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Cyclic plasticity and damage of a metal matrix composite by a gradient-enhanced
CDM model
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Abstract: Cyclic plasticity and damage of a metal ma-
trix composite have been studied in the framework of
continuum damage mechanics. The material was con-
sidered as macroscopically homogeneous and a model
incorporating damage gradient was applied. Strain-
controlled fully reversed low-cycle fatigue uniaxial tests
were performed to identify material parameters related to
yield stress, isotropic and kinematic hardening, fatigue
life and damage diffusion. From previous studies it has
been found that in the most general case the parameters
of the model are constant or depend exponentially on to-
tal strain so that only two or three tests are needed for the
characterisation. The results obtained from the applica-
tion of the model in terms of hysteresis loop shape and
fatigue life were compared to the experimental results
and to the Manson-Coffin curve. Very good agreement
was found, even if the experimental results were much
spread, mostly due to the effect of brittle reinforcement
clustering.

keyword: Metal matrix composites, Low cycle fatigue,
Continuum damage mechanics, Fatigue testing.

1 Nomenclature.

a,b = Kinematic hardening parameters
c = Tensor associated to kinematic hardening
d = Energy dissipation rate
D = Damage
e = Specific internal energy
E = Elastic modulus

F,
�

F = Dissipative potentials
g = Dissipative term
G = State Potential
h = Body force vector
H = Microscopic stress vector associated with ∇β
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k = Damage diffusivity constant
J = Von Mises equivalent stress
l = equilibrated inertia
M = Microscopic internal force
m = Microscopic external force
n = Unit vector normal to the surface
n = Generic real number
p = Accumulated plastic strain
q = Heat flux vector
R = Region occupied by the body
s = specific entropy
S0 = Fatigue life parameter
Sy = Yield Stress
u = Displacement vector
v1,v2 = Isotropic hardening parameters
x = Kinematic hardening tensor
y = Isotropic Hardening
z = Spatial coordinate
β = Damage associate variable
Γ = Boundary of region occupied by the body
ε

e
= Elastic strain tensor

ε
p

= Plastic strain tensor

θ = Temperature

λ,
�

λ = Lagrange multipliers
ν = Poisson coefficient
ρ = Density
σ = Stress tensor
ψe,ψp= State potentials
ψc = State potentials
ψ = Specific free energy
Ω = Body domain

2 Introduction.

The continuous increase in the performance requirements
of materials for aerospace and automotive applications
has led to the development of several structural com-
posite materials. Among these, metal matrix compos-
ites (MMCs) emerged because of their high specific elas-
tic modulus, strength-to-weight ratios, fatigue strength,
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temperature stability and wear resistance [Lloyd (1994,
Torralba et al. (2003), Deuis et al. (1997)]. A ma-
jor potential problem of particle-reinforced composites
is non-uniform microstructure, often resulting from the
manufacturing process. This can lead to the presence
of clusters of particles, or regions without reinforcement
[Hashim et al. (2002), Prangnell et al. (1996), Yotte et
al. (2001)]. This intrinsic material inhomogeneity can
give a wide scatter in strength and ductility [Doel and
Bowen, (1996)], wear resistance [Deuis et al. (1997),
Bindumadhavan et al. (2001)], fracture toughness [Hong
et al. (2003)] and also in the fatigue behaviour [Llorca
(2002)].

In this paper the cyclic plasticity and damage of
an Aluminium matrix reinforced by alumina parti-
cles (AA6061/20vol.%Al2O3p) made by Compocasting
R©has been studied in the framework of continuum dam-

age mechanics (CDM). This theory uses a phenomeno-
logical approach to model the effect of microscopic geo-
metric discontinuities induced by the deformation pro-
cess (micro-cracks, micro-voids, etc.) on the macro-
scopic behavior of a structure. In continuum damage
models, an internal variable related to the growth and co-
alescence of microscopic defects before the macroscopic
crack initiation (whose definition and physical interpreta-
tion may vary from one model to the other) is introduced
and the problem becomes to establish the constitutive re-
lations for the damage variable as a function of the other
state variables.

