these approaches are insuf-
ficient in many cases: the first approach is suitable only
for situations in which the gradient of stress is very low,
such as plain tensile test specimens or notches which are



2 Copyright c© 2006 Tech Science Press SDHM, vol.2, no.1, pp.1-10, 2006

large and blunt. LEFM is valid only for sharp cracks, not
for notches having a non-zero root radius: major errors
also arise when trying to apply LEFM to cracks which
are physically short. Many different attempts have been
made, over the last fifty years, to solve these problems
and create a general method of failure prediction.

For convenience, we can consider a typical problem in
this field as involving a notch, of depth D and root radius
ρ, as shown in fig.1. In fact, the real aim is to predict the
effect of any kind of stress-concentrating feature which
might arise in an engineering component, including not-
only geometric discontinuities such as holes and corners
but also stress concentrations arising from other means,
such as contact between bodies. Common features are
the existence of a stress field described by a decrease in
stress with distance from a ‘hot spot’ (a location of lo-
cal maximum stress), and failure modes involving crack
growth from the most highly stressed region, as shown in
the figure.

2 History

2.1 Early Work: Neuber and Peterson

The story begins with the work of Heinz Neuber in Ger-
many and Ralph Earl Peterson in the USA. Their ideas,
originally found in papers in the 1930s, are clearly ex-
pressed in two seminal publications (Neuber, 1958; Pe-
terson, 1959). Neuber proposed that the fatigue limit of
a specimen containing a notch could be predicted using
the average stress along a line drawn from the notch root
(i.e. the average of the stress shown in fig.1). The length
of the line was assumed to be a material constant: Neu-
ber’s original symbol for this distance was ε as shown in
fig.2. Thus, if the stress range as a function of distance r
is written Δσ(r) then Neuber’s approach can be expressed
as:

1
ε

εZ

0

Δσ(r)dr = Δσo (1)

We call this method the Line Method (LM). For Neu-
ber it was originally not a method of fatigue prediction
but rather a fundamental tenet of stress analysis. Neuber
argued that, since a material is not a homogeneous con-
tinuum, then methods for calculating stresses should not
use the standard calculus of infinitesimal intervals (dx,
dy, dz) but rather should use finite differences, the mag-
nitude of which should reflect the internal structure of the

Stress (r)

Distance rD

Crack

Figure 1 : A typical notch, with depth D and root radius
ρ. TCD methods use either the stress/distance curve or
else compute the stress intensity factor for a notch-root
crack.

material. Neuber said little about real microstructures –
he imaged the material as composed of ‘finite structural
particles’ whose size corresponded to his parameter ε.
For him the effect of these particles was to smooth out
any stress gradients that occurred over the length of the
particle. Peterson had followed this work closely, and
suggested a modified, and even simpler, approach, which
can be written as follows:

Δσ(rc) = Δσo (2)

Thus, according to Peterson, the fatigue limit of the
notched specimen occurs when the stress at a point, lo-
cated a distance rc from the notch root, is equal to the
plain-specimen fatigue limit. We call this the Point
Method (PM). The critical length constant here, rc, will
of course be different from Neuber’s ε. Both of these
approaches have been used extensively in fatigue predic-
tion ever since, but these days they are rarely used in the
explicit forms given in equations 1 and 2. The reason for
this is that in the 1950s the stress-distance curve was dif-
ficult to obtain, finite element analysis not being a practi-
cal proposition for engineering components. So Neuber
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and Peterson combined their criteria with approximate
methods of stress analysis; Neuber’s equation was:

Kf = 1+
Kt −1

1+
√

ρ′/
ρ

(3)

Figure 2 : A figure from Neuber’s 1958 book, showing a
notch and the critical distance, labelled ε.

Here Kt is the elastic stress concentration factor of the
notch and K f is the predicted fatigue-strength reduction
factor; ρ’ is a material constant, related to ε. This equa-
tion relies on the fact that the stress field near a notch
can be approximately described knowing Kt and ρ. Var-
ious equations of this general type became common in
fatigue analysis and are still used to this day by engineer-
ing designers. These methods have limited applicability
and poor accuracy owing to their underlying approxima-
tions and to the fact that K f cannot be precisely defined
in most component geometries. These days it would be

much better to forget these equations and use the LM and
PM explicitly, though currently these methods are not in-
corporated into any of the generally available software
for fatigue analysis.

