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A Frequency Method for Fatigue Life Estimation of Mechanical Components
under Bimodal Random Stress Process

C. Braccesi 1, F. Cianetti 1, G. Lori 1 and D. Pioli 1

Abstract: This paper describes an original frequency
method for fatigue life estimation of mechanical compo-
nents subjected to random inputs. Currently mechanical
components life design under random loads is an impor-
tant task of the research, due to the increasing importance
of virtual simulation in opposition to the experimental
tests. The frequency domain approach, in this context,
seems to be able to supply reliable estimations with small
computational effort. The proposed method belongs to
the class of corrective coefficient to narrow-band formula
methods and it has been thought for bimodal PSDs. The
definition of the generalized bimodal processes and the
research of the links between corrective coefficient and
the system dynamic behaviour are other original aspects
of this work.

keyword: Fatigue life, Frequency domain approach,
Bimodal PSD.

1 Context

Fatigue life estimation of mechanical components sub-
jected to random loads is an important topic of machine
design. For this reason in the last years the scientists are
trying to supply optimized instruments to this field of the
planning. The interest is particularly directed on the vir-
tual simulation of the operative conditions: the compu-
tational performance increasing and the requirement to
minimize costs are the principal causes of this fact. Re-
search on virtual damage evaluation is object of authors
activity [Braccesi, Cianetti, Lori and Pioli (2005)] and
this paper is centred on a particular problem of this pro-
cedure, that is the frequency damage estimation starting
from Power Spectral Density (PSD) of stress random pro-
cesses. Fig. 1 illustrates the general flow-chart of vibra-
tion fatigue. As example of application the authors had
chosen a car chassy excited by the roughness of road sur-
face [Braccesi, Cianetti and Landi (2005)]. A finite ele-
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ment (FE) model of the chassis has been created and then
it has been assembled (by modal synthesis) in a multi-
body simulation (MBS) environment together with the
principal components of the car. The results of dynamic
analysis on this model have been used by the authors to
make a detailed study of some aspects not yet solved. As
shown in Fig. 1 there are two possible approach for the
virtual simulation of mechanical components [Braccesi,
Cianetti, Lori and Pioli (2004)]. The first is the time-
domain approach and it is the reference method because
it supplies reliable results (but with large computational
times). In fact the central part of this procedure is the
transient analysis which becomes very heavy with the in-
crease of the degrees of freedom (dof) number. The fre-
quency domain analysis can solve this problem by sys-
tem linearization and frequency response calculation and
it allows to have frequency representation of stress state
in reduced times. From these inputs a frequency method
evaluates fatigue damage much more quickly than the
Rainflow counting in the time-domain. A special class of
frequency methods [Wirsching and Light (1980), Lutes
(1990)] corrects damage estimation of a simple theory
named narrow-band formula [Bendat (1964)]. The cor-
rective coefficient dependence by stress PSD parame-
ters is an interesting aspect that usually in literature has
been studied only by the analytical side. Instead the au-
thors want to show as this coefficient is strictly related
to the dynamical behaviour of the mechanical compo-
nent and the definition of coefficient as a system prop-
erty is a future objective of the research. Moreover many
other fields of research are open, that are not object of
this paper. In fact, as it can be seen in Fig. 1, gen-
erally the system has not a linear behaviour, so another
corrective coefficient depending on normality indeces of
stress output process can be evaluated [Kihl, Sarkani and
Beach (1995)]. However, multiaxiality is certainly the
greatest question to solve: in this work a preliminary hy-
pothesis consists in considering a uniaxial state of stress,
but usually the stress state is biaxial or triaxial. In lit-
erature there are many multiaxial criteria [You and Lee
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Figure 1 : Flow-chart of the vibration fatigue evaluation processes

(1996)], but the authors believe that the equivalent uniax-
ial stress is the method more adaptable to frequency do-
main approach [Braccesi, Cianetti, Lori and Pioli (2005),
Pitoiset, Rychlik and Preumont (2001)]. The definition
of an equivalent uniaxial stress makes the theory of the
present paper general.

