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2D Wave Scattering by a Crack in a Piezoelectric Plane Using Traction BIEM

D. Gross1 , T. Rangelov 2 , and P. Dineva 3

Abstract: Scattering of time harmonic waves by a fi-
nite crack in a homogeneous piezoelectric plane under
plane strain conditions is studied. Using generalized
displacements and tractions, the problem is described
by a non-hypersingular traction based boundary integral
equation method (BIEM). The fundamental solution is
derived in closed form by Radon transforms. As a typical
example, the procedure is applied to a straight crack un-
der incident longitudinal waves and under vertically po-
larized shear waves. The K-factor results are compared
with those from the literature for a special case. Fur-
thermore, their dependence on parameters like frequency,
angle of incidence, wave type and material properties is
discussed.

keyword: Piezoelectric, materials, Wave scattering,
BIEM, SIF.

1 Introduction

Piezoelectric ceramic materials are anisotropic di-
electrics, where both the electric and the elastic fields
are coupled. They are extensively utilized as transducers,
sensors and actuators in many fields like telecommunica-
tion, robotics, microelectronics, mechatronic or adaptive
intelligent structures. Piezoelectric materials are inher-
ently brittle. The components made from them usually
contain natural flaws due to the manufacturing process
and unavoidable artificial stress concentrators on account
of their specific composition e.g. as actuating compo-
nent. This is the reason why linear fracture analysis plays
an important role for analyzing the electro-mechanical
behavior including reliable failure and lifetime predic-
tions. The knowledge of electro-mechanical stress in-
tensity factors (SIF) for static and dynamic loading con-
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ditions may provide useful information concerning crack
initiation and final fracture of a structure.

The theoretical basis for the description of linear piezo-
electrics can be found in Landau & Lifshitz (1960), Par-
ton & Kudryavtsev (1988), Ikeda (1990) and Eringen &
Maugin (1990). During the past decades, many papers
on crack problems for such materials have been pub-
lished which may be divided into the following groups.
(A) Analytical solutions for simple crack geometries and
loading conditions, see e.g. Parton (1976), Pak(1990),
Sosa (1992), Xu & Rajapakse (1999). (B) Green’s func-
tion approach and fundamental solution for static and
dynamic problems that have a relatively simple mathe-
matical structure and which are convenient for numeri-
cal implementation. As examples for time-harmonic 3D
problems Norris (1994), Khutoriansky & Sosa (1995a,b),
Sosa & Khutoriansky (1999, 2001) and for 3D prob-
lems in the time-domain Daros & Anthes (2000) shall
be mentioned. A fundamental solution for transient 2D
and 3D problems was derived by Daros (2002); funda-
mental solutions for 2D problems in the time-domain
and frequency domain have been given by Gross, Dineva
& Rangelov (2002), Wang, Zhang & Hirose (2003),
Wang & Zhang (2004), Rangelov & Dineva (2004),
Gross, Dineva & Rangelov (2004), Denda, Araki &
Yong (2004). A fundamental solution for the 2D anti-
plane problem was derived by Wang & Meguid (2000b).
(C) Development of approximate semi-analytical solu-
tion methods, see Shindo and Ozawa (1990), Shindo,
Katsure & Yan (1996), Narita & Shindo (1998), Wang
& Meguid (2000a), Wang & Noda (2000). (D) Devel-
opment of numerical methods as the FEM, see Kumar &
Singh (1997a,b), McMeeking (1999), Benjeddou (2000),
Shang, Kuna & Abendroth (2003) and the BIEM, see
Khutoryansky & Sosa (1995a), Chen & Lin (1995), Hill
& Farris (1998), Pan (1999), Lee (1999), Denda & Lua
(1999), Davi & Milazzo (2001).

Restricting the focus on time-harmonic solutions a few
more investigations have to be mentioned. An analyti-
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cal solution for a simply supported composite plate under
harmonic electrical load was given by Ray, Bhattacharya
& Samanta (1998). A closed form solution for the an-
tiplane problem of a single crack in an infinite region
based on the dual singular integral equations method was
presented by Chen & Yu (1998) and Parton & Kudryavt-
sev (1988). Shindo & Ozawa (1990) first investigated
the dynamic response of a cracked domain under nor-
mal incident in-plane longitudinal waves by using Fred-
holm integral equations. The diffraction of anti-plane
shear waves with arbitrary angle of incidence by a crack
in an infinite orthotropic piezoelectric ceramic has been
investigated by Narita & Shindo (1998). The equiva-
lent two-crack diffraction problem was solved by Wang
& Meguid (2000a, b). Zhao & Meguid (2002) investi-
gated the dynamic behavior of a piezoelectric laminate
containing multiple interfacial collinear cracks subjected
to electro-mechanical loads. Finally Saez, Dominguez &
Garcia-Sanchez (2004) shall be mentioned who recently
presented results for different crack geometries based on
Green’s function approach.