The mathematical model used considers a material
macroscopically homogeneous and derives from the the-
ories of continua with microstructures that have been
proposed as an alternative approach to many complex
physical problems since the pioneer work of Cosserat
and Cosserat (1909) [Mindlin (1964), Costa Mattos et
al. (1992), Costa Mattos and Sampaio (1995), Fleck and
Hutchinson (1993), Chimisso and Costa Mattos (1994),
Fremond and Nedjar (1996)]. In all these theories, in or-
der to account for the microstructure, a reformulation of
the kinematics (to include the possible microscopic mo-
tions) and of some basic governing principles of the clas-
sical Continuum Mechanics is necessary.

In the present paper the possibility of low cycle fatigue
prediction for a MMC is shown through a continuum
damage theory in which the material is considered to
possess a substructure or microstructure. This kind of
approach was adopted in the last years by a few different

groups. Very promising results were obtained up to now
in the case of homogeneous materials [Bonora (1997),
Bonora and Newaz(1998), Nedjar (2001), Pirondi and
Bonora (2003), Steglich et al. (2005)].

A damage scalar variable is related with the links be-
tween material points. An additional balance equation is
included to account for the microscopic forces related to
this variable. Besides, the free energy is supposed to be
a function not only of this variable, but also of its gradi-
ent. The theory enables a convenient macroscopic (phe-
nomenological) description of the degradation induced
by the deformation process accounting for the strain-
softening and localization behaviors. The present theory
assumes that the damage is related with micro-cracks and
not with micro-voids, and hence the damaged material is
not considered a porous medium and the damage variable
is not directly related with a volume change. The main
features of such kind of approach are discussed perform-
ing simulations of low cycle fatigue tests on MMC bars.
The results of the simulations and of the experimental
tests are compared in terms of hysteresis loop shape and
fatigue life.

3 Matematical Model

3.1 Preliminary definitions and summary of the basic
balance equations

In this section we postulate appropriate conservation
laws that govern the evolution of a continuous damage-
able body which is defined as a set of material points
which occupies a region Ω of the Euclidean space at the
reference configuration. For sake of simplicity the hy-
pothesis of small deformation will be assumed through-
out this work. The density ρis assumed to be constant in
time and the principle of conservation of mass is auto-
matically satisfied.

In this theory, besides the classical variables that charac-
terize the kinematics of a continuum medium (displace-
ments, velocities and accelerations of material points),
an additional variable β ∈[0,1] is introduced. A point,
in such continuum theory, is representative of a given
“volume element” of the real material and it is endowed
with a microstructure that accounts for the kinetic energy
and internal power of the microscopic motions associated
to the microscopic geometric discontinuities (density of
micro-cracks or cavities). This variable is related with
the microscopic motions and can be interpreted as a mea-
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sure of the damage state of the “volume element”. If β=1,
all the links between material points are preserved and
the initial material properties are also preserved. If β=0,
a local rupture is considered. When β = 1, the kinetic
energy associated with the microscopic motions and also
the power of the microscopic forces are equal to zero in
the “volume element”. Since the degradation is an irre-
versible phenomenon, the variation rate β̇ must be nega-
tive or equal to zero.

A conservation law for the microscopic forces associated
to β is postulated here. The proposed principles was
briefly presented in Costa Mattos and Sampaio (1995)
and may be regarded as a special case of the theories of
continuum with microstructure [Mindlin (1964), Toupin,
(1964), Goodman and Cowin (1972)]. In particular, these
governing principles are very close to those proposed in
the theory of elastic materials with voids [Cowin and
Nunziato (1983)]. Nevertheless, the definition and the
physical interpretation of the additional kinematic vari-
able and also the proposed constitutive equations make
both theories very different. In the theory of elastic ma-
terials with voids the additional variable is related with
the change in solid volume fraction. The present theory
assumes that the damage is related with micro-cracks and
not with micro-voids. Hence, the damaged material is not
considered a porous medium and the damage variable is
not directly related with a volume change. The difference
between these two types of microscopic geometric dis-
continuities are more evident when large deformations,
heat transfer or wave propagation are considered.