Recently the explicit use of the TCD has been taken
up again as a research topic, for the study of notch fa-
tigue (Taylor, 1999; Lanning et al., 2004; Lanning et
al., 2005). Some quite complex situations have been
successfully analysed, including welded joints (Taylor
et al., 2002) and some engineering components (Taylor,
2005a).

2.2 Composites: the introduction of LEFM

The story of the TCD moves forward in time to the 1970s
and in subject matter to the monotonic fracture of com-
posites. Whitney and Nuismer described methods for
predicting the effect of holes and notches on the static
strength of fibre-reinforced polymers (Whitney and Nuis-
mer, 1974). These methods are identical to the PM and
LM: the only difference was that, instead of the fatigue
limit, Δσo, they used the tensile strength of the material,
σu, to predict the onset of unstable, brittle fracture in ten-
sile tests. No reference was made to the work of Neu-
ber or Peterson, leading us to conclude that these authors
were unaware of the earlier work. However, in the in-
tervening two decades an important development had oc-
curred: LEFM, initially developed by Griffith for brittle
materials, was now being applied to many fracture prob-
lems. So Whitney and Nuismer were able to make an
important theoretical link between the PM and LM and
LEFM, as follows. The stress distribution close to a crack
tip can be described by:

Δσ(r) =
K√
2πr

(4)

Using this, it is a simple matter to show that the critical
distances for the PM and LM can both be expressed in
terms of a length parameter L, where:

L =
1
π

(
Kc

σu

)2

(5)

Applying the PM to the case of a crack we find that the
distance from the crack tip to the critical point is L/2;
likewise applying the LM we find that the distance over
which stresses should be averaged is 2L. This is a very
useful result because it allows us to calculate the value of
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Figure 3 : A figure from Whitney and Nuismer 1974,
showing how the PM can be used to predict the effect
of hole radius (R) on fracture stress (normalised by the
plain-specimen value). The lines are predictions at three
different values of the critical distance do (which is equal
to L/2).

the critical distance from these two well-known mechan-
ical properties.

It should be noted, however, that this theoretical ar-
gument applies only to cracks. Whitney and Nuismer
showed that the same value can be used to predict exper-
imental data from specimens containing two other fea-
tures: circular holes and sharp notches. Fig.3 shows
an example, which illustrates an important property of
critical distance methods: their ability to predict size ef-
fects. The fracture strength of the specimens is strongly
affected by hole radius, even though the Kt factor is vir-
tually constant: the hole only exerts the full effect of Kt if
it is much larger than L, which in this case is 0.08 inches
(about 2mm). Holes much smaller than L have a negli-
gible effect; the strength of the specimen approaches the
plain-specimen value. In fibre composites the value of L
is quite large – of the order of millimetres – so this pre-
diction is very useful for assessing holes of a size which
commonly occur in components. The work of Whitney
and Nuismer was widely adopted in the field of compos-
ite laminates, and is still extensively used today, both in
research (e.g. (Cowley and Beaumont, 1997)) and in in-
dustrial design (e.g. (Zetterberg et al., 2001)).

2.3 Polymers: non-damaging notches

The TCD can also be used to predict brittle fracture in
polymers. It seems that this was first discovered by Kin-

Figure 4 : Data on the effect of root radius on measured
fracture toughness, normalised by the toughness for a
sharp crack, for a rubber-toughened epoxy material (Kin-
loch et al., 1983).

loch, Williams and co-workers who wrote several papers
on the subject in the 1980s (e.g. (Kinloch and Williams,
1980; Kinloch et al., 1983)). Their aim was rather dif-
ferent – to investigate the effect of crack-tip blunting
on fracture toughness – but the method they describe is
essentially the PM. Again, these workers do not seem
to have been aware of the earlier publications discussed
above, in the fields of metal fatigue and composites. A
typical result from this work was a prediction of the effect
of notch root radius on measured fracture toughness, as
shown in fig.4, taken from Kinloch and Williams’ orig-
inal work. In the case where the root radius is zero, the
notch is equivalent to a crack, so a valid measurement of
the toughness, Kc, is possible. As ρ is increased, produc-
ing a long, narrow slot rather than a crack, the measured
value of Kc first stays fairly constant, and then gradually
increases. The prediction of this behaviour, and espe-
cially of the critical value of ρ at which the upturn occurs,
is of great practical interest.