From this short review it can be concluded that the num-
ber of papers and results regarding wave diffraction by
cracks in piezoelectric continua is still restricted. This
fact may be explained by the complexity of the gov-
erning equations, the different possibilities of electrical
boundary conditions and the mathematical difficulties of
developing appropriate solution methods. A well devel-
oped solution method for wave diffraction problems is
the method of dual singular integral equations and most
of the cited results have been obtained by its usage. Be-
cause of its relative simplicity there exist more results
for the anti-plane case and only a few for the in-plane
case which is of higher practical interest. In contrast to
conventional fracture mechanics there exist no dynamic
in-plane BIEM formulation and results for piezoelectrics.
The main reason for this is that the derivation and usage
of the fundamental solutions for dynamic piezoelectric-
ity is relatively complex due to the anisotropy and the
electromechanical coupling.

Aims of this work are to present a time-harmonic fun-
damental solution in closed form, to develop a non-
hypersingular, traction-based BIEM and to show its ap-
plicability. For this purpose, numerical results for the
2D in-plane wave diffraction problem in infinite cracked
piezoelectric transversely isotropic planeregion are pre-
sented and discussed.

The paper is structured as follows. In section 2 the
boundary value problem is described and its traction BIE
formulation is given. The fundamental solution for the
governing equations is derived by Radon transforms in
section 3. Section 4 describes the numerical implemen-
tation. Finally, the validation of the BIEM solution and
a series of numerical results for a finite crack subjected
to L and SV-waves with different angles of incidence and
for different material parameters are discussed in section
5, followed by a conclusion in section 6.

2 Problem statement and traction BIE

We consider an infinite homogeneous piezoelectric plane
region containing an arbitrary shaped crack Scr, see Fig-
ure 1. Using the coordinates x1,x3 and assuming plane

Figure 1 : Piezoelectric plane region with an arbitrary
shaped crack.

strain conditions, the non-zero field quantities are the dis-
placement ui, the stresses σi j , the electric displacement
Di and the electric field intensity Ei, where i, j = 1 or 3.
The basic equations of linear piezoelectricity in absence
of body forces and charges consist of the balance equa-
tions

σi j, j = ρüi Di,i = 0 (1)

and the kinematical and electric field-potential relations

si j =
1
2
(ui, j +u j,i) Ei = −φ,i (2)

where si j, Φ and ρ are the strain tensor, the electric po-
tential and the mass density, respectively. The summa-
tion convention for repeated indices is implied, subscript
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commas denote differentiation with respect to spatial
coordinates while superscript dots indicate time deriva-
tives. Introducing the generalized displacement uK =
(u1, u3, Φ), J, K = 1,3 or 4, the constitutive equations
can be written as

σiJ = CiJKluK,l = CiJKlsKl (3)

where σiJ and CiJKl are the generalized stress and elas-
ticity tensors. Using the contracted Voigt notation that
reduces the fourth-order elastic and third order piezoelec-
tric tensor to second order ones, these quantities and the
generalized strain are given by

σiJ =

⎛
⎜⎜⎜⎜⎝

σ11

σ33

σ13

D1

D3

⎞
⎟⎟⎟⎟⎠ , sK l =

⎛
⎜⎜⎜⎜⎝

s11

s33

2s13

−E1

−E3

⎞
⎟⎟⎟⎟⎠ ,

CiJK l =
(

c e
e′ −ε

)
,c =

⎛
⎝ c11 c13 0

c13 c33 0
0 0 c44

⎞
⎠ ,

e =

⎛
⎝ 0 e31

0 e33

e15 0

⎞
⎠ ,ε =

(
ε11 0
0 ε33

)
(4)

Here c11, c33, c44, c13 are the elastic, ε11, ε33 are the di-
electric and e31, e33, e15 are the piezoelectric constants.
The elastic and dielectric constants are assumed to be
positive definite, i.e. ci jklqilqkl > 0, ε jk p j pk > 0 for
any real nonzero tensor qst and vector ps. These thermo-
dynamically based conditions ensure a stable piezoelec-
tric material. They express that the internal energy den-
sity must remain positive since this energy must be min-
imal in a state of equilibrium, see Dieulesaint & Royer
(1974).

