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The Theory of Critical Distances Applied to the Prediction of Brittle Fracture in
Metallic Materials

D. Taylor1

Abstract: The Theory of Critical Distances (TCD) is a
general term for any of those methods of analysis which
use continuum mechanics in conjunction with a charac-
teristic material length constant, L. This paper discusses
the use of two simple versions of the TCD: a point-
stress approach which we call the Point Method (PM)
and a line-average approach: the Line Method (LM). It
is shown that they are able to predict the onset of un-
stable, brittle fracture in specimens of metallic materials
containing notches of varying root radii. The approach
was successful whatever the micromechanism of crack
growth (cleavage or ductile tearing); values of L deter-
mined from experimental data were found to be broadly
similar to microstructural quantities (e.g. grain size) but
an understanding of the micromechanism of failure is not
necessary since the TCD is a continuum-mechanics ap-
proach. The TCD, in this form, can be thought of as an
extension of linear elastic fracture mechanics (LEFM).
Whereas LEFM requires one characteristic parameter
(Kc), the TCD requires two parameters: Kc and L. The
TCD is subject to many of the same limitations as LEFM:
in particular it is shown here that the value of L varies
with the level of constraint at the notch. However the use
of the TCD greatly extends the applications of LEFM, al-
lowing predictions to be made for notches and stress con-
centration features of any geometry for which an elastic
stress analysis can be obtained.

keyword: Theory of critical distances, brittle fracture,
metals, constraint.

1 Introduction

Ever since the Greek philosopher Leucippus (5th century
BC) proposed the existence of the atom, we have known
that matter is not continuous; it is composed of discreet
units at various size scales: atoms, molecules, precipi-
tates, grains, etc. Despite this, many problems in me-
chanics, and other branches of physics, can be solved by
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assuming that matter behaves as if it were a continuum.
We can expect, however, that errors will arise in the use
of continuum mechanics when dealing with size scales
which are similar to those of the microstructural features
which directly affect the phenomena concerned.
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Figure 1 : A typical notch, with depth D and root ra-
dius ρ TCD methods use the stress/distance curve: for
the Point Method (PM), failure occurs when the stress at
a distance L/2 is equal to the characteristic strength σo;
for the Line Method (LM), failure occurs when the aver-
age stress over a distance 2L is equal to σ0.

This paper is concerned with the fracture behaviour of
bodies containing cracks and notches. Fracture parame-
ters such as strength and toughness are strongly affected
both by microstructural features (e.g. grains, precipi-
tates) and local plasticity (the plastic zone). Consider an
edge notch of length D and root radius ρ (fig.1); if ρ = 0
we have a crack. If D is relatively large, and if the ap-
plied stress is relatively low, then the behaviour of this
crack can be predicted using the well-known continuum-
mechanics theory Linear Elastic Fracture Mechanics
(LEFM). However, if D is small, LEFM predictions tend
to be inaccurate, usually non-conservative. As regards
the value of ρ, this is assumed to be zero in LEFM theory;
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in practice of course it must be finite, and the experimen-
tal evidence (some of which is presented below) suggests
that there is a critical value ρc below which LEFM pre-
dictions are accurate, i.e. failure occurs when the stress
intensity, K, is equal to the fracture toughness Kc. Cur-
rently there is no universally accepted method for pre-
dicting ρc, nor for predicting the behaviour of notches
which have ρ>ρc. One clue to this behaviour is the fact
that the value of ρc in many materials is often of the
same order of magnitude as microstructural features such
as grains [Cottrell 1963, Usami, Kimoto, Takahashi and
Shida (1986), Yokobori and Konosu (1977)].

Various theoretical solutions have been suggested in or-
der to overcome this problem, to develop an approach
which is capable of predicting the behaviour of notches
as well as that of cracks. One school of thought, typi-
fied by the RKR Model [Ritchie, Knott and Rice (1973)],
considers microstructural features explicitly and attempts
to describe the actual mechanism of the failure process
(e.g. brittle fracture in steels initiated from a cracked car-
bide in a grain boundary). These types of models we
can call ‘micromechanical models’. A second school of
thought, exemplified by the work of Pluvinage (1998),
uses continuum mechanics and includes the effects of lo-
cal plasticity, the assumption being that the errors made
by LEFM are due to its neglect of plastic deformation. A
third approach, which is the one used in the present pa-
per, retains the elastic, continuum-mechanics philosphy
of LEFM but modifies it by introducing a parameter, de-
noted L, which has units of length and which represents
a characteristic distance in the material. This parameter
is not identified directly with any particular microstruc-
tural feature, rather it is calculated using theoretical argu-
ments at the continuum level. We call this approach the
Theory of Critical Distances (TCD); the present paper
concerns the application of the TCD to the prediction of
brittle fracture in metallic materials containing notches.
The structure of the paper is as follows:

i) A brief description will be given of the background
to TCD, especially its simplest forms: the Point Method
(PM) and Line Method (LM), which have already been
used for solving other problems in materials failure.

ii) Using data from the literature, it will be shown that
the PM and LM can be used to predict notch fracture
behaviour in various metallic materials.

iii) It will be shown that constraint (i.e. the degree of
plane stress or plane strain) affects the length constant L

as well as the fracture toughness Kc.

iv) Whilst the underlying theoretical justification for the
approach will not be considered in any detail, some pos-
sible explanations for the success of the TCD will be dis-
cussed.

2 The Theory of Critical Distances

The theory of critical distances (TCD) is the suggested
name for a class of theories which predict the effect of
notches and other stress concentration features by con-
sidering the stress field in the region close to the notch
tip. Two parameters are required: a characteristic dis-
tance L and a characteristic stress σo (or, in some cases,
a characteristic strain). Normally the condition for failure
(by either brittle fracture or fatigue) is that σo becomes
equal to some function of the stress field, evaluated over
a distance which is a function of L, which may be con-
sidered to be a material constant. The simplest possible
version of the TCD is a method which we call the Point
Method (PM), in which an elastic stress analysis is used
and the criterion for failure is simply that the stress will
be equal to σo at a given distance from the notch root. If
the loading is tensile and the notch lies perpendicular to
the loading axis, σo is expressed in terms of the notch-
opening stress, equal to the maximum principal stress,
and the critical distance is located along a line forming
the extension of the notch, in the direction of expected
crack growth (fig.1). Other conditions are used for mixed
mode loading but this subject is beyond the scope of the
present paper. In a second version of the TCD, which we
call the Line Method (LM), failure is assumed to occur
when σo is equal to the average elastic stress along a line
of a given length; the line is drawn in the same direction
as that for the PM (fig.1). Early examples of the use of
PM and LM are found in the work of Peterson (1959) and
Neuber (1958), respectively, who used these methods to
predict high-cycle fatigue behaviour in metallic materi-
als.

More recently the theoretical basis of these methods has
been improved by linking them to fracture mechanics
concepts [Tanaka (1983), Kfouri (1997), Taylor (1999)].
The link is made as follows: consider the case of a long
sharp crack, of length a, loaded with a nominal stress σ
which is much less than the yield strength of the mate-
rial σy. The elastic stress in the crack-opening direction
σ(r), as a function of distance from the crack tip r and the
applied stress intensity K, is (assuming r«a):
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σ(r) = K/(2πr)1/2 (1)

Failure by crack propagation, occurs when K reaches
a critical value, which will be denoted Kc, the fracture
toughness. Note that Kc is a material parameter, though
its value varies according to the degree of constraint. The
plain-strain value of Kc, in Mode I tensile loading, is
usually denoted KIc, however we will use the term Kc

throughout in this paper to mean the critical value of K,
whatever the degree of constraint. We define a character-
istic distance L as follows:

L = (1/π)(Kc/σ0)2 (2)

Combining these equations with the failure criterion for
the PM as stated above, we find the location of the criti-
cal point as r=L/2; similarly for the LM, the length of the
critical line can be shown to be 2L. However, this anal-
ysis does not give us any specific value for the critical
strength, since here σ0 can take any value (provided that
L remains very much less than the crack length, a, so
that equation 1 continues to be valid). Also, whilst this
analysis is exact for sharp cracks there is no simple gen-
eral derivation for notches, since different notches have
very different stress fields. Further progress in this argu-
ment can only be made by comparing predictions with
experimental data. To this end, Taylor and co-workers
[Taylor (1999), Taylor and Wang (2000)] showed that fa-
tigue limits for notched specimens could be predicted us-
ing both the PM and the LM, using the value of L given
by equation 2, replacing Kc by the fatigue crack propa-
gation threshold ∆Kth and taking σ0 to be equal to the
cyclic stress amplitude at the fatigue limit of plain (i.e.
unnotched) specimens. The same assumption could also
be used to predict the behaviour of short fatigue cracks,
which deviated from LEFM predictions when a was of
the same order of magnitude as L.

