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Cohesive Strength and Separation Energy as Characteristic Parameters of
Fracture Toughness and Their Relation to Micromechanics

W. Brocks1

Abstract: A review on phenomenological fracture cri-
teria is given, based on the energy balance for cracked
bodies, and the respective toughness parameters are re-
lated to micromechanical processes. Griffith’s idea of in-
troducing a ”surface energy” and Barenblatt’s concept of
a ”process zone” ahead of the crack tip build the founda-
tion of modern cohesive models, which have become ver-
satile tools for numerical simulations of crack extension.
The cohesive strength and the separation energy used as
phenomenological material parameters in these models
appear to represent a physically significant characterisa-
tion of ”fracture toughness”. Micromechanical interpre-
tations of these parameters can be derived, depending on
the specific damage phenomenon.

keyword: Cohesive model, Fracture toughness, Cohe-
sive strength, Separation energy.

1 Introduction

Two essential questions arise with respect to the descrip-
tion of fracture. The first one is the issue of providing
a correct and physically meaningful picture of the pro-
cesses occurring at the crack tip. The second question is
on how the fracture toughness of a material in a specific
structural geometry can be described. With the focus on
a modelling approach both issues have to be addressed.
One of the main requirements of models for nonlinear
constitutive behaviour is that they must allow for a sep-
aration of the energy dissipation connected to the local
material separation process from the remote plastic strain
energy.

The history of analytical approaches to studying frac-
ture started less than a hundred years ago, which is rela-
tively short compared to other issues of strength of mate-
rials. The work of men like Griffith and Irwin has helped
to make recent advances in fracture modelling possible.
Griffith’s theory of brittle fracture [Griffith (1920, 1924)]
helps us to understand why fracture occurs in an elastic
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material. His basic ideas are not restricted to brittle frac-
ture, however, as Irwin (1957, 1964) showed, who took
Griffith’s work and applied it to moderately ductile mate-
rials. After a long period, during which the understand-
ing of fracture toughness was mainly reduced to the ques-
tion of how to measure a JR-curve correctly, followed
by discussions on ”constraint effects” on JR-curves, peo-
ple became aware again of Griffith’s strain energy con-
cept resulting in proposals of an ”energy dissipation rate”
[Turner (1990)] and in numerical models for the ”cohe-
sive zone” at the crack tip [Needleman (1990), Yuan and
Cornec (1996), Tvergaard (2001)].

2 Griffith’s Energy Concept of Fracture

2.1 Fracture of Brittle Materials

Griffith (1920) started his fundamental paper with dis-
cussing the ”effect of surface treatment on the strength of
machine parts subjected to alternating or repeated loads”,
which could not be explained with the help of the hy-
pothesis of maximum tensile stress. The stresses due to
typical scratches, which he had calculated using Inglis’
equations [Inglis (1913)], ”could increase the maximum
stresses from two to six times, ... and these maximum
stresses were to all intents and purposes independent of
the absolute size of the scratches”. The resulting conclu-
sions were ”in direct conflict with the results of alternat-
ing stress tests”, and Griffith concluded that ”the ordinary
hypotheses of rupture, as usually interpreted, are inappli-
cable to the present phenomena”. Thus, he attacked the
problem of rupture of elastic solids from a new stand-
point, based on the theorem of minimum energy. The
relevant passage is quoted below, as its arguments appear
as quite recent with respect to both continuum mechanics
and micromechanics [Griffith (1920)]:

”Rupture of the solid has occurred, if the system can pass
from the unbroken to the broken condition by a process
involving a continuous decrease in potential energy. In
order, however, to apply this extended theorem to the
problem of finding the breaking loads of real solids, it
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is necessary to take account of the increase in potential
energy, which occurs in the formation of new surfaces in
the interior of such solids. It is known that, in the forma-
tion of a crack in a body composed of molecules which
attract one another, work must be done against the cohe-
sive forces of the molecules on either side of the crack.
This work appears as potential energy, and if the width
of the crack is greater than the very small distance called
the ’radius of molecular action’, the energy per unit area
is a constant of the material, namely its surface tension”.