An important modification was introduced by these
workers: they noticed that, in order to predict the static
strength for notched components of brittle polymers such
as epoxy, the critical stress parameter to be used is not
the plain-specimen tensile strength σu but a higher value,
which we can call σo. We have discussed this matter in
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Figure 5 : Data and predictions similar to fig.4, but
showing measured Kc for cleavage fractures in steel at
low temperature (Taylor 2005b).

detail in a recent publication (Taylor et al., 2004): an
important consequence of this modification is that there
will be some notches – those for which Kt < σo/σu –
which are predicted to have no effect on strength (beyond
any effect they may have in reducing the cross section).
These non-damaging notches do indeed exist in practice.

The work of Kinloch and Williams, unlike that of Whit-
ney and Nuismer, was not widely adopted. Indeed there
seems to have been almost no further work using the
TCD in the field of polymers until some recent papers
by ourselves (Taylor et al., 2004), and by some re-
searchers who considered the particular problem of V-
shaped notches of zero radius (e.g. (Seweryn, 1998)).
This is a great pity, because the PM and LM could cer-
tainly be of value in the design of engineering compo-
nents made from polymeric materials.

Recently we have also investigated the application of the
PM and LM to other materials, showing that it can be
used to predict brittle fracture in both ceramics (Taylor,
2004) and metals (Taylor, 2005b). In the case of ceram-
ics, the critical stress was found to be equal to the plain-
specimen tensile strength σu, whilst metals displayed the
same effect as found above in polymers, with σo being
greater than σu, sometimes by factors as large as ten. Figs
5 and 6 show examples of the prediction of notch effects
in metals and short crack effects in ceramics.
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Figure 6 : Fracture stress as a function of defect size for
crack-like defects in silicon carbide (Taylor 2004). Data
deviate from the LEFM prediction at sizes of the order of
L. The PM and LM both give reasonable predictions.

2.4 Imaginary Cracks and Finite Crack Extensions

If we return to the 1970s and 1980s, we find the devel-
opment and use of another theory for predicting frac-
ture and fatigue which at first sight seems rather different
from the PM and LM described above. The main idea in
this approach – which we will call the Imaginary Crack
Method (ICM) – is to assume the existence of a small
crack, located at the root of the notch. This concept
is illustrated on fig.1: the crack length, ao, is assumed
to be constant. If we assume that the behaviour of this
notch obeys LEFM then we can predict brittle fracture
or fatigue based on the calculated stress intensity of the
notch-plus-crack system. The same concept can also be
applied to a crack – the real crack now being imagined to
increase its length by a certain amount. This turns out to
be very useful in predicting the non-LEFM behaviour of
short cracks.

Like the PM and LM, this is an idea which has been in-
vented and re-invented many times. In fatigue we can
find its use in the late 1970s for notches (Lukas and
Klesnil, 1978) and for short cracks (El Haddad et al.,
1979), but the same approach had already been advocated
almost a decade earlier (Waddoups et al., 1971) to pre-
dict brittle fracture in composite materials. Some work-
ers have suggested that these notch-root defects have a
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Figure 7 : Experimental data on the effect of notch tip
radius on fatigue limit, with three theoretical predictions
(Taylor and Wang 2000). K&L refers to the method of
Klesnil and Lukas (Klesnil and Lukas, 1980), which is
based on the ICM. Typically for this kind of data, the
PM provides a very accurate prediction whilst the LM
and ICM, which are almost identical, are slightly non-
conservative.

real physical existence (e.g. (Usami et al., 1986; Ostash
and Panasyuk, 2001), but this raises a theoretical prob-
lem, because a real crack of this size will be a short crack
by definition, and so cannot be analysed using LEFM.
This leads to a circular argument which, in the author’s
opinion, can only be resolved by accepting that the crack
is imaginary: there is no real crack or, if there is, it is not
the size assumed. Waddoups, for example, argued that
the function of this crack was to act as a simple repre-
sentation of the complex damage zone that develops in a
composite material prior to fracture.

We can calculate the length of this imaginary crack from
first principles, simply by noting that, for the case of a
plain specimen, failure will occur at an applied stress
of σu and at a stress intensity (applied to the imaginary
crack) of Kc. We use the standard LEFM equation for K
as a function of crack length a and geometry factor F:

K = Fσ
√

πa (6)

The modification necessary to apply the ICM for the case
of a pre-existing crack is:

K = Fσ
√

π(a+ao) (7)

Letting K = Kc and σ = σu when a = 0 gives:

ao =
1
π

(
Kc

Fσu

)2

(8)

Figure 8 : Variation of crack growth rate with length for
a slow-growing fatigue crack (Blom et al., 1986).