Recently, we have shown that the same approach can
be used to predict brittle fracture under monotonic load-
ing in ceramic materials, this time taking σ0 to be the
strength of plain, defect-free specimens [Taylor (2004)].
Kinloch and Williams (1980) used the PM to predict fail-
ure from blunted cracks and notches in brittle polymer
materials such as epoxies. However, they found that the
value of σo (the optimum value of which was discov-
ered by fitting to the experimental data) was significantly

larger than the plain-specimen tensile strength. This was
recently confirmed also for PMMA (Perspex) [Taylor,
Merlo, Pegley and Cavatorta (2004)].

To recap, previous work has shown that simple TCD
methods such as the PM and LM can be used to pre-
dict the behaviour of specimens containing cracks and
notches, using values of L and σ0 linked to Kc through
equation 2. In problems with very limited plasticity -
high-cycle fatigue in metals and brittle fracture in ceram-
ics - the value of σ0 in this equation coincides with the
relevant plain-specimen strength, but in polymers, where
significant amounts of plasticity (or other non-linear de-
formation such as crazing) preceded failure, the same
theory could be used but only with a higher value of
σ0. From this information it can be hypothesised that the
TCD will also be able to predict brittle fracture in metals,
but that the appropriate value of σ0 will, as with poly-
mers, not coincide with the material’s tensile strength.

3 Application of the TCD to Brittle Fracture in Met-
als

Fig.2 shows a typical set of experimental data recording
the effect of notch root radius on the measured fracture
toughness of steel. In this and subsequent figures, the
square root of the notch radius is used for the horizon-
tal axis. This is common practice among workers in the
field, because it has been noted that, above a certain crit-
ical radius, the data so plotted tend to lie approximately
on a straight line. This data is due to Wilshaw, Rau and
Tetelman (1968), who tested a mild steel at a tempera-
ture of –196oC; failure occurred by brittle cleavage. Bars
were used, of dimensions 10 x 10 x 60mm, containing a
2mm-deep notch with an included angle of 45o, loaded
in three-point bending. At ρ=0 we have a crack and the
measured Kc value is equal to the fracture toughness of
the material. Beyond a critical root radius the measured
Kc increases, and of course this is no longer a valid mea-
surement of the material’s toughness.

Approximate predictions of the stress field near the notch
root can be made using a modified form of equation 1,
developed by Creager and Paris (1967), for notches of
length D and root radius ρ:

σ(r) =
K√

π
2(r +ρ)

(2r +ρ)3/2
(3)

Here K is the stress intensity factor for a crack of the
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Figure 2 : Experimental data [Wilshaw et al (1968)]
showing measured fracture toughness as a function of the
square root of notch radius. PM predictions using stress
values predicted by eqn 3 with various values of L. Fur-
ther PM predictions for L=0.04mm using stress results
from FEA rather than eqn 3.

same length as the notch. Using the PM and combining
equations 1-3, we obtain a value for the measured tough-
ness of a notch:

MeasuredToughness = Kc
(1+ρ/L)3/2

(1+2ρ/L)
(4)

Here Kc is the fracture toughness measured from cracked
specimens, which was 25.7MPa(m)1/2. The yield
strength of the material was 829MPa; the UTS was not
given in the paper – we assume a value of 900MPa. Us-
ing these parameters in equation 2 gives a value for L
of 0.26mm. Fig.2 shows prediction lines using equa-
tion 4, choosing various values of L; in each case σo was
then calculated using equation 2. It is clear that this ap-
proach can make reasonable predictions of the data, but
that the value of L required is of the order of 0.04mm:
much smaller than 0.26mm. Even for this L value there
is some deviation at the larger values of ρ, but this er-
ror is due to inaccuracies in equation 3, which is valid
only when ρ«D and assumes infinite specimen dimen-
sions. As fig.2 shows, calculations made using finite ele-
ment analysis to obtain the stress field give, with the same

value L=0.04mm, significantly lower predictions for the
blunter notches. By further trial and error it was found
that the best fit to the data is obtained for an L value of
0.035mm as shown in fig.3. It is interesting to note that
this is exactly equal to the measured grain size in this
material. The corresponding value of σo (from equation
1) is 2447MPa, which is higher than the yield strength of
the material by a factor of 2.95.
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Figure 3 : The same data as fig.2, with PM predictions
using the optimum value of L (0.035mm). Results from
FEA were used for the higher notch radii where they dif-
fered significantly from those of equation 4. The largest
difference between data and predictions is 10.1%.