Considerations of the molecular theory of strength phe-
nomena were also addressed by Smekal (1922), around
the same time as Griffith established his concept. But
it took about 60 more years and the increasing capaci-
ties of modern computers that atomistic models and the
molecular dynamics technique were applied to study the
micromechanics of brittle fracture, in particular microc-
rack initiation and crack growth, e.g. Machova (1992).

Figure 1 : Center-cracked panel under biaxial loading
(biaxiality factor, λ) used to derive Griffith’s fracture
concept for mode I

Applying his theory to an ”infinite” cracked panel, the
subsequently renowned ”Griffith crack” configuration for
mode I fracture, Fig. 1, he came up with the condition
that the crack may extend as

∂
∂a

(
Uel

rel −Usep

)
≥ 0 (1)

where Uel
rel is the change of elastic strain energy due to

the crack.

Let Uel
0 be the elastic strain energy per unit thickness

stored in a panel under biaxial tension, which does not

contain a crack. It depends on the panel dimension and
becomes infinite as the panel size does. If a hole is cut
into the panel, its stress and strain state and, hence, its
strain energy change. Depending on the boundary con-
ditions, the strain energy may increase or decrease. As-
suming ”fixed-grip” conditions, strain energy is released,
Uel = Uel

0 −Uel
rel. The decrease of strain energy due to a

crack of length 2a is

Uel
rel =

πa2σ2

8G
(1+κ), (2)

where G = E
/

2(1+ν) is the shear modulus, and κ is
a parameter depending on Poisson’s ratio, ν, and the
stress state, namely κ = 3 − 4ν for plane strain and
κ = (3−ν)

/
(1+ν) for plane stress. Stresses parallel to

the crack do not affect the strain energy released in the
case of an ideal crack.

The second term in Eq. 1, Usep, is the potential energy of
the two crack surfaces per unit thickness of the panel,

Usep = 4aγ, (3)

where γ is the ”surface tension”, having the dimension of
energy per area.

An existing crack will extend unstably, if the equals sign
holds in Eq. 1, i.e. if the ”energy-release rate”,

G el = − ∂Uel

B∂(2a)
=

∂Uel
rel

B∂(2a)
=

πaσ2

2G
(1+κ), (4)

which is the elastic energy being released by a unit crack
extension under ”fixed-grip” conditions, equals the ”sep-
aration energy” (SE),

∂Usep

B∂(2a)
= 2γ = Γc, (5)

which is necessary to create new fracture surfaces and
which is supposed to be a material constant in fracture
mechanics,

G el(a) = Γc. (6)

From this criterion, the (global) fracture stress of the
panel is derived as

σ f =

√
2E ′γ
πa

, (7)
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with E ′ = E for plane stress and E ′ = E
/
(1−ν2) for

plane strain.

Note that σ f depends on the crack length, a, and tends to
approach infinity if a approaches zero, which means that
no fracture can occur in an ideally flawless structure. If
a material contains microcracks of a certain size, a, how-
ever, the assumption of a critical SE implies a critical
fracture stress or ”cohesive strength” (CS), σc = σ f (a),
as a material parameter under plane strain conditions. In-
variably, the size of microcracks in a brittle material is
not constant, but follows some density distribution. To-
gether with the weakest-link assumption, that a structure
will fail if a representative volume element (RVE) fails,
Weibull’s statistical theory of the strength of materials
[Weibull (1939)] can be derived from Eq. 7. This concept
has found application in the ”local approach” to cleavage
fracture of ferritic steels [Mudry (1987)].

2.2 Extension to Small-Scale Yielding

Griffith’s work was significant, however it did not in-
clude ductile materials in its consideration. Almost four
decades later, Irwin investigated how the theory would
apply to ”somewhat brittle fracture”, meaning ”that a re-
gion of large plastic deformations may exist closer to
the crack but does not extend away from the crack by
more than a small fraction of the crack length” [Irwin
(1957)], which we would call ”small-scale yielding con-
ditions”, today. Remarkably, he already came up with a
two-parameter approach of fracture long before similar
concepts were discussed intensively within the fracture-
mechanics community: ”the influence of the test config-
uration, loads and crack length upon the stresses near an
end of the crack may be expressed in terms of two param-
eters. One of these is an adjustable uniform stress parallel
to the direction of a crack extension. ... The other param-
eter, called the stress intensity factor, is proportional to
the square root of the force tending to cause crack exten-
sion” [Irwin (1957)]. Actually, the first parameter is Rice
’s T -stress [Rice (1968)], and the crack driving force is
Griffith’s strain-energy release rate,