Assuming a time-harmonic motion with an angular fre-
quency ω and suppressing the common term eiωt , the bal-
ance equations (1) in generalized notation take the form

σiJ,i +ρJKω2uK = 0 (5)

where ρJK =
{

ρ J , K = 1, 3
0 J = 4 or K = 4

. In what follows,

traction-free crack faces Scr = S+
cr ∪S−cr, i.e.

tJ = 0 on Scr (6)

are supposed where tJ = σiJni is the generalized traction
vector and ni is the unit normal vector on S+

cr. This spe-
cific boundary condition implies that the crack surfaces

are free of both mechanical traction and surface charges,
i.e. the crack is assumed to be electrically imperme-
able. In this case the electric field inside the crack is ig-
nored and the crack may be thought as a low-capacitance
medium with a potential drop ∆Φ = Φ+−Φ−.

The interaction of an incident time-harmonic wave with
the crack induces scattered waves. Due to the linearity of
the problem the total wave field can be written as a sum
of the incident and the scattered wave field:

uJ(x) = uin
J (x)+usc

J (x), tJ(x) = t in
J (x)+ tsc

J (x) (7)

The incident wave is assumed to be known while the
scattered wave field is unknown. It has to satisfy the
field equations (2)-(5), Sommerfeld’s radiation condition
at infinity and the boundary condition (6), which can be
rewritten as

tsc
J = −t in

J on S+
cr (8)

Comparing the piezoelectric crack boundary value prob-
lem in generalized notation with that of the correspond-
ing elastic problem, a total agreement can be stated, see
e.g. Zhang & Gross (1998). In view of this, using the rep-
resentation formulas, see Khutorianski & Sosa (1995a),
Pan (1999) and Wang, Zhang & Hirose (2003) and fol-
lowing the procedure for the elastic case, the boundary
value problem may be formulated in terms of a traction
BIE in frequency domain. For the 2D case in plane strain
it reads, see Gross, Dineva & Rangelov (2002) and Wang
& Zhang (2004)

t in
J (x) = CiJKlni(x)∫

S+
cr

[(
σ∗

ηPK(x,y)∆uP,η(y)−ρQPω2U∗
QK(x,y)∆uP

)
δλ l

−σ∗
λPK(x,y)∆uP, l(y)

]
nλdScr , x ∈ S+

cr

(9)

where U∗
QK is the fundamental solution of Eq.(5) and

σ∗
iJQ = CiJKlU∗

KQ, l are the corresponding stresses. Fur-
thermore, ∆uJ = uJ|S+

cr
− uJ|S−cr

is the unknown general-
ized crack opening displacement (COD) and δi j is the
Kronecker symbol. Once the solution of (9), i.e. ∆uJ,
is known for a given frequency ω, the displacements and
tractions of the scattered field and by this the total field in
the whole region can be determined from the representa-
tions

usc
J (x) = −

∫

S+
cr

σ∗
iMJ (x,y)∆uM(y)ni (y)dScr , x /∈ S+

cr (10)
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tsc
J (x) = −CiJKlni(x)∫

S+
cr

[(
σ∗

ηPK(x,y)∆uP,η(y)−ρQPω2U∗
QK(x,y)∆uP

)
δλ l

−σ∗
λPK(x,y)∆uP, l(y)

]
nλdScr , x /∈ S+

cr

(11)

3 Fundamental solution and incident plane wave

For the numerical solution of the integrodifferential
equation (9), the traction t in

J on the crack face due to the
incident wave must be known. Furthermore, the fun-
damental solution U∗ and the corresponding stress σ∗

have to be available in an appropriate form. The deriva-
tion of the fundamental solution and the representation of
the incident plane wave follow the lines given by Gross,
Dineva & Rangelov (2002).