2 Frequency methods. Narrow-band formula. Bi-
modal PSD.

A frequency direct method consist in an analytical
formulation for the damage evaluation starting from
frequency representation of stress conditions [Bishop
(1988)], that is the Power Spectral Density of the ran-
dom scalar process if mechanical components stress con-
ditions are roughly uniaxial. Under these stress condi-
tions the time-domain procedure firstly factorizes stress
history by a counting method (usually in the Rainflow
Cycle Counting method [Matsuishi and Endo (1968)]),
then utilizes Wohler’s curve and Miner’s linear cumula-

tion rule. About the translation of this approach in fre-
quency domain a very hard problem has to be solved,
because counting method was created by researchers in
order to work in the time-domain, therefore some steps
of the counting algorithm are transferable on frequency
only by complications that are incompatible with design
duration [Bishop and Sherratt (1990)].

Depending on this lack of a general theory, some fre-
quency methods are based on a correction factor of the
damage of a special class of random process: the narrow-
band process [Bendat (1964)]. In the time domain this
can be seen as a sinusoidal signal with constant period
and continuously variable amplitude (see Fig. 2). In the
same way a typical frequency representation, which is il-
lustrated in Fig. 3, shows a function concentrated around
a central frequency. A fundamental theoretical conclu-
sion about the narrow-band Gaussian process indicated
that its probability density function (pdf) of extremes is a
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Figure 2 : Narrow-band stress time history

 

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

x 10
14

Frequency (Hz) 

P
S

D
 S

tr
es

s 
(P

a2
/H

z)
 

Figure 3 : PSD of narrow-band stress process

Rayleigh distribution (see Fig. 4)[Rice and Beer (1965)]:

PNB(s) =
s

4M0
e−

s2
8M0 (1)

In Eq. (1) s represents two times of the level of extreme
stress and M0 is the order zero spectral moment of stress
one-sided PSD, named by S( f ). A n-order spectral mo-
ment of PSD is defined by [Vanmarke (1972)]:

Mn =
Z

S( f ) f nd f (2)

It is easy to understand that M0 is equal to the area
subtended by PSD. It means that is possible to evalu-
ate fatigue damage by a simple integration: in fact for
a narrow-band time-history it is obvious that each peak
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Figure 4 : Rayleigh’s cycles amplitude pdf for the pro-
cess of Fig. 2 and Fig. 3

is followed by a valley characterized by the same mag-
nitude. The Rainflow Cycle Counting couples just these
extremes to forming an elementary fatigue cycle: there-
fore PNB(s) is also the probability density function of the
fatigue cycles range (the range is twice of the amplitude)
and the damage expected value can be calculated intro-
ducing in the general formulation of the following Eq.3
the expression for P(s) described by Eq. 1. The fa-
tigue strength curve of material is expressed by the law
Nsm = k.

E[D] =
νPT

k

Z
smP(s)ds (3)

In the previous equation T symbolizes stress time history
duration, while νP (the peaks rate) can be evaluated by
the following relation [Vanmarke (1972)]:

νP =
√

M4

M2
(4)

However the narrow-band theory can be utilized only in a
few practical applications. For example a simple test case
is shown in Fig. 5: even for a clamped-clamped beam in
the stress response PSD two spectral area peaks appear.
In fact the shape of stress random process is depending
on the number and the features of dynamical system res-
onances which have been excited by the input. Therefore
it can be understood that the bimodal PSD, represented
in Fig. 6 (both in time domain and in frequency domain),
is more interesting rather than unimodal (narrow-band)
PSD.



280 Copyright c© 2005 Tech Science Press SID, vol.1, no.4, pp.277-290, 2005

 

Figure 5 : Dynamical excitation of clamped-clamped
beam

An important class of frequency methods is based on a
corrective coefficient applied to the narrow-band formula
[Wirsching and Light (1980), Lutes 1990)]. This cor-
rective coefficient, named λ frequently in literature, is a
function of the stress PSD spectral moments and it can be
showed that always it is less than one. Therefore it can
be written:

D = λDNB (5)

As previously explained DNB can be evaluated by:

DNB =
νPT

k

Z
smPNB(s)ds (6)

In a corrective coefficient frequency method the greatest
problem is related to the analytical model parameter opti-
mization. This model obviously has to converge to unity
when the stress random process approaches narrow-band
situation. On the contrary λ aims to zero as much as the
process contains a frequency wide band. A fundamen-
tal parameter which is able to reproduce this behaviour is
the irregularity factor γ [Vanmarke (1972)]:

γ =
M2√
M0M4

(7)

The interpretation of Eq. 7 can be made easier remem-
bering Eq. 4 and also introducing the following time-
frequency relation for the mean (zero) value upcrossings
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Figure 6 : Bimodal random process in time-domain (a)
and in frequency-domain (b)

rate:

ν0 =
√

M2

M0
(8)

In can be easy observed that irregularity factor is coinci-
dent to the ratio between upcrossings rate ν 0 and peaks
rate ν P. When the time signal is strictly narrow-band
this ratio is close to unity, while it goes to zero as much
as the process is wide-band. Therefore for the analytical
model definition of corrective coefficient it is possible to
take advantage by its inverse proportion to γ. Moreover it
will be seen later that the irregularity factor can be simply
expressed by other PSD bimodal parameters that have an
immediate geometrical interpretation. In the following
paragraph it will be shown as the authors have created
[Braccesi, Cianetti, Lori and Pioli (2004)] a new model
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Figure 7 : Geometrical parameters of bimodal PSD

of corrective coefficient based on these few geometrical
parameters, represented in Fig. 7. Essentially the spec-
tral area is divided into two zone: one is under the in-
fluence of the first peak, the other belong to the second
peak. In this manner it is possible to lead the bimodal
PSD to the interaction between two unimodal processes.
Areas, central frequencies and irregularity factors of sin-
gle unimodal processes will form the variables set of the
model. In literature many researchers [Lutes and Sarkani
(1997)] prefer to utilize this set of parameters into dam-
age analytical model because it is more flexible than PSD
spectral moments and especially it is more useful during
the optimization of the analytical functions coefficients.

3 IEP method

This part of the paper presents an original frequency
method proposed by the authors and based on a simple
model for the corrective coefficient to the narrow-band
formula. In this paragraph the authors try to explain the
reasons driving them in research activity. Firstly this
original formulation is explained, emphasizing its theo-
retical basis and showing the good agreement that it sup-
plies by the comparison with data coming from simulated
time histories. Then an extension of classical definition
of bimodal PSDs will be presented, enlarging the appli-
cability field of the proposed method. Finally, it will be
shown that the choice of the model independent variables
is strictly related to the dynamic behaviour of the me-
chanical component.

The main objective of this activity consists in the explic-

itation of λ coefficient dependence on a suitable parame-
ters set of bimodal process. Initially this functional rela-
tion can be written as:

λ = λ(A1,A2, f1, f2,γ1,γ2,k,m) (9)

Where k and m are the Wohler’s curve coefficient, while
with reference to Fig. 7 the spectral parameters can be
defined as follows:

A1 =
f ∗R
0

S( f )d f A2 =
fmaxR
f ∗

S( f )d f R = A2
A1

(10)

f1 =

f ∗R
0

S( f ) f d f

A1
f2 =

fmaxR
f ∗

S( f ) f d f

A2
b = f2

f1

(11)

γ1 =

f ∗R
0

S( f ) f 2d f√
A1

f ∗R
0

S( f ) f 4d f

γ2 =

fmaxR
f ∗

S( f ) f 2d f√
A2

fmaxR
f ∗

S( f ) f 4d f

(12)

Eq. 9 involves an high number of variables, but later on
it will be indicated how to reduce the problem complex-
ity; everyone of these variable can be associated to one of
the determinant factor of this phenomenon that are mate-
rial fatigue behaviour, level of the input and system dy-
namic properties. Therefore it can be interesting to sepa-
rate these different effects into λ analytical formulation.
Fig. 8 shows very well this concept.

3.1 Triangular PSD

Bimodal processes are often reduced into geometrical el-
ementary shape, especially when it is necessary to simu-
late many time histories from PSDs with much different
parameters. Certainly the shape more utilized at this pur-
pose is the rectangular shape: it has a reduced number of
independent variables and it is suitable for a exact control
of the simulation condition. However the authors have
chosen the triangular shape (see Fig. 9), because it is as
simple as the rectangular shape, and it approaches bet-
ter the real behaviour of the dynamic resonances. About
the use of triangular shape PSD for explicitation of ex-
pression in Eq. 9 is necessary to carry out some ob-
servations. Firstly in a previous publication [Braccesi,
Cianetti, Lori and Pioli (2005)] the authors demonstrated
that is not possible to value sensible variations of irreg-
ularity factors γ1 and γ2by changing bandwidth of single
triangular peaks. However this limitation is not a great
difficulty, because the bandwidth factor of unimodal PSD
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Figure 8 : Influence of principal factor on the corrective coefficient

component had a secondary influence respect to the ratio
between theirs own central frequencies. An evidence of
this property is in the good agreement between the irreg-
ularity factors of simulated time histories with different
single peaks bandwidth and the values supplied by the
rough formula (see Eq. 13), which can be obtained by
the Eq. 14 for the spectral moments:

λ =
1+Rb2√

(1+R)(1+Rb4)
(13)

Mn = A1 f n
1 +A2 f n

2 (14)

Another fact has been demonstrated in a previous paper
of the authors: the dependence of λ by the central fre-
quencies f1 and f2 is fully represented by their own ratio
b.

On the base of this consideration the relation expressed
by Eq. 9 can be simplified in following manner:

λ = λ(A1,R,b,k,m) (15)

3.2 Linear relation

From Eq. 5, remembering Eq. 3 and Eq. 6, it can be
written:

λ =
D

DNB
= 1− DNB−D

DNB
= 1−

R
sm (PNB(s)−P(s))dsR

smPNB(s)ds
(16)

Eq. (16) can be also expressed as:

λ = 1− A
m
2
1R

smPNB(s)ds
IEPm (17)
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Figure 9 : Triangular shape of bimodal PSD

if the quantity named IEPm assumes the form:

IEPm =
R

sm(PNB(s)−P(s))ds

A
m
2
1

(18)
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Figure 10 : Linear dependence between λ and IEPm

The multiplying factor IEPm in Eq. 17 is a costant when
A1 and R are fixed, therefore it is independent by b.
Fig. 10 shows this linear dependence between the quan-
tity IEPm, which is related to the integrated difference
PNB(s)−P(s), and the corrective coefficient for different
values of R when m andA1are fixed.

The original denomination IEPm has been chosen by the
authors [Braccesi, Cianetti, Lori and Pioli (2004)] be-
cause it represents a weighted difference of morder be-
tween the cycles range pdf of narrow-band formula and

the cycles range pdf of effective random process. (IEP is
an acronym of Italian locution “Indice di Errore Pesato”).
In the following paragraph it will be shown as it is possi-
ble to supply a meaning to this quantity, and as it can be
expressed in dependence of the model variables.

3.3 First order IEP and m order IEP
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Fig. 11 shows the difference between narrow-band cy-
cles range distribution and the same distribution evalu-
ated from a sample time history of a particular random
bimodal PSD. The quantity IEP can be defined:

IEP =
R

(PNB(s)−P(s))sds√
A1

(19)

As previously stated the IEPm index weights by the slope
of Wohler’s curve the errors committed by the narrow-
band theory applied in the wide-band situations. IEP also
weights these errors, but in linear manner (see Fig. 12).

Discrete evaluation of the IEP starting from the distribu-
tion of fatigue cycles range calculated by a sample time
history can be made changing the integral in Eq. 19 with
a discrete sum:

IEP =

Nr

∑
i=1

(PNB(si)−P(si))s∆s
√

A1
(20)

Nr is the number of range intervals utilized, each one of
amplitude ∆s.



284 Copyright c© 2005 Tech Science Press SID, vol.1, no.4, pp.277-290, 2005

Cycle Range (Pa) 
Si 

P
NB

(S
i
) 

P(Si) 

∆Si 

∆P=(PNB-P)∆S 

IEP=Σ ∆PS

P
df

 c
yc

le
s 

ra
ng

e 

IEP
m

=Σ ∆PSm 

 

Figure 12 : Discrete evaluation of IEP and IEPm

The greater property of IEP consists in its independence
by A1. Therefore it is possible to express IEP by a func-
tion of R and b. The correct identification of this ana-
lytical constraint has been analyzed by the authors using
extensive numerical simulations of sample time histories
with different R and b. An accurate estimation in fact
requires that the rainflow distribution has been fully con-
verged. For this purpose results of 10 time histories with
105 fatigue cycles has been averaged, for each pair of R
and b respectively varying in the ranges [0.01, 1.44] and
[1.5, 10.5].