G el =
K2

E ′ , (8)

which is proportional to the square of the mode I stress
intensity factor, K. In order to account for crack-tip plas-
ticity, Irwin (1964) assumed that ”the stress relaxation
from local yielding is equivalent to a small additional

crack extension called rY . The value of rY was fixed
partly from experiment and partly from theoretical rea-
soning at”

rY =
1

2π

(
K
σY

)2

. (9)

The energy-release rate of a centre-cracked panel, Fig 1,
accounting for crack-tip plasticity then becomes

G =
σ2π(a+ rY )

E ′ = G el +G pl, (10)

and in order to satisfy the fracture criterion of Eq. 9,
an additional plastic contribution of the SE has to be in-
cluded on the right-hand side,

G (a) = Γc = Γel +Γpl . (11)

This plastic SE, i.e. the work of stresses on plastic de-
formations per unit crack area, has the same dimension
as Γel , namely energy per area. However, it may not be
understood as a ”surface energy” like in Griffith’s con-
cept, any more, because the plastic strain energy, ∆U pl ,
dissipated during a time increment refers to a volume,

∆U pl =
Z

Vpl

(Z t+∆t

t
σdεpl

)
dV = ∆uplVpl, (12)

where σ and εpl are von Mises effective stress and plastic
strain, respectively, upl is the average plastic strain en-
ergy density in the plastically deformed volume, Vpl .

As long as plastic deformations are restricted to a small
vicinity of the crack tip, assumed as a ”process zone”,
this phenomenological enhancement of Griffith’s theory
will not cause severe problems despite the fact that the
elastic and plastic contributions to Γc cannot be sepa-
rated. The conceptual difference between the two has
severe implications for fracture under large-scale yield-
ing, however, for the following reasons.

As long as local and remote plastic strain energy cannot
be separated, there is no chance of obtaining physically
meaningful and geometry-independent values of SE and,
hence, for fracture toughness.

The CS, σc, retains some significance as a stochastical
material parameter in Weibull’s theory and in the local
approach to cleavage fracture, but would require a gen-
eral re-definition for ductile rupture processes, provided
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that the concept of a ductile rupture CS has any meaning
at all.

Calculating SE as mechanical work dissipated in a pro-
cess zone requires the introduction of a length scale,
h0, namely the height of the process zone. This prob-
lem shows up in various guises, in the ”paradoxon of
elastic plastic fracture” that the ”near-tip” J-integral ap-
proaches zero for vanishing contour height [Rice (1979),
Brocks and Yuan (1989)] as well as in a ”patholog-
ical mesh-dependence” of numerical results obtained
from local damage-mechanics models [Sun and Hoenig
(1994), Bernauer and Brocks (2002)].

3 Ductile Rupture

3.1 J-Integral and Dissipation Rate

The 1970s and 80s were the decades of the J-integral,
as introduced by Cherepanov (1967) and Rice (1968)
in elasto-plastic fracture mechanics. Everything looked
quite consistent at the beginning. In elasticity, J equals
Gel , and in deformation plasticity, J is an energy-release
rate, again, J = −∂U

/
B∂a, and was found to be the am-

plitude of the singular stress and strain fields at the tip
of a stationary crack, the so-called HRR field. Though
local and remote contributions of the plastic strain en-
ergy could not be separated, any geometry dependence
of critical J-values for initiation of crack extension under
monotonic loading was found not to be significant but
within the scatter of material properties. This changed
with the application of J for characterizing crack exten-
sion in the form of JR-curves, J(∆a). Several problems
and inconsistencies came up, from the path dependence
of J [Brocks and Yuan (1989)] to significant geome-
try dependencies of R-curves, and numerous attempts to
cope with these problems were undertaken, from defin-
ing limits for J-controlled crack growth [Shih and Ger-
man (1985)] to various investigations on ”constraint ef-
fects” and two-parameter approaches [Betegon and Han-
cock (1991), O’Dowd and Shih (1991), Wang (1993),
Brocks and Schmitt (1993)].