3.1 Fundamental solution

Since Eq. (5) has constant coefficients, a fundamental
solution U∗ exists, see John (1955), which can be rep-
resented as the 3×3 matrix U∗ = {U∗

KJ}. Here U∗
i j and

U∗
4 j are the displacement in i-direction and the electric

potential at a observation point x = (x1,x3) due to an im-
pulsive unit force applied at source point x0 = (x01,x03)
in j-direction while U∗

i4 and U∗
44 are the displacement in

i-direction i and the electric potential on account of a unit
point charge. As in the forgoing section, small subscripts
vary by 1, 3 and capital subscripts by 1, 3, and 4. The
matrix function U∗ is solution of the equation

(
D(∂)+ρω2J3

)
U∗ (x,x0) = −δ(x−x0) I3 (12)

where δ is the Dirac delta function, Jq =
(

Iq−1 0
0 1

)

with Iq Being the q × q unit matrix and the 3× 3 ma-
trix differential operator D(∂) consists on the elements
dJK(∂) = CiJKl∂i∂l .

The fundamental solution of the problem at hand can be
derived by Radon transforms, see Ludwig (1966) and Za-
yed (1996). Let f (x) be a function defined in R2 and s be
a real number, m ∈ R2 then Radon transforms R of f (x)
is defined as

f̂ (s,m) = R [ f (x)] =
∫

<m,x>=s

f (x)dΩ =

∫

R2

f (x).δ(s− < m,x >)dx (13)

where <,> denotes the scalar product in R2. This means,
Radon transforms is an integration of f (x) over all planes
defined by < m,x >= s. The inverse Radon transform
can be written as

f (x) =
1

4π2

∫
|m|=1

K( f̂ (s,m))|s=<m,x> dm,

K( f̂ ) =
+∞∫

−∞

∂σ f̂ (σ,m)
s−σ

dσ (14)

The following Radon transforms properties will be used:
f̂ (αs,αm) = 1

α f̂ (s,m); R(α1 f1 +α2 f2) = α1 f̂1 +α2 f̂2;

R(∂ j f (x)) = m j∂s f̂ (s,m) ; R(δ(x)) = δ(s) .
Applying Radon transforms to Eq. (12), taking for sim-
plicity x0 = (0,0) and having in mind the Radon trans-
form properties, we obtain

(
D(m)∂2

s +ρω2J3
)

Û∗ (s,m) = −δ(s)I3 (15)

where the matrix D(m) is obtained from D(∂) simply by
replacing ∂ j by m j. The matrix equation (15) consists of
three systems with three linear equations. Expressing the
functions ∂2

sÛ∗
4J by

∂2
sÛ∗

4J = d−1
44

(
dk4∂2

sÛ∗
kJ +δ4Jδ(s)

)
(16)

it can be reduced to the matrix equation

(
D̃(m)∂2

s +ρω2I2
)

Ũ∗ (s,m,ω) = F̃ (17)

consisting of three systems with two equations where
Ũ∗ is a 2 × 3 matrix (the first two rows of Û∗). The
so-called ‘stiffened matrix’ D̃(m), see Daros (1999), is
a 2× 2 matrix with the components d̃i j(m) = di j(m)−
d−1

44 (m)di4(m)d j4(m) and F̃ is a 2 × 3 matrix with the
components f̃ jK = δ jKδ(s)−d−1

44 (m)δ4J(δ j1 +δ j3)δ(s).

Equation (17) is a linear system of ordinary differential
equations and in order to solve it, we will use its canon-
ical form. On account of the properties of the material
constants CiJKl , the matrix D̃(m) is symmetric and pos-
itive definite, i.e.

(
TrD̃(m)

)2 − 4detD̃(m) > 0 is satis-
fied for every m �= 0. Consequently, D̃(m) has two dif-
ferent positive eigenvalues b1(m) > b2(m) > 0 and cor-
responding orthogonal and unit eigenvectors g1(m) and
g2(m) exist. Their components form the orthogonal ma-

trix T (m) =
(

g1
1 g1

2
g2

1 g2
2

)
that changes the basis to the
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basis of eigenvectors. Substituting

Ũ∗ (s,m) = T (m)V (s,m) ,

F̃(m, s) = T (m)F(m, s) (18)

into Eq. (17), multiplying from the left side with T−1(m)
and having in mind that

T−1(m)D̃(m)T (m) = B(m) =
(

b1(m) 0
0 b2(m)

)
,

the system of equations (17) will be decoupled:
(
B(m)∂2

s +ρω2I2
)

V(s,m) = −F(s,m) (19)

Equations (19) are six ordinary differential equations of
the type
(
b(m)∂2

s +ρω2I2
)

ν(s,m) = −δ(s) f (m) (20)

with the solution, see Vladimirov (1984),

ν(s,m) = α(m) f (s,m)eik(m)|s|,

k(m) = ω
√

ρ/b(m),α = i (2b(m)k(m))−1 (21)

where f (s,m) depends on g j. Therefore, we get

Ũ∗ = TV,Vpq = αpgp
qeikp|s| ,

kp = ω
√

ρ/bp , αp = i (2bp(m)kp(m))−1 (22)

Having Ũ∗
k j = Û∗

k j the function Û∗
4J can be obtained from

Eq. (16). From the 3×3 matrix Û∗ the fundamental solu-
tion U∗ is constructed through inverse Radon transforms
which is defined by Eq. (14).