The necessary thermal and mechanics field variables are
introduced as primitive quantities: a density ρ : Ω → R,
a stress tensor σ : Ω → R3, a body force h : Ω → R3,
a specific internal energy e : Ω → R, a heat flux vector
q : Ω → R3, a specific entropy s : Ω → R and a tempera-
ture θ : Ω → R. In addition, we introduce a microscopic
stress vector H : Ω → R3, a microscopic internal force
M : Ω → R and a microscopic distant force m : Ω → R.
In this work an arbitrary part of the body that occupies
a region R ⊂ Ω at the reference configuration is taken
as a mechanical system. By definition, the boundary of
the region R will be called Γ. Besides the classical bal-
ance relations for mass, linear momentum and angular
momentum the evolution of the damageable body was
governed by the following balance relations:

Balance of microscopic forces:

d
dt

Z

R

(
ρlβ̇
)

=
Z

Γ

(H ·n)+
Z

R

(m−M); ∀R ⊂ Ω (1)

The term l in equation (1) is called the equilibrated in-
ertia. It can be shown (Costa Mattos and Sampaio,
1995) that l is such that l̇ = 0. In some basic work
concerned with microstructure theories (Goodman and
Cowin, 1972, for instance), the microscopic inertia term
ρl is considered in the balance of microscopic forces.
The role of l in the present theory is controversial due
to the particular definition of β. Since the hypothesis of
quasi-static evolution is adopted in this paper the role of
the microscopic inertia is not discussed in the analysis.

The microscopic external force m must be introduced in
the theory in order to take into account the non mechan-
ical actions (chemic or electromagnetic) that affect the
damage state of the material even if there is no mechan-
ical deformation. The role of such kind of external mi-
croscopic force is discussed in Chimisso (1994). In the
present paper it is assumed that h = 0.

Balance of energy:

d
dt

Z

R

[
ρ
(

e+
1
2

u̇ · u̇+
1
2

lβ̇2
)]

=
Z

Γ

[(
σu̇+H β̇−q

)
·n
]
+

Z

R

(
h · u̇+mβ̇

)
;

∀R ⊂ Ω (2)

Second law of thermodynamics:

d
dt

Z

R

(ρs)≥ −
Z

Γ

q ·n
θ

; ∀R ⊂ Ω (3)

The variable u̇ is the time derivative of the displacement
u. After some manipulation, the expressions(1), (2) and
(3) lead, respectively to the local forms:

−M +divH +m = ρlβ̈ (4)

ρė = −divq +σ : ∇u̇+H ·∇β̇ +Mβ̇ (5)

ρθṡ = divq− 1
θ

q ·∇θ ≥ 0 (6)

An alternative local form for the second law of thermody-
namics (which will be useful later) can be obtained by the
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substitution of expression (5) in (6) and the introduction
of the free energy ψ = e−θs giving rise to the inequality:

d = σ : ε̇ +H ·∇β̇+Mβ̇

−ρ
(
ψ̇ + sθ̇

)− 1
θ

q ·∇θ ≥ 0 (7)

where ε = 1
2

(
∇u +(∇u)T

)
is the local strain. The ex-

pression (7) defines the rate of energy dissipation d and
can be interpreted as the Clausius-Duhem inequality for
this kind of continuum under the assumption of small de-
formations (which takes into account the power of the

microscopic internal forces
(

H ·∇β̇+Mβ̇
)

.

The fundamental principles presented in the previous
section are valid for any kind of damageable body. In
this section, the investigation is limited to elasto-plastic
behavior and isothermal processes. The theory can be
summarized in the four steps below.

3.2 State Variables

Under the hypothesis of small deformations and isother-
mal processes, the local state of a elasto-plastic material
is supposed to be a function of the total strain ε, of the
plastic strain εp, of the damage variable β, of its gradi-
ent ∇β and also of a scalar variablepassociated to the
isotropic hardening and of a second order tensor variable
c associated with kinematic hardening.

3.3 State Laws

Following the classical assumption of Thermodynamic
of Irreversible Processes, the free energy is supposed to
be a function of the state variables. Thus, the following
expression is proposed for the free energy:

ψ(ε,εp,c, p,β,∇β) = β
[
ψe(ε−εp)+ψp(p)+ψc(c)

]
+

1
2

k (∇β ·∇β) (8)

with

ψe =
E

2(1+ν)
×{

ν
1−2ν

[
tr(ε−εp)

]
+(ε−εp) · (ε−εp)

}
(9)

ψp = v1 [p+exp(−v2 p)]+ pσy (10)

ψc =
1
2

a
(
c · c) (11)

where εe = (ε− εp) is the elastic strain tensor. The term
1
2k (∇β ·∇β) is considered so as to give to βa diffusive
behavior, thus smoothing the field β in Ω.