From today’s point of view, the fracture-mechanics com-
munity missed two essential points:

The cumulative quantity J, which increases with crack
length, ceases to be an energy-release rate, as soon as the
crack starts extending, and an incremental quantity is re-
quired in plasticity instead, as Turner (1990) has pointed
out in a basic discussion on the necessity of defining an

alternative measure of tearing toughness. What has been
understood to be an extension of Griffith’s theory was
not, in the end.

Although physically meaningful models of the failure
processes occurring at the crack tip were available [Rice
and Tracey (1969), Thomason (1985)], the purely phe-
nomenological J concept did not consider them. Analo-
gous local models appeared separately as the ”local ap-
proach”, ”micromechanical models” and ”damage me-
chanics” [Rousselier (1987), Needleman and Tvergaard
(1984), Sun et al. (1992), Brocks et al. (1995)] and were
in the beginning eyed with distrust by the J-community.

Let us consider, like Griffith (1920) did, the energy bal-
ance for an incremental crack extension under quasistatic
loading:

∂Wex

B∂a
=

∂
B∂a

(
Uel +U pl +Usep

)
, (13)

where Wex is the work done by external forces, Uel and
U pl are the elastic and plastic fractions, respectively, of
the internal energy of the body, and Usep is the work re-
quired for material separation in the process zone. The
total energy dissipation rate, R, is then defined as in
[Turner (1990)] by

R =
∂Udis

B∂a
=

∂
B∂a

(
Wex−Uel

)

=
∂U pl

B∂a
+

∂Usep

B∂a
= Rpl +Γc. (14)

”Dissipated energy” is understood as ”non-recoverable
mechanical energy”. In an elastic-plastic finite element
(FE) analysis of crack extension the plastic strain-energy
fraction of the dissipation rate can be calculated directly
from Eq. 12. If the simulation reflects plastic processes
only, i.e. if it is simply based on the Mises-Prandtl-Reuss
equations and crack extension is controlled by an experi-
mental R-curve, the dissipation rate, R, equals ∂U pl

/
B∂a

as in fracture mechanics testing.

When introducing R, Turner generally doubted that split-
ting it into local and global contributions would ever be
possible, as only external work and elastic energy can be
measured. Thus, every measured ductile crack-extension
resistance will necessarily contain remote plastic work,
which in general is much larger than the (local) SE. The
problem of geometry dependence of ductile tearing re-
sistance is therefore inherent and appeared unsolvable.
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Recent developments, both in experimental techniques
and in micromechanical modeling of fracture phenom-
ena allow a further step forward, however, in analyzing
the various contributions to energy dissipation by ductile
tearing and its geometry dependence.

3.2 Modeling of the Process Zone

The physical processes which occur within the process
zone characterize the material at the onset of fracture.
Understanding of the energy dissipation mechanisms in
the process zone is hence precisely what is necessary
to identify ”fracture toughness” as a material property.
Generally, there are two types of mechanisms, involv-
ing different length scales and resulting in significantly
different amounts of dissipated mechanical energy. The
first is the emission and motion of dislocations from the
crack tip [Rice and Thomson (1974), Rice (1992), Kysar
(2003)], the second is the formation, growth and coales-
cence of voids [Rice and Tracy (1969), Tvergaard (1982),
Thomason (1985)]. The following considerations restrict
to ductile crack extension by void nucleation and growth.

Stüwe (1980) developed a simple analytical model to es-
timate the specific plastic energy for the formation of
dimples on the fracture surface and Kolednik (1993) ap-
plied it for qualitatively explaining the geometry depen-
dence of J −∆a curves. By this approach, the energy re-
quired for material separation for ductile rupture can be
determined experimentally from analyses of the topology
of the fracture surfaces [Stampfl et al. (1996a, 1996b,
2000)].