Using the LM with equation 3 results in the following
prediction for measured toughness:

MeasuredToughness = Kc

( ρ
4L

+1
)1/2

(5)

The main difference between the two predictions occurs
at low values of ρ: the LM line increases monotonically
with ρ whilst the PM line is almost constant at low ρ,
showing an increase only when ρ rises above a critical
value, which accurately reflects the experimental data.
In fact the PM curve shows a shallow minimum point.
It is not clear whether this minimum value really exists,
though there is some suggestion of it in the experimen-
tal data here and elsewhere. In any case one can show
from equation 4 that the minimum value is only 8%below
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Kc, occurring when ρ=L/2. For the data on figs 2 and 3
the PM gives a better prediction than the LM; however
there are cases where there is no obvious plateau and
critical radius, such as fig.4, which presents data on an
aluminium alloy, DISPAL-2, tested by Srinivas and Ka-
mat (2000) at four different temperatures. Here the LM,
which always predicts a monotonically increasing curve,
modelled the data more accurately. Crack propagation
occurred by ductile void growth, so the difference in be-
haviour may be related to the mechanism of failure. The
optimum value of L was constant at 0.045mm for the
three lower temperatures, rising to 0.075mm at 350oC.
The corresponding σo values were again of the order of
3 times the relevant yield strength.
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Figure 4 : Experimental data [Srinivas and Kamat
(2000)] and predictions using LM, for an aluminium al-
loy tested at various temperatures.

In addition to the data shown in figs 3 and 4, a further
eleven sets of data taken from the literature were anal-
ysed, covering a wide range of metallic materials. These
results are not shown here for the sake of brevity; suf-
fice it to say that similar predictive accuracy was ob-
tained in all these cases. In these examples, failure in-
variably occurred by the rapid, unstable propagation of
a crack and, crucially, the dimensions of the specimens
and cracks was large enough to ensure small-scale yield-
ing and plane strain conditions throughout. In the follow-
ing section we will consider failures which occur under
conditions of reduced constraint.

4 The Effect of Constraint

It is well known that the value of Kc depends on the level
of constraint, being lowest under conditions of plane
strain and increasing considerably as constraint is re-
duced towards plane stress conditions. This causes dif-
ficulties for the measurement and use of fracture tough-
ness, especially in relatively tough, metallic materials.
Despite considerable research in this field, there is no
agreed method for predicting the effect of constraint on
Kc, and even the assessment of the level of constraint in
a given situation is not a trivial matter. We can anticipate
that the material constants used in the TCD will also be
affected by constraint: the aim of the present section is
to investigate these changes. For this we will use some
simple, approximate methods to estimate the degree of
constraint. The specimen dimensions required to ensure
plane strain conditions are specified by various national
and international standards (e.g. BS 7448-1:1991). A
typical requirement is that the specimen thickness B shall
be larger than some critical value Bc, a function of Kc and
the yield strength σy:

Bc = 2.5(Kc/σy)2 (6)

The same restriction applies to other dimensions: crack
length a and remaining ligament width (W-a). In the
data presented below, these other dimensions were al-
ways large enough to ensure conformance, so we are con-
cerned only with the effect of B. Rearranging this equa-
tion gives us a value for Kc which we will refer to as the
‘plane strain limit’:

Kc[plane strain limit] = σy(B/2.5)1/2 (7)

This condition is designed to be a conservative one, so we
can say that if Kc is less than the value given by equation
7, then we certainly have conditions of plane strain, but
cases in which Kc is slightly larger may still give a valid
plane strain result in practice.

Constraint is reduced through the specimen thickness by
the spread of plasticity. As thickness is decreased (or ap-
plied load increased) the plane stress regions at the two
surfaces occupy an increasing fraction of the thickness
until a point is reached when no part of the crack front
experiences plane strain. Many workers have attempted
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to estimate this point, either analytically or experimen-
tally (e.g. Irwin (1964), Knott (1973), Ando, Mogami
and Tuji (1992)).