The thermodynamic forces
(

σ,x,y,G,H
)

, related to the

state variables
(

ε,c, p,β,∇β
)

, are obtained from the free

energy by the state equyations:

σ =
∂ψ
∂εp =

βE
1+ν

×[
ν

1−2ν
tr(ε−εp)2 +(ε−εp)2 : (ε−εp)2

]
(12)

x =
∂ψ
∂c

= β(ac) (13)

y =
∂ψ
∂p

= β [v1(1−exp(−v2 p)+σy] (14)

G =
∂ψ
∂β

= ψe +ψp +ψc (15)

H =
∂ψ

∂∇β
= k∇β (16)

To complete the constitutive equations, additional in-
formation about the dissipative behavior must be given.
This information can be obtained from a plastic potential
F and are called the evolution laws.

3.4 Evolution laws

The potential F is presumed to have the form:

F = J
(

σ−x
)
−y+g

(
x,G;ε,εp, p,c,β

)
≤ 0 (17)

with J
(

σ−x
)

being von Mises equivalent stress:

J(σ−x) =
[

3
2
(σ−x)dev : (σ−x)dev

]1/2

(18)

and

g =
b
2a

(
x : x

)− ab
2

(
β2c : c

)
+

G2

2S0
− 1

2S0

(
ψe +ψp +ψc

β

)2

(19)

a dissipative term.



Cyclic plasticity and damage 197

Together with the plastic potential F, another potential,
F̂(β̇) = β̇, is utilized to account for the condition β̇ ≤ 0.

The following evolution relations are postulated:

ε̇p = λ
∂F
∂σ

= λ
3
2

(
σ−x

)
dev

J
(

σ−x
) (20)

ċ = −λ
∂F
∂x

= ε̇p − b
a

xλ (21)

ṗ = −λ
∂F
∂y

= λ (22)

β̇ = M−λ
∂F
∂G

− λ̂
∂F̂
∂α̇

= M− λ(ψe +ψp +ψc)
S0

−λ (23)

The expressions from (20) to (23) are the set of evolution
equations of the dissipative process, where : λ ≥ 0, F ≤
0, λF = 0 and λ̂ ≥ 0, F̂ ≤ 0, λ̂F̂ = 0.

M is the microscopic internal force associated with β,λ
is the Lagrange multiplier associated with the condition
F ≤0, and λ̂ is the Lagrange multiplier associated with
the condition F̂ ≤ 0.

It can be proved [Chimisso (1994)] that, together with the
evolution equations, the state equations define a complete
set of constitutive equations thermodynamically admissi-
ble.

Introducing equation (16) and (23) in (4), the following
balance equation is obtained

β̇ = k∆β− λ(ψe +ψp +ψc)
S0

− λ̂ (24)

Introducing the damage variable: D=1-β, the following
expression can be derived :

Ḋ = k∆D+
λ(ψe +ψp +ψc)

S0
+ λ̂

=
〈

k∆D+
λ(ψe +ψp +ψc)

S0

〉
(25)

where < n >= max{0,n}. From now on we will use
Dinstead of βbecause the definition this variable is closer
to the one usually adopted in the traditional works of con-
tinuum damage mechanics.

Equations (12)-(16) and (20)-(23) form a complete set
of constitutive equation. These constitutive equations, in

their evolutionary form, simplified and reduced for the
one-dimensional case, are presented below.

For a round bar submitted to a one-dimensional loading
such that a push-pull low cycle fatigue test, the state law
equations and the evolution law equations are reduced in
the following evolutive form:

σ̇ = (1−D)E(ε̇− ε̇p)− ḊE(ε−εp) (26)

ẋ = (1−D)(aε̇p−bλx)− Ḋac (27)

ẏ = (1−D)v1v2e−v2p ṗ− Ḋ
[
v1(1−e−v2 p)+σy

]
(28)

ε̇p = λ
σ−x
|σ−x| (29)

ṗ = λ (30)

ċ = ε̇p − b
a

λx (31)

Ḋ =
〈

λ
2S0

{
E (ε−εp)2 +ac2

+2

[
v1

(
p+

e−v2p

v2

)
+ pσy

]}
+k

∂2D
∂z2

〉
(32)

where an initially undeformed bar, clamped and with pre-
scribed axial displacements at the extremities is consid-
ered.