Applying this procedure, the functions U∗
i j , i, j = 1,3 can

be written as
{

U∗
i j (x,x0)

}
=

∫
|m|=1

(
g1

1 g1
2

g2
1 g2

2

)(
g1

1W1 g2
1W1

g1
2W2 g2

2W2

)∣∣∣∣∣∣
s=|〈x−x0,m〉|

dm

(23)

where

Wj (s) = B j

[
iπeik js −2

(
ci (k js)cos (k js)

+si (k js) sin(k js)
)]

,B j =
(
8π2b j

)−1

and

ci (t) = −
∞∫
t

cos(τ)
τ dτ, si(t) = −

∞∫
t

sin(τ)
τ dτ

are the integral sin and integral cosine functions, see
Bateman & Erdelyi (1953). The functions U∗

i4 for i = 1, 3
have the form

{U∗
i4(x,x0)} =

∫
|m|=1

(
g1

1 g1
2

g2
1 g2

2

)(
g1

4W1

g2
4W2

)∣∣∣∣∣∣
s=|〈x−x0,m〉|

dm, (24)

where gk
4 = −d−1

44

(
d14g1

k +d34g2
k

)
, k = 1,2 and finally

U∗
44(x,x0) = h1(x,x0)+h2(x,x0), (25)

where

h1(x,x0) =
〈 ∫
|m|=1

( g1
1 g1

2
g2

1 g2
2

)(−d−1
44

)
(

d14g1
4W1

d34g2
4W2

)∣∣
s=|〈x−x0,m〉|dm, (1,1)

〉 ,

h2 (x,x0) =
1

4π2

∫

|m|=1

d−1
44 ln |s|

∣∣∣∣∣∣
s=|〈x−x0,m〉|

dm. (26)

The derivatives of the fundamental solution U∗ and its
corresponding stress σ∗ can be found using the function

∂sWj (s) = B j
[−πk je

ik js − 2
s

+2k j
(
ci (k js)

sin(k js)− si (k js)cos(k js)
)]

Furthermore, from Eqs.(23)–(26) the near-field asymp-
totic of U∗

IJ and σ∗
kIJ yields as

U∗
IJ ≈ bIJ ln |x−x0| ,

σ∗
kIJ ≈ dkIJ

1
|x−x0| for x → x0 (27)

where bIJ and dkIJ depend on the elastic, dielectric and
piezoelectric constants and the density, but not on the fre-
quency ω. By comparison, it can be seen that the asymp-
totic behavior for the time-harmonic case is the same as
for the corresponding static case, see Rajapakse & Xu
(2001). It also shall be mentioned that the fundamental
solutions for the elastic-isotropic and elastic-anisotropic
cases can also be derived by following the procedure de-
scribed above. Note that for the anisotropic case the tran-
sient and time-harmonic fundamental solution has been
obtained by Wang & Achenbach (1994).
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3.2 Incident plane wave

The incident wave displacement uin
J and traction t in

J are
obtained as solution of Eq. (5) using the wave decompo-
sition method, see Courant & Hilbert (1962). At a fixed
frequency ω we seek a solution in form of a plane wave

U(x,ξ) = p.exp
{−ik 〈x,ξ〉} (28)

where ξ = (ξ1, ξ3) is a given wave propagation direction
and the polarization vector p = (p1 , p3 , p4) and the real
wave number k are unknown. The vector function U has
to satisfy Eq. (12) with zero right hand side:

(
D(∂)+ρω2J3

)
U (x,ξ) = 0 (29)

Applying the procedure described in section 3.1, the gen-
eralized plane wave solution is found as a superposition
of the two types of incident plane waves

U
j(x,ξ) = p j exp

{−ik j 〈x,ξ〉} ,

k j = ω
√

ρ/β j(ξ) , j = 1, 2 (30)

where β j > 0 are the eigenvalues of the stiffened matrix
D̃(ξ), p̃ j = (p j

1 , p j
3) are the unit and orthogonal eigen-

vectors of D̃(ξ) and p4
j = −d−1

44 (ξ)di4 p j
i .