Irwin (1964) estimated the plane-stress plastic zone size
ry as:

ry = (1/π)(K/σy)2 (8)

He noted from experimental results that, if ry=B, speci-
mens showed 50% or more of slanted fracture, which is
associated with plane stress, and that this increased to al-
most 100% if ry=2B. Knott (1973) pointed out that the
measurement of slant fracture will tend to underestimate
the amount of plane stress, since some plane stress frac-
ture will produce flat surfaces. Given this, we will use the
condition ry=B to indicate the ‘plane stress onset’, i.e. to
give a value of Kc above which plane stress conditions
will begin to dominate:

Kc[plane stress onset] = σy(πB)1/2 (9)

A similar condition is required to predict constraint lim-
its for notches. To do this we note that equation 8 has
the same form as equation 1, so we can use a variation
of the PM in which the critical stress is σy and the crit-
ical distance is B/2. This will be an exact prediction of
the size of the plane-stress plastic zone for a crack, and
an approximate prediction in the case of a notch. Tsuji,
Iwase and Ando (1999) used a slightly different approach
based on matching areas under the stress/distance curves
for elastic and plastic conditions. Their method is prob-
ably more accurate than the one used here but we found
that it gave very similar predictions (within 10%) for the
data used here.

For the data of Wilshaw, Rau and Tetelman (1968) shown
above, all fractures occurred at K values below the plane
strain limit (eqn.7). Fig.5 shows further data on low-
temperature cleavage fracture of steel, in this case from
Tsuji, Iwase and Ando (1999). There is considerable
scatter but a PM prediction fits the data reasonably well
using an L value of 0.05mm. The plain strain limit occurs
at 54MPa(m)1/2 ; some of the data points lie above this
limit, but all lie below the plane stress onset value (not
shown). Fig.6 shows data from Yokobori and Konosu
(1977) who tested a steel which was similar to that of

Tsuji et al, but used thinner specimens. When we at-
tempted to use the TCD we found that there was no sin-
gle value of L which would fit this data, using either the
PM or LM. However, the data for root radius values up to
about 1mm could be predicted using the PM with a value
of L identical to that used for the Tsuji data (0.05mm).
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Figure 5 : Data from Tsuji et al (1999) on low-
temperature cleavage fracture of steel. Predictions using
the PM (with L=0.05mm); plane strain limit value calcu-
lated using equation 7.

In this case all results lie above the plane strain limit line,
and the data points begin to deviate from the PM pre-
diction line at the point of plane stress onset. We con-
clude from this that the PM prediction works for these
notches provided a high level of constraint is maintained.
Also shown on the graph is a line corresponding to gen-
eral yield in these specimens, indicating that the failures
in the blunter notches occurred under conditions of full
plasticity. It is interesting to note that, around the transi-
tion point ((ρ)1/2 values of 0.9mm1/2 and 1mm1/2) there
is more scatter in the data than elsewhere, perhaps indi-
cating a change in fracture mechanism with some speci-
mens failing under plane strain conditions and others be-
ing affected by reduced constraint and therefore failing
at higher stress levels.

Fig.7 shows a similar situation occurring in data on a high
strength steel [Irwin (1964)] tested at room temperature,
which had a Kc value of 29.6MPa(m)1/2. Again there
was no single value of L which could predict all the data:
a value of 0.0023mm was successful at low notch radii
and the data shifted to values above the prediction line in
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Figure 6 : Data from Yokobori et al (1977). Predictions
using the PM; estimated values for the plane strain limit,
plane stress onset and general yield.

the region between the plane strain and plane stress limit
lines. This time a second prediction line has been drawn,
also using the PM, which passes through the data points
for the blunter notches and may represent fully plane
stress conditions. This prediction is a very tentative one,
since we do not know the value of Kc for plane stress so
it was necessary to choose values for both Kc and L. The
resulting values were Kc=100MPa(m)1/2, L=0.015mm;
this Kc value is at least plausible given that the measured
fracture toughness in metals in plane stress is typically
three times higher than in plane strain [Knott (1973)].
The very small plane-strain value of L, only 2.3µm, prob-
ably reflects the fact that the relevant microstructural pa-
rameter in this quenched and tempered steel will be the
lath width, rather than the grain size. The plane-strain
value of σo was 11,010MPa, which is much greater than
three times the yield strength (σy=1,590MPa), showing
that there is no fixed relationship between σo and σy. The
plane-stress value of σo was even higher, at 14,570MPa.