Uncoupling of Rpl and Γc can also be realized in numer-
ical models, if according to Barenblatt’s idea [Barenblatt
(1962)] a specific ”process zone” ahead of the crack tip
is introduced, where material degradation and separation
occur [Siegmund and Brocks (1998, 1999, 2000)]. The
simulations require a constitutive description of the ma-
terial behavior in the process zone, which can mirror the
local loss of stress carrying capacity. In general, two al-
ternatives are used:

Damage models based on the micromechanisms of
ductile rupture [Thomason (1985), Tvergaard (1982)],
namely the nucleation, growth and coalescence of voids,
as e.g. the most commonly used model of Gurson, Tver-
gaard and Needleman (GTN-model) [Gurson (1977),
Needleman and Tvergaard (1984)]. The respective con-
stitutive equations of porous metal plasticity are relations
between stresses and strains in solid elements, represent-

ing the microstructure of the material in an average sense.
In order to obtain physically meaningful results for the
dissipation rate in the process zone, a length parameter,
h0, has to be introduced, however. This parameter de-
pends on the average spacing of void nucleating parti-
cles and the hardening behavior of the metallic matrix.
The respective relation is established by an energy equiv-
alence for a micromechanically representative volume el-
ement (RVE). The work of separation, ∆Usep, per incre-
mental crack extension, ∆a, is

Γc =
∆Usep

B∆a

=
1

B∆a

Z

V0

(Z t+∆t

t
(1− f )σdεpl

)
dV

= usep h0 (15)

with f and usep being the average void volume fraction
and the average SE density in the RVE of volume V0 =
h0 B∆a, respectively. If ”local” constitutive equations are
applied, which do not contain an intrinsic length scale,
the height of the finite elements in the ligament has to
be considered as a characteristic material parameter [Sun
and Hoenig (1994), Bernauer and Brocks (2002)].

Phenomenological ”cohesive models” (CM) describing
various kinds of decohesion processes, see Fig. 2, by a
relation between surface tractions, σn, and material sep-
aration, δn. For this, cohesive surface elements are in-
troduced at the boundaries of solid elements along a pre-
defined crack path. The constitutive relation of the in-
terface elements represents the effective mechanical be-
havior due to the physical processes of micro-void nu-
cleation, growth and coalescence in a ductile material.
Commonly, the cohesive law is defined by two param-
eters, a cohesive strength (CS), σc, and a critical sep-
aration, δc, or, alternatively, a separation energy (SE),
Γc, which simply represents the area under the traction-
separation law.

Γc =
δcZ

0

σn(δn)dδn (16)

The cohesive elements, in particular, can be understood
as a renascence of Griffith’s concept of a surface energy.
The significant differences, however, are that

Though Γc is supposed to be a ”surface” energy, the re-
spective physical separation process occurs in a volume
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Figure 2 : Schematic of cohesive model for various fail-
ure phenomena: damage is localized in an interface

of finite, though commonly small thickness, in reality,
and

The CS, σc, is an additional independent, phenomenolog-
ical parameter, representing the maximum tensile stress
acting on an RVE.

The advantage of the CM in comparison to the local con-
tinuum models of damage is, that they do not show patho-
logical mesh dependence and do not require the intro-
duction of a length parameter via the FE mesh, as they
include an intrinsic length parameter, δc, already. A ma-
jor disadvantage is their restriction to pre-defined crack
paths within the FE mesh.

The question of how to obtain a physically meaningful
cohesive law required for the cohesive elements has also
to be addressed. As it is supposed to represent microme-
chanical processes of material degradation and damage
in a phenomenological way, micromechanically based
models of void growth may help to identify it. These pro-
cesses have been investigated by several authors, based
on numerical simulations of RVEs or ”unit cells” con-
taining a void [Koplik and Needleman (1988), Brocks et
al. (1995)], which are supposed to represent a typical
periodic microstructure of ductile materials, see Fig. 3.

The mechanical behavior of an RVE is described in terms
of averaged ”mesoscopic” stresses and strains,

Σi j =
1
V0

Z

V0

σi j(xk)dv =
1

V0

Z

∂V0

xit j da (17)

Figure 3 : Unit cell as representative volume element
(RVE) of a periodic microstructure containing voids

Ei j =
1

V0

Z

V0

1
2 (ui, j +u j,i) dv =

1
V0

Z

∂V0

1
2 (niu j +n jui) da

(18)

The lower case letters, σi j , ui, t j represent the non-
uniform ”microscopic” field quantities of stresses, dis-
placements and surface tractions, respectively.