The linear combination U = α1U
1 + α2U

2
represents

the set of all plane wave solutions of Eq. (5) where
α1 = 1 , α2 = 0 corresponds to L-waves, while α1 =
0 , α2 = 1 corresponds to SV-waves. Note that in con-
trast to isotropic elasticity the eigenvalues β1, β2 depend
in anisotropic and piezoelectric cases on the wave prop-
agation direction ξ. Using Eqs. (2) – (4) the generalized
incident stress tensor and corresponding traction vector
on the crack S+

cr that appears on the left hand side of Eq.
(9) can be determined.

For example, let the crack S+
cr be a segment on the x1-axis

and let the incident wave be a L-wave with incidence an-
gle θ = π/2, i.e. normal to the crack, then the expression
for the incident displacement field has the form, see Eq.
(30), uin

1 = 0 , uin
3 = e−ik1 x3 , uin

4 = e33ε−1
33 e−ik1 x3 where

k1 = ω
√(

c33 +e2
33ε−1

33

)−1 ρ and the incident traction on
the crack is

t in
1 = 0 , tin

3 = −iω
√(

c33 +e2
33ε−1

33

)
ρ , t in

4 = 0 . (31)

4 Numerical solution procedure

The numerical solution scheme follows that developed in
Dineva, Gross & Rangelov (1999, 2002) and Rangelov,
Dineva & Gross (2003) for an isotropic material. The
non-hypersingular traction BIEs are collocated on one
side of the crack boundary using displacement jumps
(COD) as unknowns. The displacement and traction are
approximated with parabolic shape functions which sat-
isfy Hölder continuity at least at the collocation points
and show an asymptotic O(

√
r)-COD behaviour near the

crack tips. Quarter-point boundary elements (QP-BE)
are implemented in a quadratic boundary element dis-
cretization. The disadvantage of the standard quadratic
approximation regarding the smoothness at all irregular
points is overcome by the shifted point method. Af-
ter discretization the obtained integrals are at least CPV
integrals. The regular integrals are computed employ-
ing the Gaussian quadrature scheme for one-dimensional
integrals and Monte Carlo integration scheme for two-
dimensional integrals. All integrals with singular kernels
are solved analytically in the small neighbourhood of the
field point, using the approximation of the fundamental
solution for a small argument.

After discretization of the non-hypersingular traction
BIEs (9) and satisfying boundary conditions on the crack,
an algebraic system of equations for the CODs is ob-
tained and solved. The SIFs directly are obtained from
the traction nodal values ahead of the crack tip, see
Aliabadi & Rooke (1991), Suo, Kuo, Barnett & Willis
(1992).

The program codes basing on Mathematica and FOR-
TRAN have been created following the above described
procedure.

5 Validation and numerical results

In order to validate the described approach, a straight
crack in a transversely-isotropic piezoelectric plane un-
der normal incident L-waves is investigated. The results
for the stress intensity factors are compared with those
of Shindo & Ozawa (1990), who reduced this problem
by Fourier transforms to a pair of dual integral equations
and finally expressed its solution in terms of a Fredholm
integral equation of second kind. Subsequently, to study
the dependence of the stress intensity factors on the dif-
ferent parameters, results are presented for L- and SV-
wave loading, for different angles of incidence and for
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different material constants.

In all numerical examples, the crack of length 2a is lo-
cated in the interval(−a,+a) on the x1-axis. It is divided
into 7 boundary elements and the shifted points numeri-
cal scheme is used. The generalized dynamic SIF’s are
calculated by using the formulae

KI = lim
x1→a±

t3
√

2π(x1 ∓a) ,

KII = lim
x1→a±

t1
√

2π(x1 ∓a) ,

KIV = lim
x1→a±

t4
√

2π(x1 ∓a)

(32)

where tJ is the generalized traction at the point (x1,0,0)
close to the crack-tip. For convenience they are normal-
ized by an appropriate static value, i.e. the normalization
coefficient for the mechanical SIF’s is

k = k1(ξ,ω)b1(ξ,ω)
∣∣ξ=(0,1)

√
πa =

∣∣∣t in
3

∣∣∣√πa

= ω
[(

c33 +e2
33ε−1

33

)
ρ
]1/2√πa

(33)

where t in
3 is the traction of the normal incident L wave

given by Eq. (31). The generalized displacement uin
I and

generalized traction t in
J = σin

iJ ni for an incidence angle θ
and at the point x = (x1, 0,0) ∈ Scr are obtained from
Eq. (30), where U

1
, U

2
are used for the L and SV-wave

respectively.