Finally, fig.8 shows data obtained under fully plane stress
conditions, using relatively thin specimens of aluminium
alloy 7075-T6 [Mulherin, Armiento and Marcus (1963)]
with a yield strength of 498MPa. Good predictions were
obtained using the PM with a Kc value of 77MPa(m)1/2

and an L value of 0.07mm, giving σo=5,190MPa.
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Figure 7 : Data on a high-strength steel tested at room
temperature [Irwin (1964)], showing the plane strain
limit, plane stress onset and some possible PM predic-
tions for plane strain and plane stress.
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Figure 8 : Data [Mulherin, Armiento and Marcus
(1963)] and PM predictions for an aluminium alloy tested
under plane stress conditions.
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5 Discussion

This analysis has shown that simple versions of the The-
ory of Critical Distances, such as the PM and LM, are ca-
pable of accurate predictions of the effect of notch radius
on the fracture strength of metallic materials. The ap-
proach can be used to predict failures which occur by un-
stable crack propagation, whether the micromechanism
is cleavage or a ductile process. One difficulty, com-
pared to previous work on high-cycle fatigue in metals
and on brittle fracture in ceramics, is that the value of
the critical distance L cannot be predicted analytically
but must be found from experimental data. However,
once L is known the method has considerable predictive
capacity over a range of notch radii. It has been noted
by a number of workers that the measured toughness in-
creases approximately as the square root of notch radius
(for radii above the critical value): this result can be pre-
dicted using the present approach, because as ρ increases
and becomes much larger than L, the predicted Kc value
becomes proportional to the stress near the notch root,
which (by eqn.3) becomes proportional to (ρ)1/2. How-
ever, whilst this relationship is a useful approximate one
it is not exact; in general the result will depend not only
on root radius but also on notch length and specimen di-
mensions: the TCD can still be used but FEA will be
needed to provide an accurate description of the stress
field (as shown in fig.2).

A second difficulty, which is to be expected when deal-
ing with metals, is the effect of constraint. In notched
specimens the problem is complicated by the fact that
a specimen which may fail under plane strain condi-
tions when it contains a crack or sharp notch, may no
longer do so when the root radius is increased because
the higher load before failure will generate more plas-
ticity. Using some approximate estimates for the limit of
plane strain and onset of plane stress, it was demonstrated
that the TCD can give good predictions whenever plane
strain dominates. It may also be capable of predicting
behaviour under plane stress and intermediate constraint
levels, though further analysis of data is required before
this can be confirmed. Just as we know that Kc changes
with constraint, so we can expect that L and σo will also
change. It should be emphasised that the evidence pre-
sented here in regard to plane stress is very limited and
that the whole question of predicting toughness under
conditions of reduced constraint is a much more difficult
one. We have considered only the particular case of out-

of-plane constraint: the level of in-plane constraint can
also vary (for example due to variations in the T stress)
and this can also be shown to affect toughness.

Under conditions of low constraint the LEFM require-
ment of contained yielding is often lost, but even when
it is maintained fracture is often characterised by consid-
erable amounts of stable crack growth before final frac-
ture. During this stable crack growth the apparent tough-
ness of the material increases, creating the so-called re-
sistance curve (or R-curve) which is often used as a pre-
dictive tool. Recently, however, the R-curve philosophy
has been criticised [Sumpter (1999)]; in any case it has
been noted that the amount of stable crack growth before
unstable fracture is much smaller for notches of radius
larger than ρc than it is for cracks [Irwin (1964)], so an
analysis such as the TCD, which is based only on initial
conditions, may still be valid in these circumstances.

As stated in the Introduction, the TCD is advocated as
a continuum mechanics theory, essentially a modified
version of LEFM, and (like LEFM) it functions using
material parameters obtained from experimental testing,
which characterise the material at a continuum level. The
introduction of only one new parameter – the charac-
teristic distance L – is sufficient to extend the use of
LEFM very widely, to allow predictions to be made from
notches of varying root radius and (as we showed in pre-
vious papers on fatigue and on brittle materials) to pre-
dict the effect of short cracks and small notches. Be-
cause only an elastic stress analysis is needed the pre-
dictions can be made using simple analytical equations
or computer models, thus providing a practical tool for
the prediction of failure in complex geometries such as
engineering components.