Clearly this is very similar to the value of L in equation 4
above, except for the factor of F2. In the particular case
of a through crack in an infinite plate in tension, when
F=1, L and ao will be identical. In many cases of prac-
tical interest F takes values close to unity, so the differ-
ences between the two distances will be small. Alterna-
tively, one can think of the strength parameter as being
Fσu. It is not surprising, then, that attempts to compare
this method with the PM and LM have shown that the
predictions are almost identical, both for brittle fracture
(Awerbuch and Madhukar, 1985) and fatigue (Taylor and
Wang, 2000). Fig.7 shows an example of the comparison
of these theories, for the case of notch fatigue limits. In
fact, one can show that, for the case of a crack with F=1,
the predictions of the LM and the ICM are mathemati-
cally identical (Taylor, 1999).

Recently we developed another method which is simi-
lar to the ICM, but with an important difference. Re-
turning to the classic Griffith energy-balance approach
which is the basis of LEFM, we rewrote the equations
using a finite amount of crack extension, Δa, instead of
the usual infinitesimal extension da. This approach mir-
rors the original idea of Neuber, to use finite quantities
rather than the infinitesimal ones of continuum mechan-
ics, but applied now to a thermodynamic, energy-based
argument rather than a stress-based argument. This ap-
proach, which has been outlined in detail elsewhere (Tay-
lor et al., 2005) leads to the following result:

a+ΔaZ

a

K2da = K2
c Δa (9)

This equation can be solved for any case in which the
variation of K with a is known, such as a notch-plus-
crack situation, many of which are available in stress in-
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tensity factor handbooks (e.g. (Murakami, 1987)). The
physical meaning of this approach is that a crack will not
initiate and grow from the notch unless there is sufficient
energy available to allow it to grow by an amount Δa:
smaller amounts of crack growth are not permitted. This
reflects the actual mechanism of crack propagation in
many cases of brittle fracture and fatigue: crack growth
is often not smooth and continuous but rather discontin-
uous: the crack jumps suddenly from one length to an-
other. Fig.8 shows an example of this kind of behaviour
in near-threshold fatigue crack growth, where it leads to
large variations in the rate of crack growth da/dN (data
from (Blom et al., 1986)).

The most interesting aspect of this approach is its close
relationship to the three preceding ones: if we solve
equation 8 for the case of a sharp crack (allowing the
crack to extend by an amount Δa) the result is exactly the
same as that of the ICM (equation 6) and the value of Δa
is exactly equal to 2ao, and therefore to 2L for the case of
F=1. This approach is theoretically more sound than the
ICM because it is not necessary to assume an imaginary
crack: now the crack is a real crack, constrained to grow
in a discontinuous way. We have given this approach
the name Finite Fracture Mechanics (FFM). As far as we
know, equation 8 was presented for the first time in our
recent paper (Taylor et al., 2005), though the idea of fi-
nite crack extension was also explored recently by Sew-
eryn and co-workers (e.g. (Seweryn and Lukaszewicz,
2002)). Not surprisingly, given the above remarks, the
FFM approach gives very similar predictions to the PM,
LM and ICM when applied to problems in brittle fracture
and fatigue (Taylor et al., 2005).

3 A Definition of the TCD

The above review has charted the historical development
of four different theories: two (the PM and LM) can be
seen as modifications of the original stress-based crite-
rion of material failure; the other two (ICM and FFM) are
developments of the stress-intensity (LEFM) approach.
We have seen that all four methods give similar predic-
tions, comparing favourably with the experimental data
for many practical problems. We have also seen that the
critical distances used in the four methods are all quite
similar, related to the parameter L as defined in equation
4. Another important similarity between these methods
is that they are all continuum mechanics approaches and
all assume linear elastic material behaviour.

At first sight this assumption would seem to invalidate
the PM and LM because in most cases the actual stresses
near the notch will be different from those predicted by
a linear elastic analysis, owing to plasticity, damage and
other sources of non-linear deformation. This is certainly
a problem: the solution may lie in the similarity of the
PM and LM to the ICM and FFM. In these latter meth-
ods, the use of linear, elastic assumptions can be justified
on the same grounds normally used to justify LEFM: that
the zone of non-linear deformation is contained within
a surrounding elastic zone, which controls material be-
haviour.