The materials constants of the three different piezoelec-
tric materials under consideration are taken from Dieule-
saint & Royer (1974) and listed in Tab. 1. For the vali-
dation test and the study of the dependence on the wave
incidence angle PZT-6B is used.

Figs. 2a,b show the variation of the normalized mechani-
cal mode I and the normalized electrical field stress inten-
sity factor

∣∣e33k−1KE

∣∣ versus the normalized frequency

Ω = aω
√

ρc−1
44 . Note that in the case of a normal inci-

dent L-wave, according to Eq. (30), E1 = 0 and u1 = 0
holds and E3 can be obtained at every point along x1 out
of the crack from the constitutive equation (3), i.e.∣∣∣∣ t3 = c33u3,3 −e33E3

t4 = e33u3,3 +ε33E3
(34)

from which

E3 = (t4c33 −e33t3)
(
ε33c33 +e2

33

)−1
(35)

Then KE = lim
x→a±

E3
√

2π(x∓a) where the electric field

E3 is calculated from (35) at a point close to the crack-
tip.

Table 1 : Properties of the piezoelectric materials.
Constants  PZT-5H PZT-6B PZT-7A 

11c 12,6 16,8 14,8 

13c 5,3 6,0 7,42 

33c 11,7 16,3 13,1 

Elastic

stiffness 

1010N/m2

44c 3,53 2,71 2,54 

31e -6,5 -0,9 -2,1 

33e 23,3 7,1 9,5 

Piesoelectric

coefficients

C/m2
15e 17,0 4,6 9,7 

11ε 151 36 81,1 Dielectric

constants

10-10C/Vm 33ε 130 34 73,5 

Density 

103 kg/m3
ρ 7,6 7,55 7,5 

(a)

(b)
Figure 2 : Dynamic SIF versus frequency Ω for normal
incident L wave: a) mechanical SIF-I, b) electrical SIF-E



42 Copyright c© 2005 Tech Science Press SID, vol.1, no.1, pp.35-47, 2005

(i)

(ii)

(iii)
Figure 3a : Dynamic SIFs versus frequency Ω for L-
wave loading with different incidence angle: (i) mechan-
ical SIF-I, (ii) mechanical SIF-II, (iii) electrical SIF-D.

Figs. 2a, b show a very good agreement between the re-
sults of Shindo and Ozawa (1990) and the used BIEM
technique. The maximum differences within the consid-
ered frequency domain are 7-8 %. This approves the ac-
curacy and applicability of the non-hypersingular trac-
tion based BIEM for the solution of 2D in-plane wave
problems in piezoelectric materials with cracks.

In the following, a set of numerical results for a wave

(i)

(ii)

(iii)
Figure 3b : Dynamic SIFs versus frequency Ω for SV-
wave loading with different incidence angle: (i) mechan-
ical SIF-I, (ii) mechanical SIF-II, (iii) electrical SIF.

loaded straight crack is presented highlighting the de-
pendence of the stress intensity factors on the frequency,
the wave type, the incidence angle and the material con-
stants. Note that in Figs. 2 and 4 (for the incidence angle
θ = π/2) the normalized mechanical and electric field in-
tensity factor

∣∣e33k−1KE

∣∣ are displayed while in Figs. 3,
5 and 6 the normalized mechanical and electric displace-
ment intensity factor

∣∣c33(e33k)−1KD

∣∣ are depicted.

Figs. 3a,b display for incident L and SV-waves the dy-
namic normalized SIFs versus normalized frequency Ω
for different angles of incidence.

The first maximum of the SIF-I for an incident L-wave,
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(i)

(ii)
Figure 4a : Dynamic SIF versus frequency Ω for nor-
mal incident L waves and three different materials: (i)
mechanical SIF-I, (ii) electrical SIF-E.

see Fig. 3a (i), appears approximately at Ω = 1 for all
considered angles of incidence. Its amplitude, commonly
called dynamic amplification, decreases from 1,289 for
θ = 900 and 1.173 for θ = 600 to 0.429 for θ = 00 (graz-
ing incidence). The second peak occurs at different fre-
quencies depending on the incidence angle. The SIF-II
curves in Fig. 3a (ii) indicate close results for L-wave
incidence angles 300, 450 and 600, except θ = 00 where
SIF-II is zero. The electrical displacement SIF-D in Fig.
3a (iii) has its maximal values for an incidence angle
θ = 00 and minimal ones for θ = 600. The dependence
on the frequency is weak.