The fitting operations of these results allow to evaluate
for IEP the following analytical dependence:

IEP = α(R)exp
(

β(R)bδ(R)
)

(21)
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Figure 13 : Map of IEP vs. b and R

The quantities α, β and δ depend only by R and can be ex-
plicated by a polynomial function of third order with co-
efficients estimated trough least squares approximation.
In Fig. 13 IEP values supplied by Eq. 21 are illustrated
respect to R and b. Fig. 14 instead shows the normalized
differences between same values of Fig. 13 and the orig-
inal data estimated by sample time histories. Therefore
these differences can be considered as the fitting errors
related to the analytical modelling of simulated data.

A similar approach has been utilized for the fitting oper-
ations of IEPm, under the hypotheses of its dependence
on R, m and IEP:

IEPm = k1(R,m)(b−1)1+k2(R,m)IEPk3(R,m) (22)

The coefficients k1, k2 and k3 can be evaluated respect to
R and m by linear interpolation on a board.

Remembering the Eq. 17, and substituting for narrow-
band damage the expression:

DNB =
νPT

k
2

3m
2 Γ

(
1+

m
2

)
M

1
2
0 (23)

it can be obtained for the corrective coefficient the final
relation, where Γ is the well-known gamma function:

λ = 1− 1

2
3m
2 Γ

(
1+ m

2

)√
1+R

IEPm (24)

The observation of Eq. 24 allows to assert that corrective
coefficient λ is independent from A1 and k, therefore, if
slope of Wohler’s curve is fixed, it is a function of R and
b. For example Fig. 15 illustrates its values for m = 10,
that is the standard slope of smooth specimen. Fig. 16
instead for the same bimodal processes of Fig.14 shows
the normalized differences magnitude between λan, cal-
culated by (24) and λsim, deriving by time-domain simu-
lation. The highest value of the error is about 4 per cent
that is certainly a very good estimate.

The relation contained in (24) is not only a frequency
method but also demonstrates that corrective coefficient
λ is depending on mechanical system properties and its
configuration, while it is not related to the level of the dy-
namical excitation. In paragraph 5 of this paper it will be
shown as this conclusion can be used in a separation of
the effects of the determinant factor on the fatigue dam-
age.
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Figure 17 : Example of PSD formed by linear filters

3.4 Numerical simulation

In order to verify the agreement of the analytical model
estimates with the time-domain results the authors have
performed many set of numerical simulation. In a fol-
lowing section it will be discussed on the extension of
the applications field of the proposed method: the results
of suitable numerical tests will be shown to support that
hypothesis. In this context instead the objective is that of
checking the method both starting from other geometri-
cal shape for bimodal PSD and on more realistic stress
PSD.

3.4.1 Other representations of bimodal PSD

As previously mentioned triangular shape is not the more
frequently used representation in literature. Therefore it

is obvious to wonder if a model optimized by a triangu-
lar shape PSD works efficiently. A series of time histo-
ries with different bandwidth, central frequencies, areas,
R and b has been simulated starting from three shapes of
PSD: triangular, rectangular and by linear filter. Fig. 17
displays the last of these representations: stress PSD is
created processing a time signal with uniform frequency
spectrum by a linear filter simulating the frequency re-
sponse of one degree of freedom linear system. The
parameters control, more difficult than the others two
shapes, is obtained varying damping and stiffness of lin-
ear system, in practice by modifying filter coefficients.

For each process 10 time histories with 105 fatigue cycles
have been reconstructed and the related rainflow results
have been averaged to obtain more statistical confidence
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Table 1 : Results of simulation on different shapes of PSD

set f1 (Hz) A1 (Pa2) ∆ f (%fc) b R
Absolute mean error
Triang Rectang Filter

1 8 9e14 0.1 1.5:0.5:9 (0.1:0.1:1)2 0.0213 0.0417 0.0221
2 8 9e14 0.4 1.5:0.5:9 (0.1:0.1:1)2 0.0551 0.0721 0.0491
3 8 1.6e15 0.1 1.5:0.5:9 (0.1:0.1:1)2 0.0331 0.0679 0.0278
4 8 1.6e15 0.4 1.5:0.5:9 (0.1:0.1:1)2 0.0597 0.0821 0.0441
5 16 9e14 0.1 1.5:0.5:9 (0.1:0.1:1)2 0.0498 0.0712 0.0435
6 16 9e14 0.4 1.5:0.5:9 (0.1:0.1:1)2 0.0612 0.0931 0.0581
7 16 1.6e15 0.1 1.5:0.5:9 (0.1:0.1:1)2 0.0312 0.0514 0.0327
8 16 1.6e15 0.4 1.5:0.5:9 (0.1:0.1:1)2 0.0665 0.0915 0.0415