These considerations lead to a definition of the Theory of
Critical Distances, as follows. The TCD can be defined
as a group of theories for predicting material failure in
the presence of stress concentrations and stress gradients.
Common features are the assumption of linear elastic ma-
terial behaviour and the existence of a material parame-
ter with the dimensions of length: the critical distance L.
These four theories are:

1. The Point Method, in which failure occurs if the
stress at a point a certain distance from the hot spot
exceeds a characteristic strength σo. In some cases
(e.g. high-cycle fatigue, fracture of composites) σo

may coincide with the plain-specimen strength of
the material, in other cases it may take a different,
higher value.

2. The Line Method, in which failure occurs if the av-
erage stress along a line of a certain length, drawn
starting at the hot spot, exceeds σo.

3. The Imaginary Crack Method, in which a crack of
a certain length is imagined to be present at the root
of the notch, whose propagation occurs at a stress
intensity of Kc. LEFM is assumed in calculating K
for this crack.

4. Finite Fracture Mechanics, in which failure occurs
if there is sufficient energy to propagate a crack a
certain distance from the notch root. LEFM is again
assumed in making the calculation.

Viewing these four methods as essentially four manifes-
tations of the same underlying approach is useful, for two
reasons. Firstly, it allows the user to choose whichever
method most suits a particular problem. For example,
the PM and LM are convenient for use with finite element
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analyses for problems of complex geometry and loading,
such as are encountered in many engineering components
and structures. The ICM and FFM, on the other hand, are
useful in cases where a stress-intensity solution is avail-
able in closed form, allowing one to conduct parametric
studies.

Secondly, this unified view helps us to understand these
methods from a theoretical standpoint, suggesting av-
enues for future investigation. It is still not completely
clear why the TCD works as well as it does: the author’s
own view is that the answer lies in FFM, which appears
to capture an important aspect of the real mechanism of
failure in materials. The other methods may work simply
because they are approximations to the FFM.

4 Current and Future Work

After a period of relative dormancy in the late 1980s and
most of the 1990s, the TCD is experiencing a period of
renewed interest. In some cases this has taken the form of
a re-invention of the basic methods by authors who were
unaware of the earlier work: this is a forgivable omission
because in some areas – indeed in all areas except com-
posites – the subject has been largely untouched for two
decades.

A number of workers (e.g. (Leguillon, 2002; Seweryn,
1998)) have used TCD methods in conjunction with rig-
orous analytical approaches applied to the prediction of
brittle fracture, concentrating especially on sharp, V-
shaped notches. Others have taken the TCD into novel
areas such as fretting fatigue (Vallellano et al., 2003),
where the stress concentration is caused not by a geo-
metrical feature but by localised contact between bodies.
Work in our laboratories has consisted of validating the
basic methods using large amounts of experimental data,
of extending the use of the methods to other types of ma-
terials in which it has largely been unused (e.g. brittle
fracture in metals and ceramics, fatigue in polymers), and
in extending the theoretical basis of the method through
the development of FFM and the use of some combined
stress/energy methods (Taylor and Cornetti, 2005).

Some interesting future challenges on the practical side
are the extension of the TCD to consider fatigue in the
medium and low cycle range (Susmel and Taylor, 2005),
and to incorporate multiaxial criteria into the predictions
(Susmel and Taylor, 2003), both for fatigue and brittle
fracture. On the theoretical side there is a need to link

the methods of the TCD more closely to actual physical
mechanisms of damage at the microstructural level. In
some cases the value of L seems to be similar to that
of microstructural features such as the grain size, but in
other cases L is significantly larger and may correspond
to the size of the damage zone at failure.

5 Conclusions

1. The Theory of Critical Distances has a long history
but, with the exception of the field of composite ma-
terials, it is not currently being used to any great ex-
tent in industrial practice.

2. The TCD has demonstrated excellent accuracy in
predicting fatigue and brittle fracture; it has been
extensively validated for different types of materi-
als and stress concentration features.

3. A formal definition of the TCD includes four differ-
ent but related approaches: two are stress based (the
PM and AM); the other two are energy (or stress-
intensity) based (the ICM and FFM). Common fea-
tures are the use of linear elastic analysis and a sin-
gle, material constant length parameter.

4. The stress-based forms of the TCD have excellent
potential for use in conjunction with FEA for the
analysis of engineering components.

5. Many interesting topics for future research exist,
both in extending the practical applications of the
TCD and in developing a fuller understanding of the
operation of the method and the meaning of the crit-
ical distance and critical stress parameters.
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