The mesoscopic stress-strain curves, Σ33 vs E33, for a
cylindrical elastic-plastic unit cell of diameter D0 and
height h0 = D0 , i.e. volume V0 = 1/4 πD3

0, containing
a spherical void of 0.5% volume fraction under triaxial
tension, Σ33 > Σ22 = Σ11 are displayed in Fig. 4, The
curves depend on the applied mesoscopic stress triaxial-
ity, T , defined as the ratio of hydrostatic to equivalent
stress,

T =
Σ
Σh

=

√
3/2Σ′

i jΣ′
i j

1/3Σkk
=

3(Σ33 −Σ11)
Σ33 +2Σ11

(19)

but have a typical shape: Tensile stresses increase up to
a maximum, representing the CS, σc, of the volume el-
ement, remain at an approximately constant level for a
while and decrease again, when plastic collapse of the
cell, indicating the start of coalescence with neighbor-
ing voids, is reached. The final coalescence of voids,
which would lead to a total loss of stress-carrying capac-
ity of the volume element, cannot be modeled with single
cells, of course. Qualitatively similar results would be
obtained from single-element calculations applying the
GTN model [Siegmund and Brocks (1999].

The mechanical behavior of this RVE may be idealized
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Figure 4 : Macroscopic stress-strain curves of a cylindri-
cal elastic-plastic unit cell containing a spherical void of
0.5% volume fraction under varying triaxiality; σ0 is the
yield stress, and D0 denotes the cell size.

as in Fig. 5, namely

σn = σc

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2
(

δn
δ1

)
−

(
δn
δ1

)2
for δn ≤ δ1

1 for δ2 ≤ δn ≤ δc

2
(

δn−δ2
δc−δ2

)3 −3
(

δn−δ2
δc−δ2

)2
+1 for δ2 ≤ δn ≤ δc

(20)

with

Γc = σc

(
1
2
− 1

3
δ1

δc
+

1
2

δ2

δc

)
, (21)

where δ1 and δ2 represent additional shape param-
eters [Scheider and Brocks (2003)]. But various
other relations between normal tractions and separa-
tion, based on different micromechanical substantia-
tions, have been used successfully in the literature, e.g.
[Needleman (1990), Yuan and Cornec (1996), Tvergaard
(2001), Wnuk (2002, 2003)]. Cohesive laws may be
established for mixed mode separation processes, too.

0.0 0.5 1.0
0.0

0.5

1.0

σ n
 /
 σ

c

δn  / δc

δ1 /δc δ2 /δc

Figure 5 : Cohesive law for ductile tearing with two
shape parameters, δ1, δ2.

They will require an additional assumption on the inter-
action of the three modes [Scheider and Brocks (2003)].

Whereas cohesive models of ductile fracture are mainly
based on the assumption, that CS and SE are material
constants, numerical studies on cell models have demon-
strated, however, that material separation based on void
growth and coalescence strongly depends on the stress
triaxiality, T , see Fig. 4. The observed ”constraint” ef-
fect is quite obvious: higher triaxiality causes an increase
of the ”fracture stress”, i.e. a higher CS, and a decrease
of ductility, i.e. a lower SE, see Fig. 6. The particu-
lar micromechanical process of void growth and coales-
cence governing ductile rupture thus shows a local con-
straint effect, which adds to global constraint effects on
the overall plastification of the structure.

Respective modifications have been proposed and ap-
plied [Siegmund and Brocks (1998, 1999, 2000), Wnuk
(2002, 2003)]. As the (local) SE is very small compared
to the (global) plastic work per crack extension, how-
ever, the effect of triaxiality on the cohesive parameters is
commonly negligible from an engineering point of view
[Siegmund and Brocks (1998, 2000)].
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Figure 6 : Triaxiality dependence of cohesive parameters
for a ferritic steel [Siegmund and Brocks (1998)].