for the estimation. Then the derived corrective coeffi-
cient has been compared with those evaluated by the Eq.
24. Tab. 1 synthesizes the differences about eight sets of
simulated data. Each set is referred to a particular com-
bination of f1, A1 and bandwidth ∆f of unimodal peaks,
while R and b have been varied into a range with a spec-
ified increment. For each set the mean absolute value of
the error has been calculated. Observing the table it can
be deduced that mean error remains small under all the
conditions. It is practically constant for each f1 and A1

combination, while only a negligible dependence by ∆f
has been learned. Moreover PSDs obtained by filter (the
more realistic) have the lowest level of error.

3.4.2 Finite element beam model
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As shown in Fig. 5, exciting a clamped-clamped beam
with random input, the normal stress response in its

points will be almost bimodal. The authors have per-
formed some simulations in Matlab R©code on a simple
dynamic beam model. This is composed by FE beam ele-
ments with two degrees of freedom: the vertical displace-
ment (along excitation direction) and the rotation about
an axis normal to the plane defined by the beam axis and
the excitation direction. By the variations of geometrical
(length and normal area) and physical properties (density
and Young’s modulus) of the model, it has been possi-
ble to obtain stress PSD with different frequencies ratio
b and areas ratio R. Exactly 6 values of R and 3 of b
have been generated for a total number of 18 bimodal
processes. Fig. 18 shows the differences between an-
alytical and simulated corrective coefficient at the same
manner of the previous tests. Although the mean error is
higher than Fig. 16, also in this situation the proposed an-
alytical model proves to be efficient. Even if the dynamic
system of Fig. 5 is very simple, it is a first real example
of application for Eq. 24, which seems to recommend its
use as frequency method.

4 Generalized Bimodal PSD

In real word applications rarely stress PSDs assume such
an elementary shape as those presented in the previous
sections. In fact dynamical systems of main interest
have an high number of degrees of freedom; thus many
resonances participate to the frequency response of the
component. This theoretically means that the bimodal
frequency methods cannot be applied for real state of
stress; moreover, as previously explained, random pro-
cess complexity increases because an equivalent uniaxial
PSD generally must be evaluated from more stress com-
ponents. However, the aspect of the equivalent uniaxial
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Figure 19 : Generalized Bimodal PSD
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Figure 20 : Histogram of errors on corrective coeffi-
cient
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Figure 21 : Cumulative distribution of absolute error
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Figure 22 : Cumulative distribution of error with sign

stress frequency representation is very often similar to
the one shown in Fig. 19.

Here two zone of spectral area accumulation can be dis-
tinguished and the concept of bimodal PSD can be gen-
eralized including all the structural responses with two
dominant frequencies range. Once the limit f ∗ between
two zone is defined in proper terms the parameters R and
b can be estimated simply by Eq. 10 and Eq. 11. Even if
there are other processes for which this limit is not easy
to characterize, the extension before mentioned allows
to employ bimodal frequency method in the greater part
of design conditions. It is clear that the validity of this
generalization is related to the hypothesis that the fatigue
damage depends more from ratio between its accumu-
lation areas central frequencies than the bandwidths of
these ones (that is one of the basis of PSD triangular mod-
eling as it was already seen).