The first maximum of SIF-I in case of an incident SV-
wave, see Fig. 3b (i), appears approximately at Ω = 0.8
for all considered angles of incidence. The dynamic am-

Figure 4b : Dynamic SIF-II versus frequency Ω for nor-
mal incident SV waves and three different materials

plification varies here from 0.6592 for θ = 300, 0.589 for
θ = 450 to 0.383 for θ = 600. The second peak again oc-
curs at different frequencies depending on the wave inci-
dence angle. The SIF-II curves in Fig. 3b (ii) show max-
imal values for SV-waves at an incidence angle θ = 00

while at θ = 450 SIF-II is zero. The electrical displace-
ment SIF-D in Fig. 3b (iii) again is weakly dependent
on the frequency and displays close results for incidence
angles 300, 450 and 600; at θ = 00 SIF-D is zero.

The sensitivity of the stress intensity factors to the mate-
rial parameters can be seen from Fig. 4a,b. It shows the
normalized SIF’s versus normalized frequency Ω for nor-
mal incident L and SV-waves and three different piezo-
electric materials. For L-wave loading it can be seen
from Fig. 4a that PZT-5H delivers the highest SIF val-
ues followed by PZT-6B. The SIF curves for PZT-7A
is in between the SIF curves for PZT-5H and PZT-6B.
While the dependence of SIF-I on the material is rela-
tively weak this cannot be said for SIF-E. For SV-wave
loading a strong dependence of SIF-II on the material
constants can be observed from Fig. 4b. PZT-5H again
delivers the maximum dynamic amplification followed
by PZT-7A.

The influence of the wave type, the incidence angle and
the material constants on the amplification effect is de-
picted in Figs. 5 and 6 where the normalized SIFs versus
incidence angle at fixed frequency Ω = 0.8 are displayed
for L and SV-waves and three different piezoelectric ce-
ramics. The SIF-I and II dependence on the angle of in-
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(i)

(ii)

(iii)
Figure 5 : Dynamic SIF versus incidence angle for L-
wave loading at fixed frequency Ω = 0.8 for three differ-
ent materials: (i) mechanical SIF-I, (ii) mechanical SIF-
II, (iii) electrical SIF.

cidence and on the type of the incident wave are quali-
tatively similar to corresponding curves presented in Sih
(1977) for a crack in an elastic isotropic medium. The

(i)

(ii)

(iii)
Figure 6 : Dynamic SIF versus incidence angle for SV-
wave loading at fixed frequency Ω = 0.8 for three differ-
ent materials: (i) mechanical SIF-I, (ii) mechanical SIF-
II, (iii) electrical SIF

electrical displacement intensity factors for both wave
types are depicted in Fig. 5 (iii) and Fig. 6 (iii).

Generally, the study shows that the dynamic mechanical
and electrical SIF’s are quite sensitive to the type of the
wave, the frequency, the angle of incidence and also to
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the piezoelectric material properties.

6 Conclusion

A 2D analysis of an arbitrarily shaped crack in an infi-
nite transversely isotropic piezoelectric material is pre-
sented by non-hypersingular traction BIEM in frequency
domain. The 2D dynamic fundamental solution obtained
by Radon transform in frequency domain is derived in
closed form. A numerical scheme for the solution and de-
termination of generalized SIF’s is validated by compar-
ison with results for the line crack from the literature. It
shows a good accuracy even when the crack is discretized
by a low number of elements.

Parametric studies for the diffraction of longitudinal and
shear waves by the line crack under different angles of in-
cidence, at different frequencies and for different piezo-
electric materials are presented. The results show that the
stress intensity factors strongly depend on the combined
influence of the aforementioned parameters.

The derived fundamental solution, the numerical scheme
presented and the program codes developed can be used
as a good basis for the solution of dynamic piezoelec-
tric problems with a more complex geometry (e.g. finite
cracked multilayered regions) and mechanics (e.g. gen-
eral anisotropy, crack-interaction, inhomogeneity), dif-
ferent dynamic loading (e.g. transient) and different type
of the electrical boundary conditions.
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