The boundary conditions are:

u(z = 0, t) = 0 , u(z = L, t) = 0 ; D(z = 0, t) = D(z = L, t)
= 0

The initial conditions are:

εp(z, t = 0) = p(z, t = 0) = c(z, t = 0) =0 and

D(z, t = 0) = D0(z)

The choice of D0(z) will depend on possible presence of
a flaw. For a bar without flaws we have: D0(z)=0.

In the general three dimensional case, the model param-
eters could be function of the maximum strain amplitude
defined as:

Max

(
J
(

ε(t)
)

=
[

3
2

(
ε(t)
)

dev
:
(

ε(t)
)

dev

] 1
2

)
(33)

4 Material and experimental methods

The composite selected for investigation was based the
6061 aluminium alloy reinforced with 20vol.% of Al2O3
particles (W6A20A).
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Table 1 : Chemical compositions (in wt.%) of the matrix
Si Fe Cu Mn

W6A20A 0.65 0.15 0.18 0.10
Mg Zn Ti Cr Zr
0.97 0.009 0.02 0.19 -

The nominal chemical compositions (in wt.%) of the ma-
trix alloys are given in Table 1.

This composite was produced by DURALCAN (USA),
using a proprietary molten metal process, based on the
Compocasting method [Huda at al. (1995)]. The material
was then extruded and heat-treated to the T6 condition
(details in Table 2).

Table 2 : T6 heat treatment conditions
Material Solution

Treatment
Quenching Ageing

W6A20A 560 ˚ C
- 2 h

H2O
at 25 ˚ C

177 ˚ C
- 10 h

Low-cycle fatigue tests were carried out on a servo-
hydraulic test machine (INSTRON 8032), equipped with
a 100 KN load cell. Strain was measured with a clip-on
extensometer, attached directly to the gauge length.

Flat specimens, machined with diamond cutting tools,
with the tensile axis perpendicular to the extrusion direc-
tion, were prepared. Strain controlled low-cycle fatigue
tests were performed at room temperature, according
to ASTM E606, using specimens with 12.5 mm gauge
length, 4 mm gauge width and 4 mm thickness. A trian-
gular waveform was used, the strain amplitude range was
from 0.6 % to 2%. The tests were carried out at constant
cyclic frequency of 0.1 Hz and the load ratio was R=-1.
Data were acquired by means of a National Instruments
board in order to be processed nearly in real time. This
was possible being low the frequency of the test.

The testing conditions were chosen on the basis of liter-
ature data [Ding et al. (2003)], since specific guidelines
for fatigue tests on particle reinforced metal matrix com-
posites are not available.

5 Results

One small subset of specimens was used to determine the
material parameters of the model, while the whole set of
tests was considered to compare the results.

5.1 Material parameters determination

The hysteresis loop was analyzed by means of LabView
virtual instrument that could determine the parameters
for each cycle, not just for the stabilized ones. Stabi-
lization occurred after few cycles in every test.

The plastic arcs obtained were interpolated using the
techniques described in [Chimisso et al. (2000)]. For
the determination of isotropic hardening parameters the
maximum stress was plotted as a function of the accu-
mulated plastic strain. The coefficient v1was obtained
from the asymptotic part of the curve, while v2was de-
rived from the transient behaviour. In previous works
[Ferrari et al. (2002), Minak et al. (2001)] we found that
in general the parameters a and b and characteristic life
S0 depend exponentially from the total strain range. The
minimum number of tests necessary to find the values of
the coefficient and exponent is two, but it can be shown
that much better approximation can be found using three
specimens tested at different strain ranges

Considering specimens loaded at 0.4%-0.6%-1.0% the
following trends were found:

a = 14680∆ε−1.0012 (34a)

b = 132∆ε−1.4796 (34b)

S0 = 19.9∆ε−3.9123 (34c)

The parameters a and S0 are expressed in MPa.

The values of a and b determine the shape of the hys-
teresis loop in the plastic zone. In fact, the kinematic
hardening in this model follow an exponential law (be-
ing a and b its parameters) as a function of the plastic
strain. The parameter S0 is a measure of the fatigue re-
sistance of the material for every strain level. In figure 1
the stress range as a function of the number of cycles for
different strain range levels is plotted. It is possible to see
that the material did not show isotropic hardening [Ces-
chini et al. (2005)]. A slight continuous softening dur-
ing the test characterized the whole specimen set. This
softening is mainly due to damage evolution in the form
of the mutual action of interfacial decohesion and parti-
cles cracking [Ceschini et al. (2005), Poza and LLorca
(1995), Vyletel et al. (1993), Vyletel et al. (1995), Sri-
vatsan (1995)].