To demonstrate the validity of the generalization stated
in the former sentences a virtual simulation of a signifi-
cant test case has been considered from the authors. The
data numerically acquired from this test case are a sub-
set of the ones currently used in a “wide range” research
conducted by the authors on frequency domain approach
for fatigue damage evaluation. The research activity has
been presented in the first paragraph of this paper. PSDs
of stress random process has been derived on a car chassy
by simulating into a MBS environment the full vehicle
moving on a pavé at constant velocity. Starting from PSD
matrix of the biaxial state of stress (car chassis FE model
has been meshed by shell elements and translated into
a modal model using Craig and Bampton approach) an
equivalent uniaxial PSD has been evaluated for each ele-
ment. Fig. 19 is an example of these random processes.
By the application of the theory about IEP method it can
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Figure 23 : Proposed method flow chart

be evaluated the corrective coefficient λ for each of se-
lected elements (in number of approximately 1600). This
estimation of λ has been compared with the same coeffi-
cient evaluated by Rainflow Counting as already seen for
the other tests. Fig. 20 shows an histogram of the dif-
ferences found. The definition of transition frequency f ∗

has been carried out by minimizing PSD function in the
interval of frequencies [10 Hz, 20 Hz]. This definition is
certainly arbitrary and it must be improved out. Of the
1600 elements about 50 (3 per cent) has been discarded
because it has not been possible to define the limit f ∗.

It is also possible to verify the goodness of the results
looking at Fig. 21 and Fig. 22. Fig. 21 shows cumulative
distribution of absolute error of IEP method, while Fig.
22 represents cumulative distribution of error with sign
on all the elements. Only the 15 per cent of the estima-
tions exceeds the absolute error of 0.1 and about the 3 per
cent exceed the absolute value of 0.15.

It can be appreciated also that the mean value of the error
with sign is substantially zero. This fact is important be-
cause it denotes an unbiased method. Moreover, on the
cumulative distribution a problem of damage statistical
convergence is implicit: an average value of damage on
10 time histories containing 105 fatigue cycles has been
calculated for each process. This estimation has a good
degree of confidence, but certainly it is far from full con-
vergence. Then the mean absolute error represented in
Fig. 21 is higher than the true mean absolute error.

In conclusion, the IEP method supply good agreement to
the time-domain approach for generalized bimodal shape
of PSD too.

5 Why a new frequency method?

In the last years many researchers has been involved in
the study of an efficient frequency method for fatigue
damage estimation under wide band stress conditions.
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However they usually process many stress time histo-
ries but they don’t care how these stresses are gener-
ated into the mechanical system. Instead one objective
of this paper has been related to the dependence of cor-
rective coefficient λ on the dynamical local properties of
the system. Fig. 23 shows this aspect for a car chassis:
as previously demonstrated, the corrective coefficient of
the narrow-band formula λ is a function only of R, b and
m. Therefore it can be seen as a local property of me-
chanical system under a particular configuration, not de-
pending by the level of the input (if input is constant on
the frequency range of interest, as usually it is modeled).
The R and b values can be found starting from the knowl-
edge of frequency response for all elements. A frequency
analysis with unitary level of input PSD is a simple way
to obtain squared frequency responses. Then the dam-
age evaluated with the narrow-band formula will change
varying the input level, but corrective coefficient will not
change and it is known for all input conditions (provided
it is constant on the frequencies of interest). Therefore
the fatigue damage of bimodal PSD (in classic sense or
in generalized definition) can be successfully reduced to
an analytical problem depending on four variables: the
slope of material Wohler’s curve, that is related to the
fatigue behaviour, the stress PSD ratios b and R, which
reproduce the local dynamic properties of the system and
the values A1, that is strictly connected with the level of
the input. The development of a more elegant analytical
relation for λ will be a future objective of the authors,
but the aim of a complete problem understanding seems
to be successfully achieved.

6 Conclusions and future objectives

One of the future aims will consist in a more compact
formulation of the λ analytical model as it has been pre-
viously explained. Some functions may be optimized
and other relations must be completed, as the order m
IEP dependence by m and R, which has been only par-
tially made explicit. Moreover other parameters (γ1 and
γ2 for example) can be included in the analytical model.
However this is a secondary requirement because the au-
thors are interested to an efficient use of the frequency
approach to fatigue evaluation and the results reached by
the present model are already suitable to this aim. In fact
in this paper some numerical simulation have been used
to demonstrate the efficiency of IEP method, by com-
parison with time histories reconstructed both from bi-

modal PSDs of elementary shape and from PSDs derived
by a frequency analysis on a FEM model of a car body.
Furthermore a physical interpretation of the relations be-
tween λ and the variables chosen for the analytical model
has been supplied. Obviously the authors also want to
make a careful study on this interpretation in future ac-
tivities of research.
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