The values of L found in this work were of the same order
of magnitude as microstructural features such as grains or
bainite laths. To further illustrate this point, fig.9 shows L
values calculated from the data of Yokobori and Konusu
(1977) who tested their material in different heat treated
conditions to produce six different grain sizes, including
the one shown above in fig. 6. There is a clear relation-
ship between grain size and L in this case.

Thus, in the future, if the relevant micromechanism of
failure is well understood in a particular case, it may
be possible to estimate L from microstructural distances.
On the other hand, the strength parameter σo is un-
likely to have any physical meaning. Its values for
cleavage in steels are considerably higher than mea-
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Figure 9 : L values calculated from the data of Yokobori
and Konusu (1977), plotted as a function of the grain size
of the material.

sured values of the fracture stress, which are typically of
the order of 1000MPa [Ritchie, Knott and Rice (1973),
Wilshaw, C.A.Rau and A.S.Tetelman (1968)]. Kinloch
and Williams (1980), working with polymers, suggested
that, because σo is approximately equal to three times the
yield strength, it may be related to the peak stress value
ahead of a crack or notch in plane strain. However the
peak stress occurs at a distance different from L/2 and its
magnitude is a feature of the elastic/plastic stress distri-
bution. In any case we found that in some materials σo is
much larger than 3σy, even exceeding 10σy.

The situation is different when using the TCD to pre-
dict high cycle fatigue, because there the value of σo is
equal to the material’s fatigue limit and actually exists
at the distance L/2 because the elastic analysis is valid at
that distance, the plastic zone being considerably smaller.
The same may be true for brittle fracture in ceramics, but
not for brittle fracture in metals because the point L/2
will lie inside the plastic zone. The theoretical justifica-
tion for using the PM and LM, despite the existence of
local plasticity, is the same justification that we invoke
when using LEFM: there is a one-to-one relationship be-
tween conditions inside the plastic zone and conditions
in the surrounding elastic zone. Therefore we can use a
purely elastic analysis to predict failure. LEFM can be
interpreted as specifying that failure will occur when the
elastic stress field near a crack has certain characteristics
(specifically that the proportionality constant K attains a
certain value). The PM and LM also make use of the elas-
tic stress field, but use different specifications for failure:

that the elastic stress should reach a certain value at a dis-
tance L/2 or that its average should reach a certain value
over a distance 2L.

It is expected that the other limitations which normally
apply to LEFM will also apply to the TCD; for example
the approach is unlikely to be successful in situations of
extensive plasticity where the small-scale yielding condi-
tion is violated. It may be possible to modify the theory
to take account of the T stress, and it should certainly
be possible to include general multiaxial fracture laws as
part of the theory, in the same way that they have been
introduced into LEFM in the past.

6 Conclusions

1) Simple versions of the Theory of Critical Distances
(TCD), such as the Point Method (PM) and Line Method
(LM), can be used to predict the onset of unstable, brit-
tle fracture in metallic materials containing cracks and
notches.

2) Predictions are successful whether the micromecha-
nism of crack growth is cleavage (e.g. in steels at low
temperature) or ductile tearing (e.g. in aluminium al-
loys); the micromechanism is not of importance because
the TCD is a continuum mechanics method. It differs
from LEFM only in that it makes use of a material con-
stant, L, which has the units of length and can be thought
of as a characteristic distance.

3) The value of L for a particular material and failure
mechanism can obtained from experimental data. Know-
ing L, and the fracture toughness Kc, a characteristic
strength value σo can be determined for use in the PM
and LM calculations. L is typically of the same order of
magnitude as microstructural features: the value of σo,
being derived from an elastic analysis, is probably not of
any fundamental significance.

4) Like Kc, the value of L changes with the level of con-
straint experienced at the crack or notch. Under fully
plane-strain conditions, unique values of these parame-
ters are capable of determining the effect of root radius
on the stress to failure. However, as notch root radius
increases, the degree of constraint prior to failure may
decrease, necessitating changes to the parameter values.

5) Since the TCD can be applied to any body under stress
for which the elastic stress field can be predicted (e.g.
by computer methods such as FEA), it can very easily
be used to assess the behaviour of stress concentration
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features of complex shape, such as exist in engineering
components.
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