Due to these considerations the parameters v1and v2 have
been set to zero.
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Figure 1 : Stress range as a function of life

In Ferrari et al. (2002) and Minak et al. (2001) different
values were found for the paramenter k in different alu-
minium alloys In fact it for AA6351 k=0.01 mm2/s, for
AA2011 k=0.1 mm2/s and for AA2030 k=1 mm2/s. In
all these cases the damage evolution is localized more or
less in the middle of the specimen.

For the material under investigation the damage, that
consists in particle breaking, particle debonding, mi-
crovoids nucleation and growth [Ceschini et al. (2005)],
was weakly localized, i.e. the whole gauge length was
characterized by similar levels of damage. Due to this
consideration the damage diffusion parameter k, that
measures the damage localization was set to 20 mm2/s.

This choice is arbitrary, but the use of different values of
k within the same order of magnitude slightly changes
the results in terms of fatigue life.

The effect of the value of k on damage localization is
shown in figure 2 at different stages of damage evolution
in different sections of the calibrated length.

5.2 Comparison of experimental and numerical re-
sults

Two example of hysteresis loops located at half life are
shown in figure 3.

In both cases the agreement is very good and the main
difference was found in the elastic-plastic transition. In
the experimental loops there was a slight difference in
the elastic modulus in traction and in compression. This
difference is probably due to the non perfect alignment
of the load on the specimen and to the possible buck-
ling onset, especially in the higher strain range case. We
must note that the cycle at 0.7% strain rate was not one of

Figure 2 : Effect of the damage diffusion parameter k

Figure 3 : Comparison of experimental and modeled
hysteresis loops for two different strain ranges

those used for the parameter determination, nevertheless
the agreement is very good.

The strain-life experimental results and the interpola-
tion of the data according to the classical Manson-Coffin
model and the results of the numerical computation are
reported in figure 4. During the tests specimens were
considered failed after a sharp variation of their stiffness,
that correspond to a macroscopic crack initiation. In the
numerical simulations a damage level of 0.6 was conven-
tionally indicating the failure of the specimens. Anyhow,
after a value of 0.4, the damage increase was very fast
and the residual life was always negligible.

The experimental data showed a high dispersion, which
can be interpreted on the basis of the material inhomo-
geneity. In all the tests fatigue fracture of the specimen
occurred by unstable propagation of the crack between
the extensometer blades.
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It is interesting to note that the numerical model is in
better agreement with the Manson-Coffin curve than the
original experimental data from which it was calculated.
Obviously this is due to the fact that material parameters
(calculated based only three specimens) are function of
the strain range only and they are not affected by the dis-
persion in the physical distribution of the particles. This
effect, present in the experimental results is averaged in
the numerical ones.

Figure 4 : Comparison of experimental life data, simu-
lation results and Manson-Coffin curve

6 Discussion and Conclusions

Fracture in metal matrix composite is controlled by three
main mechanisms: interfacial decohesion, fracture of re-
inforcing particles, void nucleation and growth.

The model proposed does not take into account the pres-
ence of microvoids (i.e. density is assumed to be con-
stant) and considers only microcracks. Nevertheless the
numerical results are in good agreement with the experi-
mental ones.

The material parameters necessary for the CDM numer-
ical model were dependent from the total strain and the
determination of their trend has been done by means of
three tests.

We found that damage was homogeneously distributed in
the specimens gauge length so that an high value of the
damage diffusion parameter has been used.

Some asymmetry was found in the experimental hystere-
sis loops but the overall agreement with the modelled
loops was good. The fatigue life prevision made by
the model is the same extimated by the Manson-Coffin

curve. This is a good property of the model since in this
simple case we expect to find results comparable to well
know and commonly utilized methods.

In order to apply the model to the design of components
made of MMCs it would be necessary to take into ac-
count the large spread of the experimental data.

The applicability of a CDM model for the simulation the
cyclic plasticity and damage of a MMC, at that macro-
scopic scale, was demostrated.
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