3.3 Prediction of R-Curves

The CM has become a versatile, simple and numerically
stable tool for simulating ductile tearing in specimens
and structures [Cornec et al. (2003)]. The following ex-
ample of numerical simulations of fracture tests on side-
grooved standard compact specimens, C(T), and centre-
cracked panels, M(T), with the CM and, for comparison,
with the GTN model, shows that the geometry depen-
dence of JR-curves is captured well by both models, one
of which is a phenomenological, the other a microme-
chanically based model [Siegmund and Brocks (2000)].
The investigated material is a ferritic steel DIN StE 460.

The predicted JR-curves are plotted in Fig 7 in com-
parison to the test results, which are well met. For
the simulations with the CM, a triaxiality independent
value of the SE, Γc = 53.3 kJ/m2, was chosen. The
CS was determined from the cell model calculations as
σc = 3.36 σ0 = 1580 MPa for the relevant range of triax-
iality. The comparably simple CM, which gets by with
only two material parameters, is well capable of pre-
dicting the large difference in the ”crack-extension re-
sistance” of the two specimen types, as conventionally
measured in terms of JR-curves.

Fig 8 shows that the SE, Γc, in the process zone, as cal-
culated from simulations of the fracture tests by the GTN
model, does indeed show a dependence on the local stress
triaxiality. It differs between the C(T) and the M(T),

J 
[
k
J
/
m
2
]

0 2 4 6 8
0
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C(T)

GTN

CM

test

Figure 7 : JR-curves of C(T) and M(T) specimens as pre-
dicted from FE simulations applying GTN and CM.

0 2 4 6
0

50

100

150

Γ c
  
[k
J/
m2
]

∆a [mm]

M(T)

C(T)

Figure 8 : Separation energy, Γc, for a ferritic steel DIN
StE 460, calculated from numerical simulations of frac-
ture tests with the GTN model.

where Γc of the latter is higher, which is due to the lower
triaxiality, see Fig 6, and it depends slightly on the crack
extension, ∆a.

Both effects are negligible, however, with respect to the
global behavior. The reason becomes obvious from the
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Figure 9 : Ratio of plastic work rate and SE for fracture
mechanics specimens, C/T) and M(T), calculated from
numerical simulations of tests

evaluation of the global plastic strain energy, which can
be calculated according to Eq. 12. The result is plotted
in Fig. 9 and reveals that the actual SE, Γc, is less than
1 to 10 % of the plastic work per crack increment, Rpl .
In other words, between 90 and more than 99 % of what
is measured in R-curve testing is work of remote plastic
deformation and not ”fracture energy”.

4 Summary and Conclusions

Griffith’s approach of establishing the energy balance in a
cracked body has been seminal for more than 80 years of
fracture-mechanics research and modeling. His idea of
introducing a surface energy into this balance has been
revitalized in various forms, one of which is the CM,
which has become a modern and versatile tool used in
numerical simulations.

Griffith’s theory of brittle fracture requires just one pa-
rameter, the separation energy (SE), Γc, as the fracture
stress of an RVE containing a micro-crack can be calcu-
lated from Γc in elasticity. Cohesive models for inelastic
failure require (at least) a second parameter, the cohesive
strength (CS), σc. Both, CS and SE, have a microme-
chanical interpretation for ductile tearing under mode I.
The CS is the ultimate value of the ”mesoscopic” maxi-

mum principal stress acting on an RVE, and the SE is the
mechanical work dissipated by void nucleation, growth
and coalescence per unit crack extension in a process
zone ahead of the crack tip. Thus, cohesive models pro-
vide a veritable ”two-parameter approach”, which, differ-
ent from concepts like J−Q, has some micromechanical
background.

Though SE and CS were found to depend on the triaxial-
ity of the stress state, this dependence may be neglected
in numerical predictions of R-curves, as the global plas-
tic strain energy per unit crack extension is much larger
than the SE in the process zone

Additional parameters for maximum shear stresses and
an interaction law have to be introduced for mixed mode
fracture. Other fracture phenomena, which are based on
different micromechanical mechanisms, will require re-
spective interpretations of σc and Γc. In any case, CS
and SE appear to be physically significant characterisa-
tions of ”fracture toughness”.
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